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ABSTRACT With the recent increased usage of video services, the focus has recently shifted from the
traditional quality of service-based video delivery to quality of experience (QoE)-based video delivery. Over
the past 15 years, many video quality assessment metrics have been proposed with the goal to predict the
video quality as perceived by the end user. HTTP adaptive streaming (HAS) has recently gained much
attention and is currently used by the majority of video streaming services, such as Netflix and YouTube.
HAS, using reliable transport protocols, such as TCP, does not suffer from image artifacts due to packet
losses, which are common in traditional streaming technologies. Hence, the QoE models developed for
other streaming technologies alone are not sufficient. Recently, many works have focused on developing
QoE models targeting HAS-based applications. Also, the recently published ITU-T Recommendation series
P.1203 proposes a parametric bitstream-based model for the quality assessment of progressive download and
adaptive audiovisual streaming services over a reliable transport. The main contribution of this paper is to
present a comprehensive overview of recent and currently undergoing works in the field of QoE modeling
for HAS. The HAS QoE models, influence factors, and subjective test methodologies are discussed, as well
as existing challenges and shortcomings. The survey can serve as a guideline for researchers interested in
QoE modeling for HAS and also discusses possible future work.

INDEX TERMS HTTP adaptive streaming, QoE modeling, TCP, video quality assessment.

I. INTRODUCTION
The Cisco Visual Networking Index forecasts an increase
of Internet traffic, with video alone being 82% of the net
consumer Internet traffic by 2021 [1]. There has been a
considerable amount of work on video delivery over the
Internet to meet this increased demand. With the deployment
of new wireless technologies such as 4G LTE-Advanced,
the available end-user bandwidth has increased considerably
over the recent years and it will further increase with 5G
wireless systems. However, with the emerging video for-
mats (e.g., Ultra High Definition (UHD), High Dynamic
Range (HDR), Light Field) and new services such as Virtual
Reality, Social-TV, Cloud Gaming, the available network
technology will not be able to meet the increased demand
for high bandwidth for all the users and to satisfy users’
expectations for any content, any place, any time. The new

The associate editor coordinating the review of this manuscript and
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video formats such as 4K and HDR result in files of enor-
mous size and hence call for modern video compression
standards. The effort in this direction resulted in the recently
introduced new video compression standard H.265/MPEG-
HEVC, which on an average, for the tested sequences,
is shown to achieve 50% higher compression efficiency than
its predecessor H.264/MPEG-AVC [2]–[4]. VP9, a royalty-
free encoder developed by Google as a competitor of the
H.265/HEVC encoder, has gained much popularity and is
supported by almost all browsers except for Safari. Licensing
issues with H.265/HEVC and the aim to develop a more
futuristic royalty-free video codec led to the creation of a
consortium of industry partners called Alliance for Open
Media (AOM).1 The joint efforts of the members of AOM
have since then drove to the development of the AV1 codec2

with the final bitstream specification frozen in early 2018.

1http://aomedia.org/
2https://aomedia.googlesource.com/aom/
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Recent studies comparing the performance of AV1with x265,
x264 and libvpx considering on-demand adaptive streaming
applications have found it to result in the highest bitrate
savings but at the cost of huge encoding times [5], [6]. The
applicability of such encoders for live streaming applications
remains an open question.

The advancements in the field of video streaming have
recently resulted in the rise of both Video-On-Demand
(VOD) (YouTube, Netflix, Amazon Video, Hulu, etc.)
and Live (Twitch.Tv, YouTubeGaming) streaming services.
As evident, video streaming is not a niche market anymore,
and there exist a wide range of options for the consumers
to choose from. Hence, as a service provider, it is no more
sufficient just to provide a service, but it is equally important
to make sure that the needs and expectations of the end user
of the offered services are met. This has led to the shift
from traditional technical Quality of Service (QoS) based
assessment (see, e.g., [7]) to Quality of Experience (QoE)
based assessment (see, e.g., [8], [9]).

To correctly determine the end user QoE and subsequently
move towards QoE based control and management, there
exists a need for the development of reliable and accurate
QoE models. Such models usually take into account various
network and application level factors (including several QoS
factors) and aim at predicting the QoE as experienced by the
end user.

Having established the importance of QoE modeling and
considering that HTTP Adaptive Streaming (HAS) is the pre-
ferred video streaming technology, we present in this paper a
review of existing QoE models for HAS applications. While
there exist previous surveys, such as by Seufert et al. [10],
which discuss HAS and related influence factors, and by
Juluri et al. [11], which discuss tools and measurement
methodologies for predicting QoE of online video streaming
services, a survey of QoEmodels for HAS applications is still
missing. Towards this end we present in this paper a review of
the proposed QoE models for HAS applications. The major
objectives of this review are:
• To classify the existing models and provide the
reader with an overview of different works so far
in the field of QoE modeling for HAS applications
(Section V).

• To identify the different influence factors as considered
by the model proponents and discuss their impact on the
model design and performance (Section VI).

• To present the different subjective test methodologies
used for model design and validation. We discuss how
such information can favor reproducible research and
steer the development of models valid in different set-
tings and conditions (Section VII).

• To present a list of publicly available open source
datasets for HAS QoE model design and/or validation
(Section VIII).

• To identify existing research gaps and provide a set of
recommendations for futuremodel design and validation
(Section IX).

The rest of this paper is organized as follows. We start with
a brief introduction to QoE, QoE assessment methodologies
and the various influence factors which need to be taken into
account for QoE model design in Section II. In Section III
we discuss QoE modeling and how QoE models can be
classified based on the type of input information they require.
Then we briefly introduce in Section IV the HAS technology.
Section V reviews the existing work in the field of HASmod-
eling and provides a detailed discussion of the proposed mod-
els. In Section VI a detailed discussion on the effect of various
influence factors is presented and in Section VII subjective
test methodologies as used for model validation and/or testing
by the model proponents is discussed along with their impor-
tance, advantage and shortcomings. Section VIII presents a
discussion on publicly available HAS based datasets which
can act as a valuable resource for model design and validation
by future researchers. Finally, in Section IX we summarize
our observations and findings and point out some existing
gaps and challenges for future work.

II. QoE: DEFINITION AND ASSESSMENT
METHODOLOGIES
A. QoE DEFINITION
The EU Qualinet community (COST Action IC1003: ‘‘Euro-
pean Network on Quality of Experience in Multimedia Sys-
tems and Services’’) defines QoE as: ‘‘QoE is the degree of
delight or annoyance of the user of an application or service.
It results from the fulfillment of his or her expectations with
respect to the utility and/or enjoyment of the application
or service in the light of the user’s personality and current
state’’ [12], [13]. QoE takes into account the end user’s expe-
rience and level of satisfaction and is of much interest to both
academic and industrial players in the field of multimedia.
Understanding the end users’ expectations and experience is
paramount to the development of future services as well as
improvement of the existing technologies and services.While
traditionally QoS has been used to measure the effectiveness
of a service, it fails to take into account end user related
factors (user expectation, environmental factors, etc.). Also,
QoS is limited to telecommunication services and relies only
on technical measurements. QoE on the other hand covers
domains beyond telecommunications and is multidisciplinary
in nature, including domains such as psychology, business,
technical, environmental, etc. Figure 1 illustrates the encap-
sulation of QoS and QoE.

FIGURE 1. QoS and QoE encapsulation.
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B. QoE ASSESSMENT
ITU-T Recommendation P.10/G.100 Amendment 5 defines
QoE assessment as the process of measuring or estimating
the QoE for a set of users of an application or a service
with a dedicated procedure, and considering the influencing
factors (possibly controlled, measured, or simply collected
and reported) [13]. The main objective of QoE assessment is
the design of a system which can identify the various factors
and their influence on the end user QoE. Such information
can then be used by the various stakeholders for optimization
along the process of service delivery (encoding pipeline, load
balancing, resource allocation, etc.) to provide a reasonable
QoE to the end user while making optimized usage of the
available resources. Lossy compression is usually required
for multimedia data which need to be transported over the
Internet, to decrease the required bandwidth and transport
costs. During lossy compression, information is lost, with
higher compression ratios resulting in a higher amount of
information loss. Also, in traditional streaming technologies,
transmission errors such as jitter, delay, packet loss, etc., lead
to further artifacts which are annoying to the end user. Since it
is almost impossible formost practical applications to provide
a service without any artifact, a proper QoEmodel/metric can
help quantifying the amount and kind of distortions and the
magnitude of their effect on the end user QoE, which can then
lead to the design of proper strategies to help overcoming
such artifacts.

C. VIDEO QUALITY ASSESSMENT (VQA) METHODOLOGIES
VQA approaches can be categorized into two main cate-
gories: objective and subjective. Objective VQAmethods are
mathematical models that aim at providing a quality score
which closely resembles the perceived image/video quality.
Subjective VQA, on the other hand, tries to take into account
the user feedback in the form of ratings and targets to estimate
the video quality as perceived by the end user.

Subjective assessment scores are typically reported as
Mean Opinion Score (MOS) which is the average of the opin-
ion scores collected from the assessors. For repeatability and
validation purpose, common guidelines for conducting sub-
jective tests are issued in ITU-T Rec BT.500 and ITU-T Rec
P.910 [14], [15]. These recommendations include a detailed
description of the test settings, methodology and procedures
that need to be followed, including data processing guide-
lines, such as outlier detection, etc.

The common approach to evaluate an objective quality
metric’s performance is to calculate the correlation coeffi-
cients andMSE values between theMOS scores estimated via
the objective VQA metrics and the actual MOS scores from
subjective assessment, for the same set of test sequences.

Both objective and subjective VQA approaches have inher-
ent drawbacks. While subjective VQA provides information
on the actual quality experienced by the users, it is not
suitable for real-world applications. Also, conducting sub-
jective tests incurs costs and time, and only a small number

of influence factors can be evaluated due to constraints in
test duration and assessors. Objective VQA using metrics
such as Peak Signal to Noise Ratio (PSNR) and Structural
Similarity (SSIM) index, while fast and comparatively easier
to implement, do not always correlate well with the end user
quality [16], [17]. For two videos of different (perceivable)
quality, the objective metric may provide a similar score and
hence does not necessarily reflect the end user’s perceived
quality. Also, many objective metrics require the source
sequences, which is not practical in most of the real-world
quality estimation scenarios.

Quality metrics such as PSNR and SSIM were initially
developed and used for ImageQuality Assessment (IQA). For
Video Quality Assessment (VQA), they are calculated on a
frame-by-frame basis and then the final score is reported as
the average of the individual scores over the full duration of
the video sequence. There also exist different pooling meth-
ods to combine the scores such as Minkowski summation,
exponential weighting, etc. A discussion of temporal pooling
strategies is out of the scope of this paper and interested
readers can refer to [18] for an interesting comparison of the
pooling mechanisms and their performance in HAS applica-
tions.

Traditional models used for VQA, such as PSNR, SSIM,
VQM [19], etc., are not designed for long-term quality pre-
dictions. Also, most of the traditional objective VQA metrics
were designed for quality estimation of impairments due to
compression and/or due to packet losses etc., during the trans-
mission process. They do not take into account impairments
such as rebuffering, quality switches etc., which are present
in HAS applications. Therefore, new approaches for QoE
estimation model design are required for HAS applications
which take into account IFs such as rebuffering and quality
switching along with impairments due to lossy encoding.

D. QoE INFLUENCE FACTORS
A QoE influence factor is ‘‘any characteristic of a user, sys-
tem, service, application, or context whose actual state or set-
ting may have an influence on the Quality of Experience for
the user’’ [12]. As defined in ITU-T Rec. P.10/G.100 Amend-
ment 5, QoE influence factors include the type and char-
acteristics of the application or service, context of use,
the user’s expectations with respect to the application or
service and their fulfillment, the user’s cultural background,
socio-economic issues, psychological profiles, emotional
state of the user, and other factors whose number will likely
expand with further research [13]. Influence factors on QoE
can be grouped into the following four categories as described
by Skorin-Kapov and Varela [20].

1) SYSTEM IFs
System IFs mostly consist of the technical aspects of quality,
for example, the ones which can be measured using QoS
based measurement approaches. They cover a wide range of
aspects such as media related (quality switching events), net-
work related (wired/wireless/mobile, bandwidth, delay, jitter,
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packet loss, etc., resulting in impairments such as tempo-
ral interruptions/pauses) or end-user device related (display
resolution, playback capabilities such as supported codecs,
formats, etc.).

2) HUMAN IFs
Human or User IFs include aspects which refer to the infor-
mation about the end-user and related aspects. These include
individual characteristics of a user such as expectations from
the service, memory and recency effects, usage history of the
application (e.g., browsing history, frequently played video),
demographic and socio-economic background, physical and
mental constitution (users’ emotional state), memory, catego-
rization and attention among many others.

3) CONTEXT IFs
Context IFs deal with factors such as location, end user envi-
ronment (viewing environment, acoustic conditions, etc.),
time of the day, type of usage (e.g., just casual browsing,
newly released episode of favorite TV show), time of service
consumption (peak time, offload time, etc.)

