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ABSTRACT Identification of line-of-sight (LOS) and non-line-of-sight (NLOS) propagation conditions is
very useful in ultra wideband localization systems. In the identification, supervised machine learning is
often used, but it requires exorbitant efforts to maintain and label the LOS and NLOS database. In this paper,
we apply unsupervised machine learning approach called ‘‘expectation maximization for Gaussian mixture
models’’ to classify LOS and NLOS components. The key advantage of applying unsupervised machine
learning is that it does not require any rigorous and explicit labeling of the database at a certain location.
The simulation results demonstrate that by using the proposed algorithm, LOS and NLOS signals can be
classified with 86.50% correct rate, 12.70% false negative, and 0.8% false positive rate. We also compare
the proposed algorithm with the existing cutting-edge supervised machine learning algorithms in terms of
computational complexity and signals’ classification performance.

INDEX TERMS Expectation maximization, Gaussian mixture models, unsupervised machine learning, ultra
wideband systems, non-line-of-sight identification.

I. INTRODUCTION
Localization information is crucial in commercial and mil-
itary applications [1]–[3]. To improve the localization accu-
racy, a lot of effective approaches have been proposed [4], [5].
Due to high spatial and temporal resolution, ultra wide-
band (UWB) technology has been used in number of various
centimeter level wireless localization applications [6], [7].
Especially, since global positioning system (GPS) signals
are severely attenuated in harsh indoor environments, UWB
localization is considered as an adequate substitute for GPS
in indoor environments. However, the localization accuracy
in an UWB system is severely affected by the non line of
sight (NLOS) conditions.

In an indoor environment, signals between the transmit-
ter and receiver are often obstructed by various abundant
objects such as people, walls, furniture and doors. If a signal
propagates directly between transmitter and receiver it is
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called as line of sight (LOS) condition, on the other hand if
there is no direct path between the transmitter and receiver
it is known as NLOS condition. In case of NLOS signals
the distance between transmitter and receiver will be longer
which will result in positive bias in the position estimation.
To deal with the effect of NLOS, many research efforts have
been devoted to finding better approaches [8]–[15]. In [8],
several different localization techniques have been analyzed
to approach the Cramer-Rao lower bound (CRLB) in an
NLOS environment with a single-path prorogation assump-
tion. Furthermore, hybrid received signal strength (RSS) and
time-of-arrival (TOA) based localization method has been
proposed in [9] to simultaneously mitigate the effect of
NLOS and multipath. A recent study of Mazuelas et al. [10]
has shown that machine learning techniques can be used
to achieve the performance approaching the Cramer-Rao
lower bound (CRLB) in harsh wireless condition. In [11],
the multi-path channel state information is further used to
built fingerprint database to implement the localization in
outdoor environment. Generally, minimum two LOS anchor
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nodes are required for direction-of-arrival (DOA) localiza-
tion technique and three LOS anchor nodes are required
for TOA localization technique [12]. In this case, multipath
and NLOS propagation conditions will cause unreliability of
estimated parameters for positioning. Thus identification of
LOS and NLOS signals can greatly enhance the localization
accuracy [13]. Besides the localization accuracy, NLOS
identification can also facilitate the resource allocation,
power allocation, and nodes routing in wireless sensor
networks [14], [15].

To achieve the objective of NLOS identification in UWB
system, several techniques have been investigated in the lit-
erature [16]–[21]. Most frequently used methods for channel
classification are statistical hypothesis testing [20], [21] and
supervised machine learning techniques [16]–[19]. Because
of very large bandwidth, UWB signals can be readily discrim-
inated at the receiver. Marano et al. [16] have extracted the
features, such as received signal energy, maximum amplitude
of the received signal, rise time, mean excess delay, root
mean square (RMS) delay spread and kurtosis for LOS and
NLOS conditions from an extremely high resolution channel
impulse response (CIR) to train the machine learning algo-
rithm. Miao et al. [19] utilized only LOS signals to train the
one class classification algorithm which is more economi-
cal and during the testing phase the algorithm can capture
the differences between both LOS and NLOS conditions.
However in the supervised machine learning approach a sig-
nificant investment of time and labor is required to label the
channel conditions along with the different features which
are extracted from the received waveform. In the supervised
machine learning approach, the algorithm must first learn
from the labeled data and then it is deployed to discriminate
the unlabeled data. Furthermore supervised machine learning
techniques need to update the training database when indoor
conditions are changed for example furniture in the room
is moved from one location to another. Fortunately, unsu-
pervised machine learning approach proposed in this paper
obviates the need for explicit and prior labeling of channel
conditions thus reducing lot of efforts and time.

