
Received February 20, 2019, accepted March 6, 2019, date of publication March 13, 2019, date of current version April 1, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2904720

NADAQ: Natural Language Database Querying
Based on Deep Learning
BOYAN XU1, RUICHU CAI 1, ZHENJIE ZHANG2, XIAOYAN YANG2,
ZHIFENG HAO1,3, ZIJIAN LI1, AND ZHIHAO LIANG1
1Faculty of Computer, Guangdong University of Technology, Guangzhou 510006, China
2Singapore R&D, Yitu Technology Pte Ltd., Singapore 117372
3School of Mathematics and Big Data, Foshan University, Foshan 528000, China

Corresponding author: Ruichu Cai (cairuichu@gmail.com)

This work was supported in part by the NSFC-Guangdong Joint Found under Grant U1501254, in part by the Natural Science Foundation
of China under Grant 61876043 and 61472089, in part by the Natural Science Foundation of Guangdong under Grant 2014A030306004
and Grant 2014A030308008, in part by the Science and Technology Planning Project of Guangdong under Grant 2015B010108006 and
Grant 2015B010131015, in part by the Guangdong High-level Personnel of Special Support Program under Grant 2015TQ01X140, in part
by the Pearl River S&T Nova Program of Guangzhou under Grant 201610010101, and in part by the Science and Technology Planning
Project of Guangzhou under Grant 201604016075.

ABSTRACT The high complexity behind SQL language and database schemas has made database querying
a challenging task to human programmers. In this paper, we present our new natural language database
querying (NADAQ) system as an alternative solution, by designing new translation models smoothly fusing
deep learning and traditional database parsing techniques. On top of the popular encoder-decoder model
for machine translation, NADAQ injects new dimensions of schema-aware bits associated with the input
words into encoder phase and adds new hidden memory neurons controlled by the finite state machine
for grammatical state tracking into the decoder phase. We further develop new techniques to enable the
augmented neural network to reject queries irrelevant to the contents of the target database and recommend
candidate queries reversely transformed into natural language. NADAQperformswell on real-world database
systems over human labeled workload, returning query results at 90% accuracy.

INDEX TERMS Databases, natural language processing, recurrent neural networks.

I. INTRODUCTION
Structured Query Language (SQL) has been the standard
querying interface of traditional relational database systems
for the last few decades. A good relational database pro-
grammer is expected to master SQL programming language
and get familiar with the schemas of the database, before
writing quality queries for database applications. Both of the
tasks of SQL mastering and schema learning are extremely
challenging, even for experts with a strong computer sci-
ence background. The database research community has been
devoting huge efforts to the enhancement of database usabil-
ity, by easing the hardness of SQL programming and complex
schema comprehension [20], [21].

The explosive development of machine learning and
artificial intelligence techniques, especially boosted by

The associate editor coordinating the review of this manuscript and
approving it for publication was Vlad Diaconita.

deep learning [6], has revealed a new possibility of inter-
action mechanisms between human users and complex
machine systems. Particularly, the huge success of perfor-
mance improvement on machine translation tasks [17], [18]
is inspiring the adoption of natural language as the inputs of
queries and commands instead of SQL, therefore minimizing
the technical demands to the system administrator on both
programming skills as well as knowledge to the database
schema.

Different from the existing techniques in the database
community, which requires human efforts on error
correction [11], deep learning approach attempts to construct
the transformation from input natural language sequence to
the output SQL language sequence purely based on the trans-
lation samples only. As a mainstream deep learning based
approach, semantic parsing convert natural language into
formal and executable logical form [3], [5], [19]. Besides of
semantic parsing, researchers are also attempting to generate

35012
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0001-8972-167X


B. Xu et al.: NADAQ Based on Deep Learning

executable logical form by directly linking the semantic
interpretation of the input natural language and the records
in the database [14], [15], [22].

However, the straightforward solution by using deep learn-
ing models does not render the effectiveness and efficiency
as expected. Firstly, most of the computation in deep learning
model training is wasted on learning the grammar structure of
SQL, which is actually well studied and modeled by mature
techniques in the database community. Secondly, machine
learning approaches linking query results with individual
cells in the database tables [14], [15], [22] do not scale well
with the table size, even not reusable when updates are
applied on the tables. Thirdly, machine learning approaches
always output the result SQL queries even when the input
question does not match the schema/contents of the database.

Inspired by recent work on integrating grammar structure
into sequence-to-sequence model [7], [16], [23], we design
our new natural-language database querying (NADAQ) sys-
tem to tackle all these problems, by smoothly fusing deep
learning and traditional database query parsing techniques.
The core technical contributions include: 1) instead of forcing
deep learning models to learn SQL grammar, we use finite
state machines to track the grammatical states of the output
SQL sequence. These states are also fed into the neural
network, in order to help the model to better select the subse-
quent words; 2) by tracking the selection of tables, columns
and predicate expressions, we build models to evaluate the
relevance of the original questions to the result SQL queries,
and thus rejecting irrelevant questions; 3) we adopt cus-
tomized beam search technique to identify candidate queries
and present the natural language explanations of the queries
to the user’s query refinement.