4) CONTENT IFs
One of the most important is the content IFs which addresses
the characteristics of the content. The aspects in this cat-
egory include information about the content being offered
by the service/application under consideration. For example,
for video, the content level IFs are duration, video type and
content complexity (spatial and temporal complexity).

III. QoE MODELING
Managing Quality of Experience (QoE) in a communica-
tion system is a complex task, primarily consisting of three
steps, as shown in Figure 2 and discussed in [21] and [22].
A key step in QoE management is the design of QoE mod-
els. ITU-T Recommendation P.1201 defines a QoE model
as ‘‘An algorithm with the purpose of estimating the sub-
jective (perceived) quality of a media sequence’’ [8]. QoE
models take into account various influence factors and try
to estimate the end user QoE. QoE monitoring and measure-
ment(s) can be done by any stakeholder and the parameters
measured will depend on the application and the interests of
the stakeholder [23], [24]. The final step in QoEmanagement

FIGURE 2. QoE management process.

includes QoE optimization and control, typically performed
based on models or measurements. Again, the optimization
process and the parameters controlled will depend on the
stakeholder and the application type. In this paper, we limit
our discussion to the first step, focusing on QoE Modeling
for HAS applications using reliable transport protocols such
as TCP or Quick UDP Internet Connections (QUIC) [25].

A. IMPORTANCE OF QoE MODELING FOR DIFFERENT
STAKEHOLDERS
QoE modeling is one of the critical steps in the QoE man-
agement process chain, as the performance of the QoE model
will decide the reliability and accuracy of the next steps along
QoE based management. We discuss next the importance of
QoE modeling from the point of view of various stakeholders
in the multimedia streaming process chain.

1) NETWORK PROVIDER
With increasing demand for OTT services, both VOD and
live, there is a tremendous pressure on the network operators
to provide seamless connectivity and high QoE to the end
users. QoE models can help network operators identifying
the various IFs and their respective impact on the end user
QoE and hence allow the network operators to take necessary
actions (resource allocation such as network throttling, load
balancing, caching and network provisioning) to prevent user
churn.

2) SERVICE PROVIDER
In today’s highly competitive environment with almost simi-
lar pricing schemes, the service provider cannot rely on profit
generation based solely on the provision of a service, but
should also take into account different factors whichmay shift
the user base to the competitors. For example, for a service
provider measurable QoE factors such as viewing duration
are of huge interest [26]. For advertisement based services,
longer viewing duration implies more advertisement. On the
other hand, for subscription based services, shift of even a
smaller percentage of viewer base can result in significant
effect on revenues. One of the disadvantages of HAS services
is the requirement of additional storage space, as multiple
copies of the same file are stored in the server. In such cases,
optimized encoding bitrates can lead to huge storage space
savings for the OTT provider while also reducing the demand
for required bandwidth. Hence, proper QoE models can pro-
vide an insight into the IFs and their impact on the service,
and in turn allow the service provider to take appropriate
decisions/measures to ensure high end user QoE.

3) DEVICE MANUFACTURER
Nowadays, most of the device manufacturers, such as Sam-
sung, LG, Sony, etc., are involved in manufacturing of both
small screen devices (mobiles, tablets) and big screen devices
(PC/TV). Different devices have different capabilities and the
perceived quality depends on various factors, one of which
is the device screen size. Also, small screen devices have
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different processing capabilities compared to large screen
devices. Hence, good QoE models can provide insight to the
device manufacturers, considering the device features (dis-
play size, display resolution, CPU, ram, etc.), onwhat settings
to use such that the QoE of the end user can be maximized.
Also, media-layer models (see Section III-C.1) can be used
for codec comparison and hence allow device manufacturers
to provide optimized encoding and decoding support so as to
support the latest codecs in the shortest possible time. Many
device manufacturers are also interested in QoE modeling for
production of QoE monitoring solutions such as probes, QoE
estimation modules etc.

4) END USER
In the end, the user is the king or queen. The success of
a service will depend on the acceptance of the same by
users. As mentioned in [22], successful QoE management
will lead to satisfied end users as their requirements and/or
expectations will be met and hence they may be further open
to adopt new and complex services, leading to growth of more
advanced technologies.

To summarize, QoE modeling can help us identify the
various Key Performance Indicators (KPIs). The actual appli-
cability and performance of the model will vary depending on
the stakeholder as different actors involved will focus on dif-
ferent aspects (mostly the ones they can control). For exam-
ple, in the case of HAS, a network provider may be interested
in rebuffering, quality switches, etc. and their corresponding
effect on QoE as they are directly or indirectly related to the
network QoS parameters such as delay, jitter, packet loss,
etc. A content provider may be interested more in the effect
of average bitrate, segment size, video popularity, etc., for
example, to save storage costs, optimized video caching,
etc. At the application layer, the service provider may be
interested in IFs such as adaptation frequency, adaptation
magnitude, etc. to take these into account for the design of
the client’s adaptation algorithm.

B. QoE MODEL PERFORMANCE EVALUATION
The criteria for the evaluation of the performance of an
objective QoE model, as mentioned initially in Video Quality
Experts Group (VQEG) FRTV Phase I and later in VQEG
FRTV Phase II [27], [28], are:
• Prediction Accuracy It refers to the ability of a model to
predict the subjective rating scores with low error. The
accuracy of the QoE model will affect the applicability
and effectiveness of the QoE management process.

• Prediction Monotonicity It refers to the degree of
model’s prediction agreement with the relative magni-
tudes of the subjective rating scores.

• Prediction Consistency It refers to the ability of a model
to maintain prediction accuracy over a wide range of test
sequences with a variety of video impairments.

The prediction accuracy of a model can be evaluated by using
the Pearson Linear Correlation Coefficient (PLCC) between
the predicted and actual subjective rating scores. Similarly,

the prediction monotonicity of a model can be evaluated
using the Spearman’s Rank Correlation Coefficient (SROCC)
between the predicted and actual subjective rating scores.
Finally, the prediction consistency of the model can be eval-
uated using measurements such as the Outlier Ratio (OR).
A low OR value indicates a high consistency of prediction,
withOR = 0 implying that the model will be stable to predict
the QoE. A good QoE model should provide insight on how
the IFs affect the QoE of the end user. Such insight can help
various stakeholders in a more efficient and optimized system
design.

C. QoE MODEL CLASSIFICATION
Depending on the application area or range of system or
service the model applies to, there exist many ways to classify
models such as based on model input parameters, application
scope, measurement scope, etc. [22]. While there exist many
approaches for classification of models, we use the approach
presented by Takahashi et al. [29], similar to the one pre-
sented by Raake et al. [30] as shown in Figure 3.

FIGURE 3. QoE model classification for streaming applications (adapted
based on input from [30]).

1) SIGNAL-BASED MODELS
Signal-based models, also known as pixel-based models or
media-layer models, utilize the decoded audio/video signal
to estimate the video quality. Since such models do not use
any codec specific information, they are widely used in codec
comparison and optimization of unknown systems.

Based on the relationship between the input and output of
the system, i.e., depending on the amount of source (refer-
ence) information required, VQA metrics can be classified
as Full Reference (FR), Reduced Reference (RR) and No
Reference (NR).
(a) FR:As the name suggests, FRmetrics require the avail-

ability of full information of the source video. They
are computed based on a frame-by-frame comparison
between the reference and the distorted image/video.
The source video should be available in pristine qual-
ity (unimpaired and uncompressed) so that there can
be a direct comparison (e.g., pixel by pixel) between
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the reference and distorted image/video. Due to the
availability of full source information, these metrics
are usually more accurate than their counterpart (RR
or NR metrics) but as such are not suitable for most
real-world applications. Some of the most widely used
quality metrics in the field of image and VQA are FR
metrics such as MSE, PSNR and SSIM [16] and ITU-T
Recommendations [31]–[33].

(b) RR: RR metrics have access to limited source informa-
tion. Due to partial source information, they are usually
less accurate than the FR metrics. Some of the RR
metrics are [34]–[41].

(c) NR: No reference quality metrics do no use any
source/reference information and try to predict the
quality based on the received signal. Commonly used
NR metrics include DIIVINE, BRISQUE, BLIINDS
and NIQE [42]–[45]. In the absence of source informa-
tion, such metrics are usually less accurate than their
counterparts, FR and RR metrics.

2) PARAMETRIC MODELS
Parametric models use measured or expected packet/network
related parameters to estimate the quality. These can be fur-
ther classified in packet-layer models and planning models,
described below.
(a) Packet-layer models: Parametric packet-layer mod-

els utilize only information that can be extracted
from packet headers, such as bitrate, packet loss rate
(PLR), frame rate, frame type, etc., and no media sig-
nal information is required. Such models are hence
non-intrusive in nature and are easily deployable and
computationally very inexpensive (e.g., ITU-T Rec.
P.564 for speech and ITU-T Rec. P.NAMS [8], [46]).
Due to the absence of any payload information, such
models are not suitable for individual QoE monitoring
solutions such as determination of effect of content
dependence on end-user QoE.

(a) Planning Models: Unlike other models, planning mod-
els do not require input information from an existing
service. Such models estimate the quality based on the
quality planning information available during the plan-
ning phase from the networks and terminals. Informa-
tion such as expected bitrate, PLR, codec type, etc. are
used as input in this kind of models. Such model type
includes some of the most widely used model in the
field of videophone services (ITU-TRec. G.1070 [47]),
E-model (ITU-T Rec. G.107, widely used network tool
for public switched telephone network (PSTN) and
Voice over Internet Protocol (VoIP) [48]) and for video
and audio streaming applications [49].

3) BITSTREAM MODELS
Bitstream models take into account the encoded bitstream
and packet layer information. Features such as bitrate, frame
rate, Quantization Parameter (QP), PLR, motion vector, mac-
roblock size (MBS), DCT coefficients, etc. are extracted and

used as input to the model. Such models are also relatively
computationally inexpensive and can be used for real-time
QoEmonitoring. Bitstream basedmodels have recently found
application in the field of multimedia streaming services such
as ITU-T Rec. P.1202, with ITU-T Rec. P.1203 being the
most recently approved recommendation for adaptive audio-
visual streaming services over reliable transport [9]. While
bitstream based models show comparatively higher corre-
lation with subjective quality scores, they suffer from the
drawback that they are suitable for a specific codec. Bitstream
models which can minimize their performance reliance on
codec specific parameters such as size of MB, motion vec-
tor size, etc. will prove to be more useful and find wider
acceptance.

4) HYBRID MODELS
Hybrid models are usually the most effective ones as they
combine two or more of the previously described models and
hence can use much more information as input compared to
any of the standalone models discussed previously.

IV. HTTP ADAPTIVE VIDEO STREAMING
In this paper we focus exclusively onHTTPAdaptive Stream-
ing (HAS) applications using reliable delivery mechanisms
such as TCP and QUIC. Reliable transport protocols such
as TCP make sure that all data will be delivered correctly
to the destination process without any errors. This is usually
achieved by a connection oriented approach between the
sender and the receiver with the receiver acknowledging the
receipt of packets and retransmission of lost or erroneous
packets. Some of the most widely used implementations of
HAS include:
• Adobe HTTP Dynamic Streaming (HDS) [50]
• Apple HTTP Live Streaming (HLS) [51]
• Microsoft Smooth Streaming [52]
• Dynamic Adaptive Streaming over HTTP (DASH) [53].

The first three are proprietary and vendor specific HAS
implementations while DASH, also commonly known as
MPEG-DASH, is an open source international standard
developed by MPEG [54]. The underlying logic is common
in all these implementations with some differences in the
manifest file, recommended segment size, etc.

A. CONCEPT OVERVIEW
Figure 4 illustrates the basic concept behind HAS appli-
cations. The video file is encoded at different representa-
tion levels (spatial/temporal/quality, see Section IV-B) and
then divided into chunks (also referred to as segments) of
equal durations (often 2, 4 or 10 seconds, but depends on
the standard/implementation) which are then stored on a
server. The reverse process of first segmenting and then
encoding can also be used, as currently done by most of
the Over-the-top (OTT) providers to speed up the encoding
process. When a first request for the video file is made by
the client, the server sends the corresponding manifest file
(e.g., .mpd for DASH, .m3u8 for HLS) which consists of the
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FIGURE 4. HAS Schematic (Q3, Q2 and Q1 denote high, medium and low
quality level respectively).

details about the video file such as video duration, segment
size, available representation levels, codec, etc. The client
then requests for video chunks based on its rate adapta-
tion logic. The client’s rate adaptation logic can be broadly
categorized into throughput-based, buffer-based and hybrid
approach. For a comprehensive survey of the rate adaptation
methods for HAS, we refer the readers to the survey paper of
Kua et al. [55]. Figure 4 illustrates the concept of streaming
assuming a throughput-based rate adaptation method. It can
be observed that the client, based on its network condition,
adapts the quality of the video to provide a smooth streaming
experience to the end user.

B. QUALITY SWITCHING DIMENSIONS
Videos can be encoded at different bitrates (quality levels)
by adjusting any/two/all of the following parameters: spatial
resolution, frame rate and QP. A bitrate decrease usually indi-
cates lower quality but the reverse does not necessarily holds
true, i.e., increasing the bitrate after a certain threshold (which
depends on the video content type) does not necessarily result
in higher (perceived) quality videos. Figure 5 illustrates the
adaptation dimensions for video encoding, described in the
following:

1) Spatial Adaptation: The videos are encoded at different
resolutions, hence decreasing the number of pixels in
the vertical and/or horizontal dimensions.