The objective of this paper is to study the performance
of an unsupervised machine learning algorithm expectation
maximization (EM) for Gaussian mixture model (GMM) to
discriminate between LOS and NLOS conditions in indoor
environment based on some essential and auxiliary fea-
tures which are extracted from the waveform at the UWB
receiver. The EM algorithm can be used in finding the param-
eters of GMM components that maximizes the log likelihood
whether a signal belongs to LOS or NLOS distribution. To the
best of our knowledge, this paper is the first attempt to exploit
the unsupervised machine learning algorithm, EM-GMM, for
NLOS identification. Advantage of using this algorithm is
soft clusteringwhich provides the LOS andNLOS probability
for each signal.

The rest of the paper is organized as follows. Channel
characteristics, data collection and features extraction
are explained in section II. NLOS identification using

unsupervised machine leaning algorithm is expressed in
section III. Section IV describes the performance evaluation
criteria for the proposed EM-GMM approach, also compu-
tational complexity and performance results are compared
with existing state-of-the-art supervised machine learning
algorithms. Finally the paper is concluded in section V.

II. UWB CHANNEL MODEL AND FEATURES EXTRACTION
In this section, we briefly discuss the SG3a UWB chan-
nel which includes two typical channel models, CM1 and
CM2 [22]. These channel models contain the measurements
over the distance of 0-4 meter for both the LOS and NLOS
situations separately. SG3a UWB channel model is based
on Saleh-Valenzuela (S-V) indoor channel modeling which
was established in 1987 [23]. In UWB channel model, mul-
tipath components arrive at the receiver side in the form of
clusters and within each cluster there are several subsequent
arrivals which are called rays. Therefore, the channel impulse
response of an UWB system can be expressed as

h(t) =
M∑
m=0

R∑
r=0

αm,r exp(jθm,r )δ(t − Tm − τm,r ) (1)

where αm,r and θm,r are the channel gain and phase of
the r th ray in the mth cluster, respectively. Tm is the time
of arrival of the first path of the mth cluster and τm,r is
the delay of the r th ray in the mth cluster. Due to a very
large bandwidth, the time-domain transmission signals of
UWB is similar as a pulse. Therefore, the received waveform
r(t) =

∫
∞

−∞
h(τ )s(t − τ )dτ has similar characteristic as

the channel impulse response, where s(t) is the transmission
waveform of the UWB signal. In this study, we discriminate
the LOS and NLOS components by exploiting the statistics
of the received multipath components. We select three fea-
tures which are extracted from the received waveform r(t)
to identify the NLOS components and define the features set
vector P as

P = [NP, τMED, τRMSD] , (2)

where
• NP denotes the number of paths which contain more
than 85 percent of the total energy and the energy of the
received signal can be obtained by [16]

Er =
+∞∫
−∞

|r (t)|2dt. (3)

• τMED denotes mean excess delay (MED). For the NLOS
components, MED is greater than the LOS components.
It can be calculated using the following formula [16]

τMED =

+∞∫
−∞

t 9(t) dt (4)

and9(t) = |r (t)|2/Er .
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• τRMSD is value of RMS delay spread and depicts the tem-
poral attenuation of the signal energy which is similar to
MED. Generally, the RMS delay for NLOS components
is greater as compared to the LOS components. RMS
delay spread can be expressed as [16]

τRMSD =

+∞∫
−∞

(t − τMED)29(t) dt. (5)

Significance of using these three features [NP, τMED,
τRMSD] for channel classification is that these features are
expected to possess substantial differences between LOS and
NLOS components and reduce the complexity of NLOS iden-
tification since its computational cost is crucially dependent
on the dimension of the feature vector P.

To acquire the data set, we have simulated a large number
of waveforms inMATLABprogram usingUWB indoor chan-
nel model according to the specifications mentioned in [24]
with half of the waveforms in LOS and other half being in
NLOS environments.

III. NLOS IDENTIFICATION
In this section, we first describe the Gaussian mixture model
consisting of LOS and NLOS components and then propose
a NLOS identification scheme based on the EM algorithm.