In the rest of the paper, section II overviews the system
architecture of NADAQ. Section III introduces the models
adopted by NADAQ. Section IV presents the demonstration
workflow. Section V evaluates the performance of the models
experimentally, and Section VI finally concludes the work.

II. SYSTEM OVERVIEW
As is shown in Figure 1, NADAQ consists of three major
components, including data storage module, model manage-
ment module and user interface module. Data storage module
includes MySQL as the underlying database engine, which
extracts meta-data from the tables for translation model train-
ing and executes the SQL queries to return search results
to human users. Model management module is the core of
NADAQ, which manages various models for bidirectional
translation between natural language and SQL, as well as

FIGURE 1. NADAQ system overview.

rejection models for irrelevant question screening. User inter-
face module contains the interfaces to human users to support
all important functionalities. The key technical components
include:

Speech Recognition converts the audio input into natural
language text. The module uses the voice dictation interface
provided by the iflytek open platform.1 It also supports man-
ual correction, such that the user is allowed to revise the text
output based on his/her own understanding.

Translation adopts a customized machine learning model
based on encoder-decoder [2], [17], which is state-of-the-art
solution of machine translation. The key technical innovation
in this part is the addition of additional hidden states into the
model to track the SQL-aware grammatical states based on a
finite state machine. These hidden states are helpful to filter
out invalid output words at decoding phase and provide useful
hints for better neural network training.

Rejection enables NADAQ to reject meaningless inputs
from the users. In order to evaluate the relevance between
user inputs and contents of the database, NADAQ builds a
rejection model on top of the translation model. The rejection
decisions are made based on the uncertainty of the translation
model when choosing tables, columns and predicate expres-
sions for the SQL queries.

Recommendation enhances the effectiveness of NADAQ
by providing candidate queries to the users for refinement
and selection. To help users without any SQL background
knowledge, NADAQ translates the candidate queries into
natural language, so that human users could easily understand
the physical meanings of the candidate queries and improve
the efficiency of human-computer interaction.

Result Display executes the SQL query on the database
and consequently displays the query outcomes to the user.

III. MODELS IN NADAQ
A. QUERY TRANSLATION
We develop a SQL-aware recurrent neural network struc-
ture on top of the encoder-decoder framework, for the task
of translation from natural language to SQL, as is shown
in Figure 2. Basically, the neural network accepts natural
language input as a sequence of words in the encoder phase.
After finishing the processing of all input words, the neural
network transits to decoder phase, starting to output words

1http://www.xfyun.cn

FIGURE 2. A running example of customized encode-decode neural
network for our SQL translation task.

VOLUME 7, 2019 35013



B. Xu et al.: NADAQ Based on Deep Learning

as the translation outcomes. The motivations of the neural
network customization for SQL translation are introduced
below.

1) ENCONDER PROCESSING
The key of the encoder phase is to digest the original natural
language input and put the most important information in the
memory before proceeding to the decoder phase. We propose
to extract additional semantic features that link the original
words to the semantics of the grammatical structure of the
target language. We generate a group of labels based on the
Backus-Naur Form (BNF) of SQL. Specifically, each label
corresponds to a terminal symbol in the BNF Grammar for
SQL. Given a small group of samples, we manually label the
words and employ conditional random fields (CRFs) [10] to
build effective classifiers.

2) DECODER PROCESSING
We incorporate SQL parsing techniques into the neural net-
work in two different ways, including the embedding of
grammar state in the hidden layer and the masking of word
outputs. In SQL parsers, based on the precedented word out-
puts, the parser selects the candidate expression for following
words based on the structure of BNF. Motivated by this,
we use a binary vector structure to represent all possible
grammatical states, each of which corresponds to a candi-
date expression in BNF. We also employ a stack structure,
which is used to track the grammar states when sub-queries
are generated recursively. Let gt denote the grammar state
in top entry in the stack at time t . To incorporate gt into
the model, the memory of the neural network is updated as
follows:

ft = σg(Wf xt + Uf ht−1 + Vf gt−1 + bf )

it = σg(Wixt + Uiht−1 + Vigt−1 + bi)

ot = σg(Woxt + Uoht−1 + Vogt−1 + bo)

ct = ft ⊗ ct−1 + it ⊗ σc(Wf xt + Uf ht−1 + Vf gt−1 + bf )

ht = ot ⊗ σ (ct )

where ⊗ indicates element-wise multiplication operation.

TABLE 1. Partial rules of short-term dependencies.

In the decoder, there are two types of word masks used to
filter out invalid words for outputting, which aremainly based
on short-term dependencies and long-term dependencies
respectively. At each step, the decoder chooses one rule from
candidate short-term dependencies, e.g., rules in Table 1, and

possibly multiple rules from candidate long-term dependen-
cies, e.g., rules in Table 2. The short-term dependency rule is
updated according to the current grammar state as well as the
last output word from the decoder. Long-term dependencies
are updated based on the active symbols chosen by the SQL
parser, maintained in the grammar state vector.