2) Temporal Adaptation: The temporal resolution of the
video is decreased by dropping some of the frames,
i.e., encoding a lower number of frames per second,
hence reducing the encoded bitrate.

3) Compression Quality Adaptation (Switching): Increas-
ing (decreasing) QP values results in an allocation

FIGURE 5. Video quality switching dimensions.

of less (more) bits per pixel, hence resulting in
lower (higher) bitrate values.

The actual dimensions of adaptation will depend on the
application type and also on the content type. For most
content types, compression based quality is considered the
most important dimension. For similar bitrate values, spa-
tial resolution reduction is perceived better than frame rate
reduction (the actual impact of upscaling depends on the
specific player used for video playback at the end user
device), hence resolution is one of the most widely used
adaptation dimensions [56]. For smaller screen sized devices
such as mobile, tablets, etc., spatial resolution plays an impor-
tant role in QoE. In general, in HAS, adaptation in multi-
ple dimensions is perceived better than a single dimension
adaptation [57] and hence is widely used by major OTT
providers.

HAS is one of the most popular streaming technologies
for video delivery over the Internet, currently used by the
primary OTT providers such as Netflix and YouTube, with
both together consisting of more than 50% of the total peak
Internet traffic for fixed access networks in North America
and LatinAmerica [58]. The success of HAS can be attributed
to the following advantages it offers over traditional stream-
ing technologies:

1) Scalability: Since HTTP based progressive download
solutions already existed, no special streaming server
infrastructure is required allowing for the reuse of exist-
ing infrastructure.

2) Reliability: HAS uses reliable transport protocols
(mostly TCP, recently QUIC) with guaranteed packet
delivery and congestion control mechanisms. Hence
network impairments such as packet loss do not cause
any artifacts such as blurring, motion jerkiness, etc.,
as the lost/corrupted packets are retransmitted.

3) Runs natively over HTTP: HAS uses HTTP, which is
firewall friendly and avoids Network Address Transla-
tion (NAT), leading to easier access to HAS services to
the end users.

4) Stateless protocol: In HAS, the server does not store
any information related to the client and/or the requests.
This is useful from a network point of view (e.g., load
balancing) as now each request is treated individually,
hence can be handled by any of the servers, without
keeping track of which server is serving which request.

Some of the challenges in the implementation of HAS
include:

1) Increased overhead: In general, for a good streaming
performance, TCP throughput of approximately twice
of the video bitrate is required, which points to a major
drawback of HAS applications [59].

2) Increased storage and encoding costs: Due to the
creation of multiple quality representations for the
same video/audio content, HAS solutions need much
higher storage requirements compared to other tradi-
tional streaming solutions. While the costs of storage
have considerably decreased over the recent years, new
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video formats such as 4k and HDR results in huge file
sizes. Hence, the high storage costs are still a concern
for OTT providers, especially because a typical OTT
provider includes millions of video contents.

3) Quality switching: The rate adaptation algorithm
switches video quality depending on the network con-
dition and/or buffer status. While quality switching is
an important feature of HASwhich helps inminimizing
the number of stalling events, frequent quality switch-
ing might result in increased user annoyance.

4) Live streaming: During the initial years, HAS was
exclusively used for VOD/Offline streaming applica-
tions. While many services currently use HAS for
real-time applications, encoding videos in multiple rep-
resentations in real-time remains a big challenge.

5) Full segment download: For most of the HAS applica-
tions, full segment download is required before play-
back of the segment can start. Such requirement can
lead to increased cases of stalling events during video
playback.

V. HAS QoE MODELING
In this section, we review the work related to models which
predict the subjective quality (e.g., MOS) for HAS applica-
tions. Table 2 presents a comprehensive overview of all the
models (26 models in total) reviewed in this work. The mod-
els are classified into three categories depending on their type.
The table describes the various IFs considered by the models,
along with the modeling method and the main observations
as reported by the model proponents. It is important to note
that in this review we limit the scope only to models proposed
for HAS applications. For a more generic overview of models
for QoE prediction, we refer the reader to the survey paper by
Juluri et al. [11].

We start in Section V-A with a discussion of definitions
and terminology along with a common set of symbols so as
to have a more comprehensive understanding of the models
discussed later in Section V-B. The models are presented
and discussed based on their classification as described
in Table 2.

A. SYMBOLS AND TERMINOLOGY
We introduce here the terminology we use for the description
of the models: for simplicity and easier comparison of the
models later, our goal is to use consistent terminology and
symbols for all the models described.
• Media Session: Media session indicates video/
audiovisual playback from the start till the end of the
video and includes the effects of initial loading delay,
rebuffering events and quality switching if any. Hence,
in the presence of any of these events, the media session
length will be longer than that of total video/audiovisual
playback length.

• Rebuffering: Rebuffering refers to the event when there
is no data in buffer, hence video playback is stalled

(frame freezing occurs). Such events in video streaming
are usually represented by a loading sign or a spinning
wheel, or sometimes just the current frozen frame, and
occur because of the video packets arriving late.

• Total duration of rebuffering: It refers to the combined
length of all rebuffering events in a single media session.

• Frequency of rebuffering: Frequency of rebuffering
refers to the number of rebuffering events per unit of
time.

• Temporal location of rebuffering: Temporal location of
rebuffering indicates the time instant when a rebuffering
event starts.

• Quality switching: Quality switching, also referred to
as rate adaptation or quality adaptation, refers to the
change of quality over the duration of the media
playback.

• Quality switching frequency: It refers to the rate of
change of the quality during the media playback.

• Quality switching magnitude: It refers to the ‘‘gap’’
between the levels of quality switching.

• Down-switching: Quality switching from a higher qual-
ity level to a lower quality level.

• Up-switching: Quality switching from a lower quality
level to a higher quality level.

• Time on the highest layer: Time on the highest layer
indicates the percentage of time the media playback is
at the highest quality.

• Initial Loading Delay: Also known as initial buffering,
initial loading delay is the time duration between the
request for video playback by the client and the actual
start of the video playback.

• Encoding Quality: It refers to the quality of the com-
pressed video/audio sequence due to loss of data follow-
ing the encoding process. This is typically expressed in
terms of an objective quality metric (e.g., PSNR, SSIM,
VMAF). Some authors characterize the encoding quality
in terms of bit-rate or QP value.

• Primacy and Recency Effects: The psychological phe-
nomena according to which experiences which occurred
recently (recency), and experiences that occurred at the
very start of the session (primacy) affect more the expe-
rience quality.

Table 1 describes the parameters and corresponding sym-
bols used in this review. In addition we use IQS , IILD & IRB
to denote the impairment due to quality switching, initial
loading delay and rebuffering respectively.3

B. HAS QoE MODELS
Here we present and discuss the QoE models in detail.
We start with a discussion of the proposed parametric models,
followed by a discussion of bitstream and hybrid mod-
els. We classify the models based on the discussion in
Section III-C.

3IILD, IRB and IQS refer only to the respective type of impairment and not
necessarily to how they are actually calculated
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TABLE 1. Summary of symbols used in this review. 1) PARAMETRIC MODELS
One of the earliest works towards building a QoE model for
HAS applications was presented by Mok et al. [60]. This
model quantifies QoE for HAS applications using network
and application layer QoS parameters. Based on analytical
models, empirical evaluation, and (subsequent) subjective
tests, Mok et al. quantified the predicted MOS as a simple
equation as:

MOS = 4.23− 0.0672Lti − 0.742Lfr − 0.106Ltr (1)

where Lti, Lfr and Ltr are the levels (1, 2 or 3 corresponding to
low, medium and high levels) of initial loading delay (LILD),
rebuffering frequency (RN ) and rebuffering duration (RAVG)
respectively. The rebuffering frequency is found to be the
main IF. While this work has the advantage of proposing a
simple linear equation mapping application QoS metrics to
QoE, the subjective assessment used to perform the regres-
sion analysis to obtain the proposed model was limited to
only a single video (single content type) rated by 10 users
and limited to a single resolution, which is not realistic
for most HAS applications. An evaluation of the proposed
model on a subjective database of new data is missing. Also,
the work assumes constant network bandwidth, Round Trip
Time (RTT) and Packet Loss Rate (PLR), which is not always
true for the real networks and also leaves out one of the major
IFs of HAS: quality switching. The authors conducted further
studies to correlate QoE with network QoS, and it is observed
that the rebuffering frequency increases due to decreased
network throughput by packet loss and RTT. One of the
major advantages of this model is the fact that content-related
information is not used, hence the model can be used for
encrypted traffic quality estimation by stakeholders such as
network provider of third-party OTTs.

An extended version of this model is presented in [61]
which takes into account user actions such as pausing and
forward/backwards seeking, leading to a better model fit and
an increase in its explanatory power. Video impairments may
lead to various user reactions such as pausing the video,
resizing, etc. and hence such factors need to be considered
in the model design for a more realistic QoE model. Among
all the models reviewed in this paper, this is the only work
which considers user action. Based on the model, it is found
that while some user actions such as pause show a marginal
effect on the final QoE, other user actions such as switching
the screen size have no significant impact on the final QoE
score. While the proposed model is an improvement over
the previous model [60] taking into account more content
types, more test subjects and multiple resolutions, it is still
limited by the network parameters taken into consideration
and also does not take into account quality switching related
impairments. Also, the performance evaluation of the model
is missing.

Rodríguez et al. [62] model the effect of location of pauses
depending on their position in the video. They propose video
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TABLE 2. Overview of the reviewed models.
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Streaming Quality Metrics (VsQM ) as:

VsQM =
k∑
i=1

RN LiWi

VLS
(2)

where k , RN , Li, Wi and VLS are the number of temporal
segments of a video, number of rebuffering events, average
length of the pauses, weight factor representing the degree of
degradation and length of each segment respectively. Based
on the subjective scores, this is then mapped into 5-point
MOS scale as:

VsQMMOS = C exp
( k∑

i=1

RN LiWi

VLS

)
(3)

where C is a constant and all other factors are as defined
in (2). Based on the subjective assessment results, it was
found that the first segment has higher impairment weight
compared to middle or end segments, based on which the
authors conclude that the pauses, in the beginning, are more
important and hence will have a higher impact on the final
QoE value for streaming scenarios. This is in contradiction to
other works which consider the recency effect to have a high
impact on the QoE. The authors also propose some guide-
lines for subjective test assessment methodologies such as
considering longer duration sequences which is more typical
of HAS applications and to allow multiple viewing of the test
sequences as desired by the test subjects.

An extension of this model is presented by
Rodríguez et al. [66]. Here temporal interruptions (number,
location and length of the rebuffering events) during a video
session, initial loading delay and quality switching (number
and location) are considered to propose a new quality metric,
VsQMDASH . The effect of initial loading delay is modeled as:

IILD = 5−B exp(αd LILD/VL) (4)

where LILD, α, VL and B are initial buffering delay (seconds),
exponential decay factor, total video length and constant
respectively. For quality switching events, the authors observe
that for the same frequency of rebuffering, compared to tem-
poral resolution changes, spatial resolution changes have a
more significant effect on users’ QoE. The final QoE model,
VsQMDASH , modeled using 5-point ACR MOS scores is:

VsQMDASH = C exp
[ k∑
i=1

Wi

VLS

(
RNsLi

+

n∑
j=1

PjiRji +
m∑
l=1

QliSli

)]
− IILD (5)

where C is a constant, i, j and l indicates the current segment,
temporal switching type and spatial switching type respec-
tively, k is the total number of segments in a media session,
RNs and Li are number and average length of pauses in the
same temporal segment, m and n are number of spatial and
temporal resolution switching types respectively, Wi, Pji and
Qli are weight factors and Sli is the number of switching type

and IILD is the effect of initial loading delay as defined in (4).
It was observed that the quality of the initial temporal segment
has a greater influence on the QoE and for switching events,
the spatial resolution affects the quality more than the tempo-
ral resolutions. The model is shown to be of low complexity
in terms of processing and energy consumption and hence
suitable for devices such as mobile phones and tablets which
have limited power and processing capabilities. The proposed
parametric model uses only application-level parameters and
hence is suitable for QoE monitoring of encrypted traffic,
specifically at the network side. The model validation is done
using similar types of patterns as used for model design,
and also considers a fixed number (four) of segments, hence
leaving an open question about the performance of the model
on unknown dataset employing different playout patterns and
of different video length.

Alberti et al. [63] present a parametric QoE model which
maps the QoS parameters to estimate QoE as:

eMOS =
N−1∑
i=0

ai x
ki
i (6)

where x0 . . . xN−1 are measured values of parameters such
as video bitrate, frame rate, QP, rebuffering frequency, aver-
age rebuffering duration and quality switching rate, whereas
a0 . . . aN−1 and k0 . . . kN−1 are tunable parameters. The
authors report that QoE degradation due to encoding quality
is on a shorter time interval compared to QoE degradation
due to IFs such as rebuffering and quality switching. The
model parameter estimation and design are done using sub-
jective tests consisting of two video sequences and taking
into account various QP, rebuffering and quality switching
factors. The authors report high prediction accuracy with
0.5 MOS difference for the worst case when compared to
MOS scores obtained by subjective tests. In the absence
of the model validation and performance estimation (e.g.,
regarding the correlation of the predictedMOSwith the actual
MOS), the actual performance of the model remains an open
question.