A. GAUSSIAN MIXTURE MODELS
The LOS and NLOS channel components tend to follow
a certain probability distribution, therefore the mixture of
their probability distributions can be used for channel clas-
sification by assigning unlabeled data points (unidentified
signals) to specific probability distribution which is either
LOS or NLOS. Figs. 1 and 2 show that probability density
functions (PDFs) of selected features comprising of τMED,
τRMS Delay and NP for the NLOS components and LOS
components can be modeled as Gaussian distribution, respec-
tively. In this case, their mixture model is also the Gaussian
model and can be used to classify the LOS and NLOS
components. Therefore, once the parameters determining this
Gaussian mixture model are obtained, the NLOS identifica-
tion will be achieved.

Parameters of the probability distributions are commonly
determined by using EM algorithm since gradient based
optimization techniques are hard to compute for the mixture
of probability densities. As mentioned before, the LOS and
NLOS features can be combined into a Gaussian mixture
model. Therefore, this Gaussian mixture model with k = 1
for LOS components and k = 2 for NLOS components can
be expressed as following,

p(xn) =
2∑

k=1

ωkN (xn|µk ,2k ), (6)

where
• ωk is the mixing coefficient or also known as
the weight for each Gaussian distribution. Mixing

FIGURE 1. Histograms of NLOS samples of τMED, τRMS Delay and NP .
(a) Distribution of τMED. (b) Distribution of τRMSD. (c) Distribution of NP .

coefficients always satisfy the below conditions,

0 ≤ ωk ≤ 1,
2∑

k=1

ωk = 1,
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FIGURE 2. Histograms of LOS samples of τMED, τRMS Delay and NP .
(a) Distribution of τMED. (b) Distribution of τRMSD. (c) Distribution of NP .

• xn = (xn1, xn2, xn3. . . . .xnD), 1 ≤ n ≤ N , n is the
index of data sample, N is the total number of data
samples, and D is the number of features. As mentioned
before, each data point in this paper can be expressed as
xn = [NP, τMED, τRMSD]T which can be considered as a
point in three dimensional space.

• N (xn|µk ,2k ) is a Gaussian probability density which
is governed by mean vector µk and covariance matrix
2k . Multivariate Gaussian distribution can be mathe-
matically expressed as

N
(
xn|µk ,2k

)
=

exp
{
−

1
2

(
xn−µk

)T
2−1k

(
xn−µk

)}
(2π)

D
2 |2|

1
2
k

,

(7)

where the Gaussian probability, N (xn|µk ,2k ), for
k = 1 is referred to as the LOS and for k = 2 is referred
to as NLOS components of the GMM.

In short, a GMM is controlled by a set of three parameters:
mean vectors {µ1,µ2}, covariance matrices {21,22} and
mixing coefficients {ω1, ω2}. To discriminate the LOS and
NLOS components, we need to estimate the mean vectors
{µ1,µ2} and covariance matrices {21,22} for both the dis-
tributions. The expectationmaximization algorithm estimates
the parameters of the latent variables in iterative way and
is one of the most elegant techniques for parametric esti-
mation in machine learning [25]. Therefore, an expectation
maximization algorithm based on GMM is proposed in the
following section.

B. EXPECTATION MAXIMIZATION ALGORITHM FOR GMMS
Expectation maximization algorithm is used to find the
maximum likelihood solution of each received signal for the
LOS and NLOS Gaussian mixture models. Given a mixture
of LOS and NLOS densities, our aim is to maximize the like-
lihood of each data point xn with respect to the parameters.
First we initialize the parameters comprising of the means,
covariances and weights arbitrarily to maximize the log like-
lihood function and then update the parameters by switching
between following two steps, expectation and maximization
iteratively.

1) EXPECTATION STEP (E-STEP)
With the help of Baye’s rule we can calculate the posterior
probability γ (rnk) for each data point xn corresponding to
LOS with k = 1 and NLOS with k = 2 distribution by
using the current parameters means, covariances and weights.
The posterior probability is defined and calculated by the
following mathematical expression [26]:

γ (rnk) =
ωkN (xn|µk ,2k )
2∑
j=1
ωjN (xn|µj,2j)

(8)

where j is the index from 1 to 2, for both the LOS and NLOS
distributions.