Hoßfeld et al. [64] investigate the effect of five IFs: qual-
ity switching amplitude, last quality level, recency time for
the different number of switches, the frequency of quality
switching and time on the highest quality level. The authors
found that quality switching shadows the effect of recency
and also recency time (total duration of high-quality play-
back after the last quality switch) does not affect the QoE.
Also, it was observed that the time on each quality level
has a more significant impact than that of the frequency of
rebuffering. Discarding other IFs (based on statistical anal-
ysis), the authors propose a simple QoE model, considering
only two IFs, which take into account the effect of amplitude
(the difference between the two quality levels) and time on
the highest level using an exponential relationship as:

y(th) = 0.003e0.06 th + 2.498 (7)
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where y(th) is the predicted MOS, and th is the time on the
highest level. The effect of switching amplitude is quantified
by bounding the MOS values to the quality levels. The pro-
posed model only proposes a parametric equation using sub-
jective test results using a single content type and considers
only two quality levels and lacks performance validation.

Lievens et al. [65] propose a MOS predictor, PQM , based
on user evaluations as:

PQM (T ) =
1

T + γRALL

∑
T

Q
[
fidelity

(
t−Fτ

( ∂fidelity(t)
∂t

))]
−εα

Fβ
(
∂freezes(t)

∂t

)
− Fδ

(∂framerate(t)
∂t

)
(8)

where Fτ , Fβ , Fδ , T and RALL are functions which represent
quality switching, amount of rebuffering events, frame rate,
total duration over which MOS is evaluated and total time of
rebuffering event, respectively. α, γ and ε are constants and
Q is the encoder-side MOS for a given fidelity (quality level).
Based on the subjective assessment using three Full HD
(FHD) video sequences and various encoding and rebuffering
conditions (not described in the paper) the authors observe
an increase of MOS with an increase in resolution or bitrate.
Below a specific bitrate, upscaled lower resolution video is
found to be of higher quality compared to higher resolution
video encoded at the same bitrate. On the temporal scale,
no significant difference was found in between 50fps and
25 fps video while lower frame rate video (below 25fps)
was rated lower with the video having quality changes rated
lower than that of constant quality. Effect of rebuffering
was observed to be non-linear depending on the individual
duration of each event and frequency of rebuffering. Thework
presents only a parametric equation taking into account the
various IFs but does not report the performance of the model
using subjective assessment.

Yamagashi and Hayashi [67] present a quality model
which was submitted as part of the competition for the ITU-T
Rec. 1203. The model follows the framework used in Para-
metric Non-intrusive Assessment of TCP-based multimedia
Streaming quality (P.NATS) consisting of an audio qual-
ity estimation module and video quality estimation module
which output per-second respective quality scores which are
then integrated into per-second audiovisual coding quality
scores in the audiovisual-integration/temporal module. The
overall QoE is defined as:

QOverall = 1+ (QST − 1)S (9)

which integrates the short term (per-second) audio-visual
coding quality, QST , with other IFs factors as:

S = exp(
−RN
s1

)exp(−
RALL/VL

s2
)exp(−

A/VL
s3

) (10)

where RN is the number of rebuffering events, RALL is the
total length of rebuffering events, A is the average interval
between rebuffering events, VL is the length of the content
and s1, s2 and s3 are constants with positive values.

The MSQ is modeled and evaluated in terms of 5-point
ACR. The proposedmodel parameter selection and validation
are performed by using well designed and defined subjective
assessment using a total of thirty 1-min audiovisual SRCs
and eleven 3-minute audiovisual source sequences. While,
as discussed by the authors, the test design ‘‘hides’’ the
effect of source quality on the QoE, in terms of the reported
RMSE and PLCC values, the overall model performance still
looks quite promising, especially considering the fact that the
model does not use any media bitstream information, result-
ing in a low complexity model which is suitable for encrypted
QoE monitoring. The authors report that the model performs
quite well for video sequences without rebuffering and also
with some specific sequences with rebuffering (where the
rebuffering occurs at the point where the compression quality
is worse). This leads to the observation that the amount of
QoE degradation due to rebuffering is dependent on the qual-
ity of the video frame where the rebuffering occurs. Hence
results from other works which take into account the temporal
location of pauses (e.g., [62]) can be used to further improve
upon this work. Unlike most of the other works, Yamagashi
and Hayashi discuss the limitations of their work such as ver-
ification of the model for the H.264 high profile (which is still
the preferred and widely used profile for TV sets), validation
of themodel for small screen devices, performance evaluation
of individual quality estimation modules, etc. Future work in
this direction may include addressing these shortcomings and
also the possible inclusion of other IFs such as initial loading
delay, etc.

2) MEDIA-LAYER MODELS
While the most used video quality metrics (e.g., Peak Signal
to Noise Ratio (PSNR), Structural Similarity (SSIM), Video
Multimethod Assessment Fusion (VMAF)) are in this cate-
gory, we focus here only on themetrics specifically developed
for adaptive streaming over HTTP.

Taking into account the multi-segment and multi-rate fea-
tures of HAS applications, Wang et al. [68] present two QoE
models based on regression and classification. Using regres-
sion they propose an evolved PSNR (ePSNR) model based
on average, maximum, minimum and standard deviation of
differential PSNR (dPSNR), where dPSNR is defined as:

dPSNR = PSNR− PSNRref (11)

where PSNRref is the PSNR of the available highest rate
segment and PSNR is the PSNR of the segment under con-
sideration. ePSNR is then defined as:

ePSNR = [a b c d]× Q̃+ e (12)

where a, b, c, d, e are constant values and Q̃ is the vector
defined as:

Q̃ =
[
mean

j
(qij) max

j
(qij) min

j
(qij) std

j
(qij)

]T
(13)

where qij represents the dPSNR of the ith video scene and jth

video segment. Please note that T here refers to the transpose
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operation. The classification method model uses weighted
k-nearest neighbor (WkNN ) based on segment bitrate and
video segment position to predict QoE. Both models are eval-
uated using subjective tests consisting of two videos using a
real-world LTE network testbed. Both regression and classi-
fication based methods are shown to provide high correlation
with subjectiveMOS. Based on the correlation results, the last
two segments have been found to have more effect than the
other segments. In terms of PLCC results, the classification
based model is found to have higher performance compared
to the regression method, but in terms of complexity the
ePSNR model is found to be of lower complexity.

3) BITSTREAM MODELS
Singh et al. [69] propose a bitstream model for QoE pre-
diction by considering QP and frequency (RN ), average
(RAVG) and maximum duration (RMAX ) of rebuffering events.
Considering H.264/AVC as the encoder, for QP estimation,
the authors use the average of QP values over all macroblocks
in all video frames. The playout interruptions are modeled
as a function of RN , RAVG and RMAX using the cumulative
distribution function, F(x), of the delay as:

F(x) =


αx
RAVG

, if x ≤ RAVG

(1− α)
x − RAVG

RMAX − RAVG
, if x ∈

[
RAVG,RMAX

]
1, otherwise

(14)

where α = 1− RAVG
RMAX

and RMAX and RAVG are maximum and
average values of the individual rebuffering events during the
video playback. Pesudo-random values distributed uniformly
on [0, 1] and the inverse function of F(x) are used to obtain
the playout interruption duration values based on which
pauses of that duration are then inserted in the videos. The
authors observe that compared to video quality due to higher
QP values, users are more sensitive to rebuffering events with
higher rate of drop of QoE with increase in RMAX , which
saturates after a certain value (6-8 seconds). In contrast, initial
increase in QP results in slower QoE degradation with rapid
fall in QoE at higher QP values. The 3-layer RNN model
is validated using RMSE using subjective test scores. Since
the model uses bitstream level information, the model suffers
from inherent drawbacks of bitstream models such as limited
scope of applications and also limited applicability to single
codec. The proposed model was evaluated using only four
content types of short duration (16 secs).

Xue et al. [70] propose a QoE model which com-
bines instantaneous qualities and cumulative quality taking
into account video segment quality, quality switching and
rebuffering events. The instantaneous perceptual quality is
evaluated using a linear model using QP values, and instan-
taneous rebuffering related degradation is modeled as the
opposite of the weighted intensity of the interrupted frame.
Initial loading delay related degradation is assumed to be
constant and is modeled using the initial QP value which

approximately represents the average quality of the video.
The instantaneous qualities are then pooled using exponential
decay temporal pooling (which takes into account the end
user attention memory) to obtain the final QoE estimation.
The model is shown to be of low complexity and stable with
reasonable performance results. Since the subjective tests for
model parameter estimation and subsequent validation are
done using only two QP values, we will see later that, in the
presence of multiple resolutions and QP values, the model
performance is not that satisfactory.

Guo et al. [71] propose amodel which estimates the overall
quality using a linear combination of median and minimum
of the instantaneous quality as:

QOverall = αQmedian + βQmin (15)

where α and β are constants (0.68 and 0.33 respectively),
and Qmedian and Qmin are the median and minimum of the
average quality. The instantaneous quality is obtained from
QP values using the normalized quality vs. inverted nor-
malized quantization stepsize (NQQ) model in [88]. Based
on this work, the authors also observe that the qualities of
the composing frequency components of a non-periodic QP
varying video session can be used to estimate the overall
quality of the video. Among all these frequency components
(of the instantaneous qualities), the one with the worst quality
has the highest impact on the final quality.

Tran et al. [72] present a QoE estimation model consid-
ering encoded video quality and quality variation as the
IFs. The quality of the encoded video is calculated for each
segment considering the average QP which is then used to
model the effect of encoding quality and quality variation
using the histogram of bins of segment qualities and segment
quality gradients respectively. The overall session quality is
modeled as:

QOverall =
NSQ∑
n=1

αnFQn +
1∑

m=−M

βmF`
Qm (16)

where αn and βm are model parameters, NSQ(= 5 in this
work), FQn and F`

Qm are number of segment quality bins,
frequency of segment quality bins and frequency of quality
gradient bin respectively. Segment quality bins represent the
encoded video quality while quality gradient bins represent
quality variations. Model parameter estimation and valida-
tion are done using subjective assessment for three videos
of 74 seconds consisting of 2-second length segments and
nine quality levels. A comparison with previously discussed
models [71] and [75] for the given dataset shows a superior
performance of the proposed model in terms of PLCC and
Root Mean Square Error (RMSE). As in [78], the authors
conclude that the effect of quality up-switching has a neg-
ligible impact on the overall QoE compared to that of quality
down-switching. IFs such as rebuffering events, initial load-
ing delay and quality switching of starting quality values are
not taken into account in their model. The authors also assume
that various representations are of the same resolution and
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frame-rate which is the case in many popular HAS applica-
tions which use multi-resolution video representation in their
applications.

An extension of the previous model [72] is presented
in [73], where the authors, in addition to quality degradation
due to encoding and quality switching, also consider the
effect of different initial quality, initial loading delay and
rebuffering related impairments. The overall QoE is esti-
mated as:

QoEOverall = IQS − IRB − IILD (17)

where IQS is the impairment factor due to varying quality
modeled using the switching amplitude and the initial qual-
ity value, IRB is the impairment factor due to rebuffering
duration, and IILD is the impairment factor due to initial
delay modeled using a logarithmic function. The authors find
that the impact of switching amplitude depends not only
on switching amplitude but also on the starting quality. For
example, for equal switching amplitude, down-switching in a
low-quality region is worse than down-switching in the higher
quality region. Also, rebuffering duration of 0.25 seconds or
less have a negligible effect on the final QoE value, while
rebuffering durations of more than 2 seconds can lead to
extreme QoE degradation.

Robitza et al. [74] describe another candidate model for
ITU-T Rec P.1203 competition. It follows a similar mod-
ular approach where the pooled audiovisual per second
scores, representing the media quality (QLT ) and degradation
due to initial loading delay (IILD) and rebuffering events
(IRB), are combined to obtain the final Audiovisual MOS
(MOSAVFinal) value as:

MOSAVFinal = QLT − (IILD + IRB). (18)

The model considers quality variations over time, recency
effect, length and location of rebuffering events and encoding
quality and is designed for sequences up to 5 minutes in
length. The authors use simple averaging of the per-second
scores into the final session quality score as other temporal
pooling methods did not seem to provide increased perfor-
mance gains. A similar observation was also reported in [18].
While the authors claim the model to be video or audio codec
agnostic, the performance results for the proposed model is
reported only for the mode using full bitstream information
(Mode 3), hence leaving an open question about its per-
formance for other modes (Mode 0, Mode 1 and Mode 2).
Parameter selection based on the manual count of quality
changes and exhaustive brute-force optimization procedure,
as used by the authors, may lead to an over-fitting of the
model parameters for the given test conditions and hence
the performance of the same for other datasets can help in
the evaluation of the actual performance gains of the model
for possible real-world applications. Also, the model perfor-
mance was only evaluated on PC/TV databases and its per-
formance for mobile video streaming scenario still remains
an open question.

4) HYBRID MODELS
Vriendt et al. [75] propose the following relationship for
MOS prediction

Mpred = αµ− βσ − γRQS + δ (19)

where α, β, γ and δ are tunable parameters, and µ, σ and
RQS represent the average of the quality of the chunks,
the standard deviation of quality information and frequency
of switches respectively. Depending on how the parameter
values are estimated, equation (19) can be used to obtain four
different models (bitrate, objective quality (PSNR/SSIM),
chunk-MOS and quality level). The chunk-MOS model uses
MOS values associated with each quality level which can be
estimated during the parameter tuning process, as is done for
other parameters, or can be assumed to be uniformly spaced
between amaximum andminimumvalue (which is equivalent
to the quality level model). The parameter estimation is per-
formed based on RMSE values using subjective MOS scores.
Based on the results obtained in terms of RMSE, PLCC and
SROCC values considering mobile phone and tablet devices,
the general chunk-MOS model was found to perform better
than others. As discussed by the authors, the results are
limited to a single content type and a particular rate decision
algorithm.

Chen et al. [76] model the Time Varying Subjective Qual-
ity (TVSQ) of HAS rate-adaptive video streams using a
Hammerstein-Wiener (H-W) model with input and output
functions as:

u[t] = β3 + β4
1

1+ exp(−(β1qst [t]+ β2))
(20)

and

q̂[t] = γ3 + γ4
1

1+ exp(−(γ1v[t]+ γ2))
(21)

where q̂ is the predicted TVSQ, β and γ are model parame-
ters, qst is the Short Term Subjective Quality (STSQ) and v[t]
is the output of the linear filter of the form

v[t] = bT
(
u
)
t−r :t + f

T (v)t−r :t−1′ (22)

where b = (b0, . . . br )T and f = (f0, . . . fr )T are
model parameters. Temporal distortions such as mosquito
effects, jerkiness, etc., are captured usingVideo-RREDSTSQ
predictor [89]. The proposed model, while achieving good
performance and providing valuable insights into the TVSQ
optimization problem, does not take into account playback
interruptions such as rebuffering, which limits the model
application for more realistic cases. Also, the H-W model
implementation as used by the authors is not suitable for
videos of different durations [82].

Shen et al. [77] present a QoE model which takes into
account segment quality, primacy and recency effects and
quality switching (using bitrate distribution) as IFs. Each seg-
ment of the video is assumed to be of Constant Bitrate (CBR)
and the respective encoded video quality of each segment is
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calculated as:

QSeg = γ
BR

MV + δ
(23)

where BR is the bitrate, γ , δ are constants, and MV is the
motion parameter calculated as:

MV =
1

N − 1

N∑
f=2

stdspace|y(f ,w, h)− y(f − 1,w, h)| (24)

where y(f ,w, h) is the pixel value at position (w, h) of the
f − th frame. The primacy and recency effects are modeled
as:

f (t) =
αP

1+ α2Pt
2
+

βR

1+ β2R(t − T )
2
, 0 ≤ t ≤ T (25)

where αP and βR correspond to the effect of primacy and
recency respectively. The overall adaptive streaming QoE is
given by:

QOverall = IQS
−→
S
−→
W T (26)

where IQS represents the impact of quality switching,
−→
S

is a vector consisting of the QoE of each segment as esti-
mated using (23) and

−→
W is the weight vector for taking into

consideration memory related factors (primacy and recency)
using (25). The authors observe that at a particular aver-
age bitrate, down-switching achieves higher QoE than up-
switching. Also, video sequences with high startup and end
quality receive higher ratings due to primacy and recency
effect, with the primacy effect decreasing for long video
sequences. Bitrate distribution is found to be themajor IF. The
model was evaluated using only a single content type and also
limited to the test conditions with different average bitrates.
Hence the performance of the model for real-world applica-
tions remains an open question, mainly because the model
does not take into account rebuffering related impairments.

Liu et al. [78] propose a no-reference QoEmodel consider-
ing both temporal and spatial quality and taking into account
IFs such as initial delay, rebuffering and quality switching.
The proposed overall QoE model is adapted from the ITU-T
E-model [48] as:

DASH −MOS = 1+0.035R+7×10−6R(R−60)(100−R)

(27)

where R is estimated based on impairment due to initial delay
(IILD), stalling (IRB) and quality switching (IQS ) as:

R = 100− IILD − IRB − IQS
+ α IILD

√
IRB + IQS + β

√
IRB ∗ IQS . (28)

Here α and β are estimated using subjective assessment (as
0.15 and 0.82 respectively). Based on the subjective assess-
ment, the authors find that the initial loading delay related
impairment is linear and hence is modeled using a linear
equation. Impairments due to rebuffering, which are more
complicated to estimate and have more dependent variables,
are modeled using a combination of a number of rebuffering

events, total rebuffering duration, and video motion content
of the video. Quality switching related impairments are mod-
eled using the VQM [19] metric by taking into account both
encoding related impairments and impairments due to quality
switching. Based on their tests, the authors observe that, for a
fixed number of rebuffering events, the impairment increases
monotonically with the rebuffering duration, while for a
fixed rebuffering duration, the impairment due to rebuffer-
ing frequency does not increase monotonically. Also, higher
frequency of rebuffering leads to higher impairment. While
the model was designed and evaluated using 1-minute long
video sequences, a preliminary investigation by the authors
shows that it performs quite well for video sequences of up
to 10 minutes duration.

Garcia et al. [79] present an interesting modular approach
of pooling short-term quality models for long-term quality
estimation which then are combined with rebuffering related
information to obtain the overall media session quality. Such
a modular approach leaves out the interdependencies, leading
easier integration and development. The proposed model can
be summarized as:

Q = QLT − IRB (29)

where QLT is obtained by pooling short-term audiovisual
quality scores and IRB is the quality degradation due to
rebuffering. Six different models are used to estimate the
short-term audiovisual quality scores: VQMAV is the general
VQM model, PSNRAV is the PSNR averaged per segment,
DT0 is the frame-basedmodel based on ITU-TRec series [8],
DT1 and DT2 are variants of DT0 and Dummy is 5-point
scale quality levels. degStal is calculated as defined in ITU-T
Rec series [90]. Irrespective of the pooling method used,
the performance of short-term quality models is found to be
a good representative of the long-term quality model perfor-
mance. It is observed that the best short-term quality models
also perform best for long-term models, with DT2 resulting
in the best performance in terms of RMSE values.

Duanmu et al. [80] present a QoE model (referred to as
Streaming Quality Index (SQI)) considering the combined
effect of initial loading delay, rebuffering and encoding qual-
ity. The overall quality is computed from the instantaneous
quality in a moving average fashion where the instantaneous
quality at each time unit, Qn, is considered to be a linear
combination of instantaneous video presentation quality Pn
estimated at the server side by frame-level VQA model and
impact of rebuffering at individual frames Sn as:

Qn = Pn + Sn. (30)

Based on the assumption that each rebuffering event is addi-
tive and independent, the authors model the memory decline
of memory retention due to rebuffering (based on Hermann
Ebbinghaus forgetting curve [91]) as:

M = exp(−
t
TM

) (31)

where M , t and TM represent memory retention, the current
time instant and relative strength of memory respectively,
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which are then used in a piecewise model to get the collective
effect of rebuffering on QoE degradation. The authors find
that for a given rebuffering event at the same temporal loca-
tion and of the same duration, the QoE is inversely related to
the quality of the frame at that same temporal instant. The
overall QoE value is calculated as the average of the pre-
dicted individual QoE scores. An evaluation of the existing
models (PSNR, SSIM,MS-SSIM, SSIMplus [92], FTW [93],
Mok et al. [60], VsQM [62] and Xue et al. [70]) and the
proposed SQI using PSNR, SSIM, SSIMplus, MS-SSIM on
the designed database shows that the proposed SQI model,
when used with SSIMplus as the VQAmodel, has the highest
performance, with other SQI models (SQI with PSNR, SSIM
and MS-SSIM as VQA) performing better than the other
compared models. The presented model is a big step for-
ward towards QoE modeling considering both encoded video
quality and rebuffering related information with reasonable
performance on the given dataset. Given that the database
and IFs considered in this work are somewhat limited due to
the short duration of the sequences (only 10 second videos,
fixed duration rebuffering events and just two rebuffering
events at fixed location (start and middle)) which is not
realistic, the performance of the model on more practical
datasets remains an open question. We will discuss later how
the model, when evaluated by other authors, does not result
in high performance. The authors publicly released one of
the first subjective databases for HAS application scenarios
which considers rebuffering.

Bampis and Bovik [81] propose a machine learning-based
framework, Video ATLAS, which combines QoE related fea-
tures such as objective quality metrics, rebuffering related
factors and memory-related functions to predict the end user
QoE. Simple regressors combined with main IFs such as
video quality, rebuffering and memory-related effects are
found to provide good results. The video quality is evaluated
using well-known image and video quality metrics and other
IFs, such as length of each rebuffering event normalized to
the duration of each video, the number of rebuffering events,
number of seconds with normal playback at the maximum
possible bitrate until the end of the video and time per
video over which a bitrate drop took place, both normalized
to the duration of individual video. The calculated features
are then combined using various learning-based algorithms
(Support Vector Regression (SVR), Random Forest (RF),
Gradient Boosting (GB), Extra Trees (ET) and Ridge and
Lasso regression [94]) to provide a single final overall
QoE score. The authors evaluate 6 objective IQA metrics
(PSNR, PSNRHVS [95], SSIM, MS-SSIM [96], NIQE [43]
and GMSD [97]) and two VQA metrics (VMAF [98] and
STRRED [89]) on the subjective dataset and it is observed
that STRRED gives the highest performance in terms of
SROCC considering both a subset of the database with no
rebuffering and considering the whole dataset. Based on this
observation the authors conclude that IFs such as rebuffering
and bitrate changes should be considered jointly and not
separately which contradicts the approach of many other

models discussed here (e.g., [67], [74]). In terms of content
independence, MS-SSIM using ET was found to perform
the best in terms of SROCC while STRRED using SVR
performed best in terms of PLCC. Based on the results, it is
observed that the video quality model used for the prediction
of compressed video quality plays a very important role in the
QoE prediction quality. Also, rebuffering duration is shown to
have a small effect with a possible explanation of the duration
neglect effect [99]. Using STRRED as the objective video
quality metric, it was observed that for various combinations
of IFs considered in this study, linear regressors Ridge and
Lasso performed best in terms of SROCC and PLCC. In terms
of prediction monotonicity (median SROCC) and perfor-
mance (median PLCC), for a different amount of training-test
data split, MS-SSIM performed the best (considering ET as
the learning algorithm). Compared to other models (FTW,
VsQM, PSNR, SSIM, MS-SSIM and SQI), the proposed
model is shown to have superior performance when using the
SSIM and MS-SSIM for all regression models.

Similar to their previous work, in [82], Bampis et al.
present a machine learning based Nonlinear Autoregressive
Network with Exogenous Inputs (NARX) model which uses
objective metrics for video quality prediction, rebuffering
related information and memory related features for QoE
prediction. NARX is a nolinear-autoregressive model which
assumes a non linear relationship between its output and
inputs (delayed versions of its output, yt−1, yt−2 and so
on which helps in modeling the memory effect) along with
exogenous inputs given by the vector, ut (e.g., video encod-
ing quality, rebuffering information) which can be defined
approximately as:

yt = F(yt−1, yt−2, yt−3, . . . , ut , ut−1, ut−1, . . .). (32)

As discussed by the authors, the usage of such autoregres-
sive models for real-time QoE prediction may result in erro-
neous QoE prediction results due to prediction error propa-
gation/amplification (as the prediction scores are fed back to
the prediction engine). The proposed model is trained using
the Levenberg-Marquardt algorithm, and QoE prediction is
performed on a continuous time scale and hence can be used
for continuousQoEmonitoring solutions. Based on themodel
evaluation on LIVE-NFLX database, it is observed that the
model performance varies across different playout patterns
which point towards the instability of the model. Considering
only objective VQA metrics, STRRED results in the best
performance compared to PSNR, SSIM, MS-SSIM, NIQE
and VMAF while, if rebuffering and memory effects are
taken into account, both SSIM and STRRED give the best
prediction results. When compared to the earlier proposed
continuous QoE predictionmodel by Chen et al. [76], consid-
ering only bitrate related impaired sequences, the proposed
model is shown to have better RMSE and outage rate but
worse dynamic time warping (DTW) [100] distance. A pos-
sible extension of the proposed model can be to evaluate its
performance for retrospective QoE prediction using various
temporal pooling strategies.
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Bampis and Bovik present another model in [83] which
builds upon the previous two models [81], [82] addressing
one of the significant shortcomings of the two earlier dis-
cussed continuous-time quality prediction models [76], [82]:
instability. The authors propose a new model based on an
augmented NARX approach for continuous QoE prediction
taking into account degradation due to compression and
rate adaptation. In contrast to the previous models where a
single objective quality metric was used for encoded video
quality estimation, here multiple VQA metric outputs are
used as inputs for quality prediction which results in supe-
rior performance in comparison to [82]. It is observed that
when VQA models are used together, the prediction quality
improves significantly. This is based on the observation that
while a single VQA metric alone may not be designed to
take into account all types of quality impairments, multiple
VQA metrics collectively can better model the distortions,
which results in significant increase in prediction accuracy.
The model performance evaluation is done using the same
database as used by Chen et al. [76]. While the performance
for the proposed NARX model with multiple VQA inputs
is quite promising, the model complexity is quite high and
is not suitable for practical applications as it does not take
into account QoE degradation due to rebuffering. Model
performance evaluation and possible enhancements taking
into account rebuffering related impairments could be an
impressive future work.