2) MAXIMIZATION STEP (M-STEP)
In the maximization step, we re-estimate the parameters
by making use of the posterior probabilities computed in
the E-step such that maximized log likelihood is achieved.
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Correspondingly, the parameter update procedures can be
expressed as

ωNewk =
N̄k
N

(9)

µNewk =

N∑
n=1

γ (rnk) xn

N̄k
(10)

2New
k =

N∑
n=1

γ (rnk)
(
xn − µNewk

)
(xn − µNewk )

T

N̄k
(11)

where N̄k =
∑N

n=1 γ (rnk ). It should be noted that N̄k is not
an integer, but it can be viewed as the effective number of
points allocated to each LOS and NLOS cluster in a physical
sense.

Once the above parameters are obtained, we can compute
the log likelihood of LOS and NLOS distribution by

lnP (x|µ,2, ω) =
N∑
n=1

ln

{
2∑

k=1

ωkN (xn|µk ,2k )

}
(12)

In Algorithm 1, we demonstrate the EM algorithm for the
Gaussian mixture models. Line 2 to line 11 relates to expec-
tation step and line 12 to line 28 relates to maximization step.
Expectation and maximization steps continue until conver-
gence is achieved that is when none of the parameters or log
likelihood function is further updated. Each data point xn has
been assigned to either LOS (k = 1) or NLOS (k = 2) based
on the maximum value of its responsibility γ (rnk) for each
distribution. This can be expressed as

k =

{
1, if γ (rn1) > γ (rn2) ,
2, Otherwise.

(13)

After classifying the Gaussian mixture distributions into
two components, mixing components with lowest mean value
of the selected features [NP, τMED, τRMSD] are considered as
LOS. In Fig. 3 one thousand data points with their corre-
sponding values of two features τMED and τRMSD are depicted
in green and blue according to the LOS and NLOS distri-
butions (latent variables). In Fig. 4 data samples are plot-
ted by ignoring the values of data labels. In Fig. 5 data
points with colors illustrating the maximum value of respon-
sibility γ (rnk) for LOS (k = 1) and NLOS (k = 2)
components, mean of each distribution is highlighted in
black.

IV. PERFORMANCE EVALUATION
To measure the quality of the unsupervised machine learning
algorithm EM-GMM, we have adopted the method of exter-
nal evaluation in which we already have the original labels of
each signal. We ignore the data labels and classify the signals
into LOS and NLOS and later compare the classification
results with the original data labels this gives us the external
evaluation of the EM-GMM algorithm. To evaluate the per-
formance, a confusion matrix is computed and performance is

Algorithm 1 EM-GMM Algorithm
Output: Classification of all the data points into LOS and

NLOS probability distributions.
Input: One thousand unlabeled data points.
1: while Mean vectors {µ1,µ2}, covariance matrices
{21,22} and mixing coefficients {ω1, ω2} are not fur-
ther updated. do

2: for n← 1 to N do
3: s← 0
4: for k ← 1 to K do
5: Nk ← ωkN (xn|µk ,2k )
6: s← s+Nk
7: end for
8: end for
9: for k ← 1 to K do
10: γ (rnk)←

Nk
s

11: end for
12: N̄k ← 0, ω← 0, µ← 0, σ ← 0
13: for all n ∈ 1 . . .N , k ∈ 1 . . .K do
14: N̄k ← N̄k + γ (rnk )
15: end for
16: for all k ∈ 1 . . .K do
17: ωk ←

N̄k
N

18: end for
19: for all n ∈ 1 . . .N , k ∈ 1 . . .K , d ∈ 1 . . .D do
20: µkd ← µkd +

rnkxnd
Nk

21: end for
22: for all n ∈ 1 . . .N , k ∈ 1 . . .K , d ∈ 1 . . .D do
23: σ 2

kd ← σ 2
kd +

rnk (xnd−µkd )2

Nk
24: end for
25: for all k ∈ 1 . . .K do
26: 2k ← diag(σ 2

k )
27: end for
28: end while

FIGURE 3. LOS and NLOS mixture of probability distributions with actual
label of 1000 data points.

measured in terms of Correct rate, Error rate, LOS detection
rate and NLOS detection rate. Confusion matrix consists of
the following entities:
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TABLE 1. Performance statistics of EM-GMM algorithm.