All the three models discussed above [81]–[83] are
designed and evaluated using the partly public LIVE-NFLX
database [101]. The LIVE-NFLX database consists of
14 source videos at FHD resolution encoded using
H.264 using 8 different playout patterns (constant encoding
at 250 and 500 kbps, adaptive rate drops at 66 and 100 kbps,
two patterns of constant encoding with one rebuffering
event, constant encoding with two rebuffering events and one
with adaptive rate drops with rebuffering) rated by 56 test
subjects. For a more detailed description of the database,
we refer the reader to the related publication [101]. One
of the major shortcomings of the previous three models is
that they are all evaluated using the same database which
is designed for low-bitrate applications (considering videos
of max 250 kbps bitrate and min 100 kbps) such as video
streaming over mobile networks and hence the performance
efficiency and applicability of suchmodels for larger displays
and higher bitrate applications (PC/TV) using networks with
higher throughput remains an open question. Also, it can be
observed that the number of stall patterns and rate adaptation
conditions are quite limited and fixed. Also, in the absence
of the full database (only three out of total 14 source and
respective HRCs are made public), a comparative study and
further model improvement remain challenging.

Eswara et al. [84] present a QoE evaluation framework
and a model for continuous time QoE prediction taking
into account rebuffering frequency (per minute), rebuffering
duration (in seconds), memory effects (recency) and objec-
tive video quality metric. Based on the premise that quality

degradation due to encoding and rebuffering are mutually
exclusive, the model is divided into two parts: QoE during
regular playback and QoE during the rebuffering. The authors
employ SVR for QoE estimation of the video during normal
playback which is trained using Reduced Reference (RR)
metric STRRED [89] and previous time instant QoE value.
The QoE degradation due to rebuffering is modeled using
the IQX hypothesis (exponential Interdependency of QoS and
QoE [102]) as:

Q(t) = e−λQ(t − 1) (33)

where λ depends on the QoE value just before the onset of
rebuffering and QoE value at the end of rebuffering. The pro-
posed model is designed and validated using well designed
subjective assessment. A total of 18 uncompressed reference
videos covering a wide range of genres and 36 distorted
videos are used in the subjective assessment. Based on the
results of the model performance in terms of PLCC of the
recency effect on overall QoE, the authors conclude that both
instantaneous QoE and overall QoE values depend to a great
extent on the most recent experience of the user. One of the
significant advantages of the proposed model is that, among
all reviewed works, this is the only one which considers UHD
videos. Also, this is one of the first publicly available database
consisting of FHD and UHD video sequences which jointly
considers both quality switching and rebuffering distortion
on a continuous time scale. While the authors used learn-
ing based QoE estimation using Video-RRED for standard
video playback quality and exponential model based on IQX
hypothesis for QoE during rebuffering state, they acknowl-
edge that there does not exist any particular reason for their
selection which can easily be replaced by other VQA and
learning algorithm and parametric model respectively. The
performance of such model indeed will need to be evaluated
on the given dataset which can be an exciting future work.
Some of the limitations of this work include usage of limited
test conditions such as only two quality switching patterns,
which leaves an open question about the performance of the
model in real-world scenarios.

Ghadiyaram et al. [85] build upon the work of
Chen et al. in [76] and their previous work in [103] which
uses the Hammerstein-Wiener (H-W) model for QoE model-
ing as discussed previously in the discussion of the work of
Chen et al. [76]. In addition to the rebuffering related impair-
ments (see Table 2), client-side buffer model, scene criticality
and perceptual quality IFs are first modeled mathematically.
Each of these mathematical models is then used to train a
Single Input Single Output (SISO) H-Wmodel with memory,
thus capturing the hysteresis effects and non-linearity of the
human behaviour. Depending on the methodology used to
combine the individual H-W model outputs, two variants of
the continuous-time QoE prediction model are proposed. The
first continuous model, TV-QoE2 uses the model outputs
of the individual H-W model as input to train a Multiple
Input Single Output (MISO) Wiener model (a variant of the
Hammerstein-Wiener model without an input non-linearity
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block). The second variant of the continuous QoE prediction
model, TV-QoE1, uses SVR instead of the Wiener model.
The various model parameters are estimated using training
data. In addition to the continuous QoE model, an overall
QoEmodel is also proposedwhich takes into account number,
total duration, frequency and rate of rebuffering events along
with time since the last rebuffering event and perceptual
quality score. The proposed model is modular in nature
as additional/existing inputs can be added/removed without
changes to the model structure. Also, the model is found to
be computationally efficient for both training and real-time
calculations. Both continuous QoE prediction model and the
overall QoE prediction model are trained and evaluated using
three different publicly available QoE databases ([80], [101],
[103], see Table 5). In terms of the median of the per-frame
correlation and RMSE between actual and predicted QoE
score on a continuous time scale, the proposed model is
found to outperform the SQI model in [80]. Also among
the two proposed continuous-time QoE models, TV-QoE-
2 performs slightly better than TV-QoE-1. In general the
global QoEmodel providing the overall estimation of quality,
while in terms of correlation and RMSE values is found
to perform quite well on all the three databases, fails to
provide superior performance when compared to SQI [80]
and Video ATLAS [81] models. Also in the absence of taking
into account quality switching as an IF, the performance of the
model on real-world use cases remains an open question.

Eswara et al. [86] propose a recurrent neural network
(Long Short-Term Memory (LSTM) network) based QoE
prediction model, LSTM-QoE, to predict the time vary-
ing QoE. The authors argue that the continuous QoE is a
nonlinear stochastic process which exhibits non-Markovian
temporal dynamics due to the hysteresis effect which can
be modeled using a network of multi-layered, multi-unit
LSTMs. The predicted instantaneous QoE, Q(t) is mod-
eled as:

Q(t) = LSTMo
l,d (x(t), c(t − 1)) (34)

where x(t) is the input feature vector, c(t) represent the set
of LSTM cell states in the network, l and d are the number
of LSTM layers and number of LSTM units respectively.
LSTMl,d provides two functionalities: LSTMo

l,d for output
QoE prediction and LSTM c

l,d for cell state update which is
defined as:

c(t) = LSTM c
l,d (c(1 : t − 1),Q(1 : t − 1)), ∀ t > 1. (35)

Three IFs are considered for QoE prediction: STSQ, current
playback status and total time since the last rebuffering event.
STSQ, which takes into account the perceptual quality of a
video segment, is calculated using traditional VQA metrics
such as STRRED, NIQE, etc., as was also used in previ-
ously discussed models [82]–[84]. The proposed model is
evaluated using four publicly available HAS datasets: LIVE
QoE Dataset for HTTP based Video Streaming, LIVE Net-
flix Video QoE Database, LFOVIA Video QoE Database
and LIVE Mobile Stall Video Database (see Table 5 and

Section VIII for more details about the databases). Model
design and evaluation over the four publicly available datasets
and performance comparison against different state-of-the-
art continuous quality prediction models [82], [84], [103]
demonstrates a superior performance of the proposed model.
The authors also report that mean and media QoE score
obtained by pooling the continuous QoE scores correlates
well with the reported overall QoE scores.

Duanmu et al. [87] investigate a novel approachwhere they
consider an Expectation Confirmation Theory (ECT) based
model design to predict the end-user QoE. The proposed
model primarily takes into account the effect of adaptation
intensity, adaptation type, intrinsic quality and content type
IFs on the end user QoE. For a methodological study and
investigation into the effect of quality adaptations (compres-
sion, spatial and temporal) on end user QoE they designed
a new and now publicly available dataset which is then
used for model design and evaluation (see Waterloo QoE
Database (ECT) in Section VIII for more details on the
dataset). The post-hoc quality of the nth segmentQnp is defined
as a function of intrinsic spatial quality (QSi ) and intrinsic
temporal quality (QTi ) feature representation as:

QSeg(n) = f (QSi (n)− Q
S
i (n− 1),QSi (n),Q

T
i (n)

−QTi (n− 1),QTi (n)). (36)

The authors observe that the average pooling of the
segment-level post-hoc quality scores correlate well with the
overall QoE scores and hence the overall QoE is given by:

QoEOverall =
Ns∑
n=1

QSeg(n) (37)

where Ns is the total number of video segments. A compari-
son of the model performance with other state-of-the-art QoE
models such as [9], [76], [78] etc. indicates superior perfor-
mance of the proposed ECT-QoEmodel on the subjective test
dataset. While the investigation and possible use of ECT for
QoE prediction with promising results are quite impressive,
the current work is limited in that the dataset used for its
evaluation consisted of videos of only 8 seconds duration and
one quality adaptation and some important factors (such as
rebuffering events) are not considered. Future assessment on
a more exhaustive dataset considering more realistic stream-
ing scenarios can help better understand the applicability of
such model for QoE evaluation.
As briefly mentioned earlier, towards building a model

for adaptive audiovisual streaming services, ITU-T Rec.
P.1203, also known as P.NATS was approved and finalized in
Nov. 2016 [9]. The ITU-T Rec. P.1203 series describes model
algorithms to predict the audiovisual quality of progressive
download and adaptive streaming based applications consid-
ering reliable transport protocols such as TCP. The model
proposed in this recommendation series follows a modular
approach which consists of a short-term audio-video quality
model providing per-one-second output scores which are then
integrated along with initial loading delay and rebuffering

30848 VOLUME 7, 2019



N. Barman, M. G. Martini: QoE Modeling for HTTP Adaptive Video Streaming—A Survey and Open Challenges

events IFs, to give an estimate of quality for HAS media
session between 10 secs to 5 minutes. The model consists of
three modules, a video module Pv, an audio module Pa and
an audio-visual integrationmodule, Pq. The short-term scores
from Pa and Pv are integrated into the Pq module along with
rebuffering related information. Depending on the amount of
required input information to Pv module, the model provides
four different modes of operation: Mode 0, Mode 1, Mode 2
and Mode 3 (in increasing order of complexity). Mode 0
includes display resolution, frame rate and target and real
bitrate, Mode 1 consists of all of Mode 0 and frame related
information such as frame type and frame size and Mode 2
includes all of Mode 1 and partial bitstream information.
Mode 3 consists of Mode 1 along with complete bitstream
information. For detailed information about the models and
the integration module, we refer the user to the recommen-
dation series, P.1203. The recommendation, while indeed
a significant step towards building a QoE model for HAS
application, in its current form suffers frommany drawbacks.
For example, it assumes a perfect knowledge of buffering
duration, number of re-buffering events, etc., which is not
always practical. The model has been developed and vali-
dated using a fixed set of encoding settings using a single
codec. While adaptive streaming applications such as HAS
are codec agnostic, the P.NATS model is bitstream-based
(except for mode 0), which makes the proposed model’s per-
formance codec dependent. Satti et al. performed a prelimi-
nary real-streaming application analysis of the P.1203 model
for YouTube, Vimeo, Amazon Instant Video and proprietary
DASH-based streaming framework [104]. The authors found
the overall performance of Mode 0 and Mode 1 to be quite
accurate for H.264 codec configuration, except for the lower
quality range where the predictions were found not to be so
precise. More tests in real-world applications are required to
better understand the performance of the model and future
development of more accurate and reliable models. A soft-
ware implementation of the P.1203 ITU Rec has been made
publicly available by the authors in [105] which also includes
subjective ratings, per condition metadata (bitrates, resolu-
tions, initial loading delay and rebuffering events), per-frame
statistics (frame types, sizes) and bitstream level statistics
(QP values and macroblock types) from four out of the
total 30 datasets used in the design and validation of the
recommendation. Due to the absence of the video sequences
(reference as well as distorted videos), such database is of
very limited use for model design and/or validation. For a
more exhaustive model, joint work by ITU-T Study Group
12 and VQEG known as AVHD-AS/P.NATS Phase II is
ongoingwhich aims towards building a comprehensivemodel
considering a higher number of codecs (AVC, HEVC and
VP9), higher frame rate (up to 60 fps), higher resolution
videos (up to UHD) and a wider range of encoding settings.

C. SUMMARY
On a very abstract level, QoE can be described as:

QoE = f (x1, x2, . . . , xn) (38)

where x1, x2, . . . , xn are the various IFs [106]. There exist lots
of IFs [10], each leading to increased complexity of themodel
design.