FIGURE 4. Unlabeled data points of LOS and NLOS distributions with
unknown parameters mean (µ1, µ2) and covariance (21,22).

FIGURE 5. Channel classification by EM-GMM algorithm along with mean
of LOS (µ1) and NLOS (µ2) distributions.

• TP (True Positive): true positive are the signals for
which the actual label is LOS andmaximum responsibil-
ity γ (rnk) has correctly predicted these signals as LOS.

• FP (False Positive): false positive are the signals for
which the actual label is NLOS and maximum respon-
sibility γ (rnk) has incorrectly predicted these signals
as LOS.

• TN (True Negative): true negative are the signals for
which the actual label is NLOS and maximum respon-
sibility γ (rnk) has correctly predicted these signals as
NLOS.

• FN (False Negative): false negative are the signals for
which the actual label is LOS and maximum responsi-
bility γ (rnk) has incorrectly predicted these signals as
NLOS.

Correspondingly, Correct Rate, Error Rate, LOS Detection
rate and NLOS detection rate can be calculated by the fol-
lowing expressions,

Correct Rate =
TP+ TN

TP+ TN + FP+ FN
(14)

Error Rate =
FP+ FN

TP+ TN + FP+ FN
(15)

LOS Detection Rate =
TP

TP+ FN
(16)

NLOS Detection Rate =
TN

TN + FP
(17)

Table 1. represents the performance statistics of EM-GMM
algorithm for different set of features. It can be examined
that set consisting of all three features wins out in terms of
correct classification with 0.8650 correct rate. False nega-
tive and false positive rates for this best performing set of
feature are calculated as 12.70 and 0.8 percent respectively.
It is also observed that numbers of NLOS signals which
are incorrectly classified as LOS (false positive samples)
are very few in all combination of features as compared
to false negative samples. Thus high NLOS identifica-
tion rate could improve the localization accuracy signifi-
cantly. Fig. 6 graphically illustrates the LOS detection rate,
NLOS detection rate and Correct rate for different set of
features.

Table 2 shows computational complexity and performance
comparison of EM-GMM algorithm with existing supervised
machine learning algorithms, K-Nearest Neighbor (KNN),
Naive Bayes (NB), Decision Trees (DT) and least square
support vector machine (LS-SVM). For simplicity, we use
running times to measure the computation complexity. In the
simulations, 500 additional LOS and 500 NLOS waveforms
are generated to train the supervised machine learning algo-
rithms and MATLAB 2016a is used to perform the compari-
son. From this table,
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TABLE 2. Computational complexity and performance comparison with supervised machine learning algorithms using
[
NP , τMED, τRMS Delay

]
feature set.

FIGURE 6. Performance graph using different set of features combination.

• Unsupervised machine learning algorithm EM-GMM
has a certain performance difference as compared to the
supervised machine learning algorithms, but it doesn’t
require the training data since it does not have the train-
ing phase.

• EM-GMM algorithm only takes up to 44% of the
running time required by the state-of-the-art super-
vised machine learning LS-SVM, but it achieves almost
the same NLOS Detection Accuracy as the LS-SVM
algorithm.

In addition, it is also shown that it is effective to select three
features τMED, τRMSD and NP to identify NLOS components
in EM-GMMalgorithm. Once the NLOS signals are correctly
identified, they can be excluded from the localization algo-
rithm to enhance the position accuracy.

V. CONCLUSION
In this paper a novel method called EM-GMM algorithm
based on unsupervised machine learning is proposed to iden-
tify the NLOS signals.We can conclude that the unsupervised
machine learning technique we bring forward is effective for
NLOS channel identification and can be used to enhance the
localization accuracy. By utilizing this probabilistic method
we can get the soft clustering of the data points into LOS
and NLOS, especially data points which are not confined but
rather loosely attached to a distribution will have an indicator
of level of uncertainty over the classification. However the
data points which cannot be modeled as Gaussian distribution
and also are not linearly separable, such data points might

result in incorrect classification. In this study we have used a
batch version of unsupervised machine learning algorithm in
which all the data points are considered at once and values of
latent parameters are discrete. Therefore future works should
focus on the need to know the good starting point to initialize
the algorithm in actual real time scenarios when signals are
received continuously. Verification of the EM-GMM algo-
rithm based on experimental data is also a subject of future
work.
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