Based on the list of models in Table 2, we can observe that
the focus recently has shifted from initial parametric models
(which usually tried to map QoS based IFs to QoE) towards
hybrid models which take into account media signals as well
as impairments such as quality switching and rebuffering.
Regarding IFs, we observed that while rebuffering, quality
switching and encoding related factors are taken into account
by most of the models, other IFs such as initial loading
delay, recency and primacy effects and user engagement are
considered by only a few of the models. While not all IFs
has a significant impact on the final QoE, there are still many
IFs whose effects are not investigated or have not been taken
into consideration for model design. While Mok et al. [61]
found user action such as pause to have a marginal effect
on QoE, there may exists other user factors, which when
considered together, may result in a significant effect on
the end user QoE. We also observe that with the recent
trend towards the design of hybrid models, the focus has
shifted towards additive models where impairments due to
various IFs are calculated separately and are then combined
to obtain the combined effect of all the impairments as done
in [74], [79], [84], among others. Such additive models have
also been used in ITU-T Rec. P.1201 (Amd. 2) [90] and more
recently in [9]. Hoßfeld et al. [106] discuss how an additive or
a multiplicative model, combining existing single-parameter
QoE models into a multidimensional QoE model, may lead
to different results. Hence, such models need to be verified
using independent subjective databases.

Regarding the model type, parametric models are not that
accurate but are ideal for encrypted traffic monitoring appli-
cations. Also, such models can be used at the client-side
because of low-complexity. On the other hand, bitstream
models suffer from the limitation that they are specific to
one codec and hence cannot generalize well, but are usually
more accurate than parametric models. Usually, hybrid mod-
els are more precise than parametric, and bitstream models,
but are of higher complexity and also need access to media-
signals, thus limiting their application to client or server-side
monitoring. Hence depending on the stakeholders involved
and the desired complexity, different model type needs to be
developed.

Also, while most of the models provide only an overall
quality estimation for a media session, some of the models
provide the prediction on a continuous-time scale. Some of
the continuous-time (usually per-sec) models also provide
final session quality which is usually the temporal averaging
of continuous-time scores. Both approaches have their advan-
tages and disadvantages. Continuous-time models are more
useful in applications where it is possible to take corrective
actions based on the estimated instantaneous quality, such as
in real-time streaming application where the encoding set-
tings and or transmission parameters may be adjusted based
on the estimated QoE of the user. Some continuous-time

VOLUME 7, 2019 30849



N. Barman, M. G. Martini: QoE Modeling for HTTP Adaptive Video Streaming—A Survey and Open Challenges

prediction QoE models can also be used for rate adaptation in
HAS applications, but such models are usually more complex
as they need to be calculated in real-time. On the other hand,
models providing overall QoE estimation are more suited
for applications where the prediction values can be used
retrospectively to design better systems, encoding strategies,
network planning etc. They are usually computationally inex-
pensive as the parameters gathered and prediction values
can usually be gathered and processed separately and not
necessarily at the server/client/network side.

VI. DISCUSSION ON THE IMPACT OF
INFLUENCE FACTORS
In Section V we presented the models along with the descrip-
tion of the IFs considered and how they were taken into
account in the model design which is summarized in Table 3.
Here we present a discussion of the IFs and general observa-
tions about their effect on QoE as described by the models.
We not only limit the discussion to the reviewed models
but also take into account the observations reported by other
works, so as to get a complete understanding of the influence
factors and their effects. Here we discuss the various IFs
considered by the models and their respective importance in
the QoE prediction. Since the IFs as considered by models
and their respective observations were already discussed in
Section V, here we limit our discussion only to effects of the
IFs and we do not describe them for each model separately.
For a more detailed discussion of how the effects of vari-
ous IFs are being proposed and considered by other related
works, we guide the reader to a comprehensive survey by
Seufert et al. [10].

A. QUALITY SWITCHING
This is one of the main differentiating features of HAS com-
pared to other traditional streaming technologies and is com-
monly used by HAS clients to adapt the media playback to
the anticipated/experienced network conditions and/or buffer
status. As the rate adaptation algorithm is not standardized
as part of the MPEG-DASH standard, it varies depending
on the client’s rate adaptation logic. While most of the rate
adaptation techniques aim at minimizing rebuffering events,
frequent quality switches may lead to annoyance and hence
need to be minimized.
• Quality switching frequency: Too frequent quality
changes leads to end-user annoyance. Some of the mod-
els such as [72] and [79] consider adaptation frequency
as one of the IFs for their model design.

• Quality switching magnitude: It refers to the ‘‘gap’’
between the levels of quality switching. In general, for
down-switching, quality switching of lower magnitudes,
i.e., in gradual steps (high → medium or medium →
low) is considered to be less annoying than that of high
magnitudes (abrupt high-low) [107].

• Quality switching direction In terms of the effect
of switching direction and their relative importance,
there does not seem to exist a conclusive agreement.

TABLE 3. HAS models and corresponding IFs.

While some observe no significant affect of up-switching
when compared to down-switching [72], [77], others,
like [108], find that both switching directions have a
considerable impact on user QoE.

• Time on the highest layer: Time on the highest layer
indicates the percentage of time the media playback
was at the highest quality. High values of time on the
highest layer indicate that the media playback was of
high quality for a high percentage of media playback
and hence can be used as an IF for model design as done
in [64].

B. REBUFFERING
Rebuffering has long been considered as one of major
IF in streaming applications and should be avoided or
minimized as much as possible. The rate adaptation
(quality switching) feature of HAS applications was actu-
ally designed with the major goal of minimizing rebuffer-
ing events during media playback. All models except
for [64], [68], [71], [72], [75]–[77], [83] take into account
one or more rebuffering related impairments as an IF in their
model design.
• Duration of rebuffering: While the general agreement
among researchers is that longer rebuffering duration
leads to increased annoyance of the end user, there
exists some disagreement when it comes to acceptable
level of rebuffering duration. While some researchers
say that rebuffering should be avoided at all costs, there
exists some who say that in general rebuffering events
of shorter durations (e.g., of 0.25 seconds [73]) are not
noticeable and hence do not lead to QoE degradation.
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Duration of rebuffering can be taken into account as con-
sidering the average duration of all rebuffering events as
done in [60] and [67] or taking into account individual
rebuffering event length as done in [74] and [81].

• Frequency of rebuffering: Highly frequent interrup-
tions are considered annoying and can result in a very
non-pleasant experience for the end user. Some of the
models such as [66], [68], [80], [81] among others, con-
sider the frequency of rebuffering as an IF.

• Temporal Location of Rebuffering: Temporal location of
pauses, while not as important as frequency of rebuffer-
ing and duration of rebuffering, certainly plays a role in
the end user QoE as a pause during an interesting scene
is considered to be more annoying than one just before a
scene change. The models in [62], [66], [74], [80], etc.,
take into account location of rebuffering as an IF in their
model.

C. ENCODING QUALITY
Encoded quality plays an important role in the end user QoE.
For example, higher compression may result in noticeable
artifacts in the encoded video which results in decreased
end-user QoE. There exist many different approaches which
can be used to estimate the video quality, such as QP, bitrate,
framerate, resolution etc.Many earlier works have focused on
the design of QoE models and objective metrics to estimate
the encoded video quality. In particular, for HAS applications,
the segment quality (in terms of bitrate/QP values) can also
be used to represent the encoded video quality. The type
of content plays a vital role in the perceived end-user qual-
ity. The actual effect of the various quality switchings (see
Section IV-B) depend on the content type. For example, drop-
ping frames will have a less noticeable effect on a video with
high motion content compared to a video with less motion
content. Also, content complexity will decide the quality of
the encodedmedia. Fewmodels such as [77] directly consider
content type information as an IF in their model design. Other
use parameters such as bitrate, QP etc. or existing QAmetrics
as discussed below.
• Bitrate: Bitrate is one of the most commonly used
parameters to estimate the encoded audio/video qual-
ity. Higher bitrate values usually indicate higher quality
videos. The media quality can be approximated by using
the downloaded bitrate values for a given session. The
models in [63], [67], and [77]–[79] use bitrate values as
an IF in their model.

• QP: QP is another commonly used factor to estimate
encoded audio/video quality. Higher QP values result
in higher compression and vice versa, and hence QP
values can be used to determine the quality of the
encoded media representation. The models proposed
in [63], [65], and [69]–[71] use QP values as one of
the IFs.

• Objective Metrics: Many models such as those pro-
posed in [68], [75], [81]–[84] among others use already
existing ormodified IQA orVQAmetrics to estimate the

encoded video quality. Using such well established and
widely used metrics benefits from the previous research
work in the field of quality assessment. One of the short-
comings of such models is the need of such models to
have access to themedia signals, hencemaking them less
suitable for applications where the traffic is encrypted.

D. INITIAL LOADING DELAY
Initial loading delay is usually present in all streaming
applications and is used by the applications to buffer some
video bits to minimize rebuffering related impairments.
The general agreement is that while shorter initial loading
delays do not have a significant impact on QoE, with some
users actually preferring higher initial loading delay than
rebuffering [109], very long initial loading delays may lead to
user dis-satisfaction which depends on application type and
usage scenario. Initial loading delay is used in models such
as [60], [61], [66], [67], [70], [72], [74], [78], and [80].

E. MEMORY RELATED FEATURES
Memory effects such as primacy and recency have recently
found application in the field of quality assessment. In video
streaming applications, primacy related factors may refer to
experience due to initial loading delay, starting quality etc.
while recency related factors may refer to effects due to
quality level, rebuffering events etc. towards the end of video
playback. Only a few of the models directly use memory
related factors. In general, primacy effects are considered
not that important, especially when considering long video
sequences as it is believed other factors will shadow the effect
towards the end [64]. Shen et al. [77] use primacy in their
model with the observation that higher quality at the start
leads to higher experience quality ratings but since they use
short-duration sequences in their tests, this observation valid-
ity for longer duration sequences remains questionable. The
recency effect is more widely used memory-related factor
with many studies reporting a high correlation between the
quality towards the end and the score provided by the end
user [68], [70], [74], [77], [80], [81].

F. USER ENGAGEMENT
User engagement refers to user actions during the media
playback, such as pause, seek forward/backward, aspect ratio
change (full-screen, etc.) which also influence the final end
user QoE. In the absence of recommended practices for such
user behavior related measurements, such factors are not
considered in the models reviewed in this paper with the
exception of Mok et al. [61], where the authors take into
account end user actions for the design of their model. Only
few works so far have investigated the user behavior and its
effect on the end-user QoE [110].

VII. HAS QoE MODELS: SUBJECTIVE TEST
METHODOLOGIES
Table 4 summarizes the subjective assessment methodologies
as used by themodel proponents for their model design and/or
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TABLE 4. Summary of subjective evaluation methodologies used by the models (D: Duration (seconds), V/AV: Video/Audiovisual), NV : Number of videos,
NA: Not available.
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validation. It can be observed that for many models there are
certain fields with missing information (marked by NA in the
table). The lack of such information might leave the reader
with a gap in understanding the actual applicability and valid-
ity of the proposed model(s) for specific application scenario
and also limit their reproducibility and comparability with
other existing models. Hence new works which propose a
model should provide as much information as possible about
the considered conditions for the reader to understand both
its advantages as well as limitations and also the applicability
of the model in real-world applications for QoE estimation.
Next, the different individual fields are discussed in detail.

A. DISPLAY DEVICE INFORMATION
Many studies in the past have found a strong correlation
between the device and QoE, with some even reporting high
correlation between the type of display and QoE (for the same
display size) [116]. Also, display size is shown to have a great
effect on QoE, with impact of higher resolution becoming
more prominent in displays of larger size. As evident from
Table 4, most of the models do not mention the display type
(mobile/tablet/PC/TV, etc.) and size of the display. Without
such validation of the models for different display size and
display types, their applicability and performance remain
questionable for real-world applications.

B. TEST SEQUENCE DURATION
Until recently, model design and validation was performed
using test sequences of 10-15 seconds duration which is
also recommended by ITU-T Recommendations [14], [15].
Short duration sequences for such model design were suffi-
cient as they mostly only dealt with perceptual video quality
due to loss of information due to compression, packet loss,
errors during transmission etc. On the contrary, short duration
sequences are not sufficient for effective consideration of IFs
such as rebuffering, quality switching, primacy and recency
effects, etc. For proper modeling of these effects the sequence
duration should be longer, possibly between 3 and 5 minutes,
which is the common viewing duration for most watched
videos streamed over the Internet [66], as considered by some
models in [67], [74], [76], among others.

C. NUMBER OF SOURCE VIDEOS
As discussed earlier in Section VI-C, the effect of com-
pression for a given parameter (e.g., bitrate, QP, framerate)
depends to a great extent on the content complexity. For a
model to give a stable performance and to be applicable to
more practical scenarios, it needs to be validated for different
content types. As is evident from the table, some of the mod-
els were designed and validated using few source sequences
and hence their effectiveness for other content types remain
questionable.

D. VIDEO RESOLUTION
Most of the earlier works were limited to low source
resolution such as CIF [77], and SD [60], [62], [64], [66].

Some more recent works have considered higher source
resolution formats such as HD [63], [71], [72], [76],
FHD [65], [67], [74], [79] and only one work has considered
UHD sequences [84]. Also, spatial resolution adaptation,
which consist of encoding the video at a lower resolution
(called as encoding resolution), is one of the most commonly
used strategies for quality adaptation by almost all major OTT
service providers such as YouTube, Netflix, Amazon Prime,
etc.While some of the works such as [66], [67], [74], and [79]
have considered such multiple resolution-bitrate pair encod-
ing conditions, many others only consider quality adaptation
at a single resolution (by using different bitrates/QP settings)
and hence those might not lead to satisfactory performance
when used for quality evaluation of such applications.

E. MODEL PERFORMANCE EVALUATION
As discussed in Section III-B, a performance evaluation of
a model for consistency, generality and prediction accuracy
can be done using Outlier Ratio (OR), Spearman’s Rank
Correlation Coefficient (SROCC) and Pearson Linear Cor-
relation Coefficient (PLCC) respectively. Some of the mod-
els lack a complete validation (e.g., [60], [61], [64], [65]),
which leaves an open question about the performance of the
models on unknown datasets and/or real-world applications.
Also, a comparison study of the proposed models with other
existing models is absent in most cases except for a few
like [81] and [82].

F. VIDEO/AUDIOVISUAL SEQUENCES
Some of the proposed models are limited to video only
(e.g., [72], [73], [78], [80], [81]), without considering audio
in their test sequences. This is not typical of real world scenar-
ios where most of the media consumed is audiovisual. Also,
none of the studies so far have included non-synchronized
audio-video playback at the end user device. It has been
found that audiovisual quality estimation is more challenging
than video alone due to the complex nature of HVS with
cross-modal interactions measured on an average of 0.5 on
a 5-point MOS scale [117].

G. CODEC
While currently H.264 remains one of the most widely used
codecs, the limitation of the proposed models to one codec
makes one question the future applicability of such models;
similarly some models only refer to a particular application.
For example, many applications like YouTube, etc., support
multiple encoders. Hence a proposed model dependent on
codec related parameters (e.g., bitstream based models) may
result in good performance but will fail for videos encoded
using another codec but streamed using the same application.
A possible solution for such applications will be designing
models which take into account the type of codec used and
then accordingly changing the parameters to compensate for
the differences between the codec performance or bitstream
syntax. An interesting work currently in this direction is
on-going under the joint collaboration of VQEG and ITU
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TABLE 5. Publicly available HAS databases.

project called AVHD/P.NATS Phase 2 which includes bit-
stream and pixel based models considering three encoders
(h.264, h.265 and vp9).

VIII. PUBLICLY AVAILABLE HAS DATASETS
Based on our discussion so far, it is clear that very few of
the works have made their implementation and/or the dataset
public. Recent years have seen tremendous growth in the
field of VQA, one of the main reasons behind which was
the availability of open source databases such as LIVE Video
Quality Database [118]. The availability of such open source
datasets allows researchers to gain comparable and more
generalizable results for VQA, QoE prediction modeling, etc.
by providing a baseline for comparing the performance of
newly proposedmodels andmetrics against the existing state-
of-the-art metrics. We discuss briefly in this section the seven
currently publicly available datasets and their advantages and
limitations in terms of their suitability for being used as a
benchmark for HAS models design and/or validation and
comparison. These are reported in Table 5 and discussed in
the following.

1) LIVE QoE Database for HTTP based Video Streaming
is one of the first publicly available dataset for mod-
eling continuous time-varying subjective quality. The
available videos are of 720p resolution and 300 sec-
onds duration, obtained by concatenating smaller dura-
tion videos. The quality switching is performed only
using the quality (compression) adaptation dimension
and does not include multiple resolution-bitrate pairs,
which is more realistic of the real-world applica-
tions. While this dataset is very useful for studying
and/or modeling the continuous time quality varying

prediction models, in the absence of other impairments
as commonly observed in real-world HAS based appli-
cations (rebuffering events, etc.) it is quite limited in
scope for the design and validation of a comprehensive
HAS QoE model.

2) Waterloo QoE Database consists of 20 uncompressed
HD videos and 60 compressed videos obtained by
encoding the videos at three different bitrate levels
(500 kbps, 1500 kbps and 3000 kbps) and 60 each
by introducing a 5 second stalling event at the start
and middle of the video playback resulting in a total
of 180 distorted video sequences. While this dataset
includes both stalling and quality switching, as dis-
cussed previously, this is fully realistic as the stalling
events are of fixed duration as well as at fixed locations
(start and middle of video playback). Also, quality
adaptation is considered based on only one dimen-
sion (compression) not taking into account other adap-
tation dimensions (spatial and temporal).

3) LIVE Netflix Video Quality of Experience Database
consists of subjective ratings considering 14 source
video contents and 112 distorted video sequences
obtained by compressing the videos using the
H.264 encoder and eight different playout patterns
(including rebuffering events). The video dataset is
limited to a single resolution of 1080p and of different
frame rates (24, 25 and 30 fps). One of the notable
shortcomings of this dataset is that since it uses eleven
copyright-protected videos out of a total of 14, only
three source videos and the corresponding distorted
videos are provided in this dataset. While most of the
commonly used FR and RR metric values are already
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provided, such a dataset is not suitable to evaluate
custom QoE models.

4) LFOVIA Video QoE Database consists of 18 uncom-
pressed reference videos and 36 distorted video
sequences of 120 seconds duration and is the only
dataset so far which includes videos of resolution
up to 4K. The dataset considers both rebuffering
events (rebuffering frequency and rebuffering dura-
tion) and quality switching (multiple resolution-bitrate
pairs) which are representative of real-world conditions
(though the ideal fixed duration up and down switch-
ing may not be too realistic). Such a dataset, which
includes both continuous and overall scores, is com-
prehensive enough for design/validation of real-world
applications.

5) Live Mobile Stall Video Database II, which focuses
only on stalling events, consists of 24 reference videos
and 174 distorted videos of 720p resolution generated
using 26 different stalling patterns. The dataset pro-
vides both continuous as well as retrospective scores.
Such a dataset can be used to study and probably model
the effect of stalling on user QoE, but, in the absence of
sequences and corresponding subjective ratings taking
into account other IFs which may affect end user QoE
in typical HAS based applications, it is not exhaustive
enough for design and/or validation of QoE models.

6) Waterloo QoE Database (ECT) consists of 12 source
videos 8s long, which are then further segmented to 4s
segments (referred to as short segments). The short seg-
ments are then encoded into seven different representa-
tion sets obtained by encoding them at different quality,
frame rates and resolution. By concatenating the 4s
segments, 8s segments are obtained to represent differ-
ent adaptation types (quality/spatial/temporal). A total
of 168 4s short segments and 588 eight sec segments
and their corresponding subjective ratings (overall and
continuous (per segment)) are made available in the
dataset. The dataset can be used as a baseline towards
studying the effects of quality adaptation but is limited
in many aspects, such as single adaptation event only
and missing impact of other IFs, hence is not compre-
hensive enough for design and/or validation of HAS
models.

7) The latest, newly designed, LIVE-NFLX-II Subjective
Video QoE Database is one of the most comprehen-
sive databases available till date. The database con-
sists of 15 source videos and a total of 420 distorted
sequences (using seven mobile network traces and
considering four client adaptation algorithms) but is
limited in that it considers only one resolution. The
encoding bitrates are obtained using the recently pro-
posed Dynamic Optimizer [122]. The use of four dif-
ferent adaptation algorithms in the database is useful
to investigate the effect of such client-side adapta-
tion on end user QoE and hence, in the design of a
more exhaustive QoE model. The database includes

both continuous as well as retrospective prediction
scores. Additionally, an open-source Python based tool
called Psychopy, to generate and display visual stimuli
and collect continuous per-frame subjective ratings,
is made available.

IX. CONCLUSION, CHALLENGES AND FUTURE WORK
In this paper, we surveyed the key QoE models for HAS
applications. It was observed that rebuffering, quality switch-
ing and encoding related impairments are the most widely
considered IFs. It is interesting to note that context IFs such
as viewing environment, video popularity, type of usage,
etc. are still not considered by any model except for one
by Mok et al. [61]. It is also observed that most of the
proposed models are limited in several aspects (considered
IFs, performance evaluation, modeling of IFs/model, etc.),
with a general comprehensive QoE model still far away from
being ready. Regarding the effect of various IFs on the end
user QoE, there remains a disagreement in the research com-
munity on the relationship and importance of a particular
IF on the end user QoE. For example, some of the models
advocate the usage of memory-related features, while others
ignore them with the reasoning that such factors do not have
a significant effect on the final QoE. More systematic, well-
designed, large-scale subjective tests are required to quantify
the impact of various IFs, as done in [108] for quantifying the
effect of resolution switching on QoE.

One of the biggest challenge currently faced by the
research community involved in QoE modeling for HAS
applications is that it is almost impossible for a single pro-
ponent to design and conduct all-inclusive and comprehen-
sive subjective test(s) due to high costs and time constraints,
especially when considering that, when considering multiple
IFs, the number of possible test conditions is enormous.
This has been further hindered by the lack of open source
databases. One of the primary reasons behind the progress
in the field of quality assessment for image and VQA can
be attributed to the open source databases such as LIVE
Video Quality Assessment Database [118] which facilitated
design and comparison of many quality metrics. For HAS
applications related models, out of the 28 reviewed models,
only few have made their databases public (see Section VIII).

This calls for a need for the research community to move
towards reproducible research by making work available
in the form of open source databases. As evaluated and
discussed by Tavakoli et al. [107], subjective data gathered
across different lab contexts provide comparable results.
Therefore, there is a need for the design of a methodological
approach for subjective test assessment procedures for HAS
applications so that the results and observations can be repro-
duced, reused and compared. There exist several methods
to perform subjective assessment, but, to make the results
reproducible, a set of standardized methods are published
by ITU-T in the form of recommendations, which discuss
the methodology for deciding various test conditions such
as the selection of proper test sequences, display settings,
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test environment, etc. [14], [15]. While such strict adherence
to lab-based conditions are not imperative for HAS related
subjective tests, following proper subjective test methodolo-
gies and, even more importantly, reporting the conditions,
can lead to easier understanding and reuse of results by other
researchers. For a more detailed analysis of subjective test
assessment methodologies and some related open questions,
we refer the reader to the work of Tavakoli et al. [107] and
Garcia et al. [123].

QoE modeling, due to its multi-disciplinary and highly
subjective nature, is a challenging topic, especially for HAS
applications where there are many IFs that need to be consid-
ered. Even though QoE modeling for HAS applications has
recently gained the attention of the research community, there
remain several open challenges and issues such as:

1) Multi-factor QoE model design: As discussed in [10],
there exist lots of influence factors which need to
be taken into consideration for the design of a com-
prehensive QoE model. Some IFs, especially context
related ones, such as the effect of environment, purpose
of watching the service, etc., are still not considered
by any model. As discussed in [124], to truly under-
stand the user’s QoE, a complete understanding of
both streaming technique and implementation details
of each application is needed. Such detailed informa-
tion can then be used for the design of a more ‘‘real-
istic’’ QoE model which can also take into account
user initiated actions such as play, pause, seeking (for-
ward/backwards), etc. Future models should consider
taking into account such IFs in their model design.

2) Model Complexity: Most of the works reviewed in this
paper, with the exception of two (Xue et al. [70] and
Rodríguez et al. [66]), do not provide any discussion on
themodel complexity and/or energy consumption asso-
ciated to the quality evaluation based on the model. The
use of high complexity QoE models at the client device
can lead to reduced performance of the application
due to increased consumption of power and computing
resources. Similarly, for server-based models, IFs mea-
surement information (rebuffering duration, number of
quality switches etc.) needs to be sent from the client
to the server to be considered by the model. Hence,
we argue that studies on the complexity of the existing
models are needed to help understand their real-world
applicability; similarly, relevant discussions should be
provided by the proponents of new models.

3) Subjective test methodology: As discussed in
Section VII, there still exists a need for proper sub-
jective assessment methodology for HAS applications,
hence research on this aspect is encouraged, for more
scientific and reproducible research.

4) Privacy Issues: Another challenge is the decision of
where (client/server/network) to deploy the monitoring
tool to acquire the measurements of the IFs consid-
ered by the model. Client-side monitoring and manage-
ment are an invasion of privacy and also suffer from

shortcomings such as possible cheating by end-user to
receive better service, etc. [21]. Network-side monitor-
ing, while overcoming these issues, is not that effec-
tive regarding insight into the influence of factors on
QoE [22].

5) Stakeholder: Depending on the amount and type of
information required as input to the model, its mea-
surement can be intrusive or non-intrusive. Also, some
models are designed to work with encrypted data, while
others require access to bitstream or media signals.
Depending on the stakeholder, the requirements will
vary. For example, a network provider, to monitor
third-party OTT traffic, may prefer a QoE model that
works with encrypted video, as sooner or later, all video
streaming traffic will be encrypted [124]. Such fac-
tors need to be taken into consideration during model
design.

6) QoE based management: Individual and joint effect of
the various IFs need to be evaluated for the design of
appropriate QoE control and management strategies.
Such insight can then be used for other applications.
For example, the knowledge that frequent quality
switching can lead to a decrease of QoE can lead
to the design of better rate adaptation algorithms by
the application provider while a network operator can
compensate for quality fluctuations by throttling the
network throughput, to limit the bandwidth fluctuation.

The research community has some exciting challenges
ahead of them. Faster and better results can be achieved by
collaborative efforts and by moving further towards repro-
ducible research.
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