TABLE 2. Partial rules of long-term dependencies.

We use a binary vector s to indicate the masks generated
by the single rule of short-term dependency, and li for the
i-th mask generated by the rule of long-term dependencies.
Given these masks, the word selection process in the decoder
is modified as:

yt = σy(Wyht + by)⊗ s⊗ l1 . . .⊗ lL , (1)

where L is the number of active rules of long-term
dependencies.

B. QUERY REJECTION
The query rejection model is used to block meaningless or
irrelevant questions that cannot be processed by SQL queries
based on the database schema. Our query rejection model
is motivated by the observation on the uncertainty of the
neural network when outputting keywords in SQL output,
especially on the table name, column name and predicate
expressions. Therefore, NADAQ collects the statistics of
entropies of output word selection based on the grammati-
cal states maintained by the translation model. The thresh-
old method and the MLP method are two basic strategies
employed by the system. The first strategy simply rejects a
question if the total entropy is above a specified threshold,
while the second strategy builds a 3-layer fully connect neural
network model by utilizing valid and invalid questions to the
database.

C. QUERY RECOMMENDATION
There are always errors in the translations from natural lan-
guage to SQL, regardless of the training performance of
the machine learning model. To further enhance the effec-
tiveness of the system, we design a recommendation mech-
anism, which returns multiple candidate SQL answers to
the user. The key technical challenge is to cover meaning-
ful and representative SQL queries which are more likely
to be answers to the original question in natural language.
To facilitate effective query recommendation, we design
search strategies to generate multiple answers, ranking strat-
egy for candidate selection and presentation strategy for bet-
ter human-computer interaction.

35014 VOLUME 7, 2019



B. Xu et al.: NADAQ Based on Deep Learning

FIGURE 3. User interface snapshots in NADAQ. (a) Interface of query inputs and recommendation. (b) Interface of query rejection.

1) SEARCH STRATEGY
In sequence-to-sequence learning and its variants, beam
search is commonly used in the inference phase, e.g., [9],
in order to maintain multiple promising candidates at
the same time. We apply guided beam search, by expand-
ing the group of candidates at crucial grammatical states,
when the output sequence is attempting to choose tables or
columns.

2) RANKING STRATEGY
Given the candidate queries for selection, we rank the queries
based on certain score function over the SQL queries. The
score is calculated based on the probability of the output
words at pivot time steps, which are the time steps involving
expansion of the beam. The score is then normalized based on
the number of pivot time steps encountered by the individual
SQL query, to avoid the unfair preference to long queries.

IV. DEMONSTRATION WORKFLOW
In the demonstration of NADAQ, following the general work-
flow of the system, users are allowed to ask queries in
speech. As is shown in Figure 3(a), the recommendation can-
didates are presented on the screen. By clicking the words in
the SQL query candidate, NADAQ displays the grammatical
status on the top right corner and the word selection options in
the bottom right corner. Once the user selects one of the rec-
ommendations, NADAQ executes the query and present the
results in the box on the bottom of the interface. If NADAQ
decides to reject the query due to the limited relevance of the
original question to the contents of the database, as is shown
in Figure 3(b), it displays the histogram of valid questions’
entropy, as well as the confidence threshold (the red line in
the figure) of the rejection decision. Here, the confidence
threshold can be determined by the threshold method and the
MLP method.

V. EXPERIMENTS
We run our experiments on three databases. Aca-
demic (MAS) database has 17 tables, containing records of

TABLE 3. Workload statistics on three databases.

3,543,360 publications and 1,592,014 researchers, collected
by Microsoft Academic Search. The IMDB database has
3 tables containing records of 3,654 movies, 4,370 actors
and 1,659 directors, respectively. We also employ the logical
form benchmark GEO, by converting the logical queries into
equivalent SQL queries as done in [4] and [8]. The GEO
database has 7 tables, which contains records of 368 cities
in 51 states in the USA. The statistics of the datasets are
listed in Table 3. Note that SQL vocabulary size of GEO is
much larger than that of the other two datasets, and nearly
40% of the SQL statements containing sub-queries on the
GEO dataset. On GEO, we use original workloads in the
dataset. On the other two databases, we ask volunteers to label
over randomly generated queries, by describing the queries in
English. Two examples of the generated SQL queries with the
aggregator and join operation are given as follows:

SELECT <column_array>
FROM <table> WHERE <column> =/> <value>

SELECT AGG(<table_1.column_array>)
FROM <table_1> INNER JOIN <table_2>
ON <table_1.key> = <table_2.key>
WHERE <table_2.column> =/> <value>

All these samples are used in the training of the SQL
translation model. The translation model is implemented on
top of Tensorflow 1.2.0. We employ 1 hidden layer with
256 neurons for both encoder and decoder, and softmax neu-
ron for output word selection. In order to augment Long Short

VOLUME 7, 2019 35015



B. Xu et al.: NADAQ Based on Deep Learning

Term Memory [6] with the grammatical states, we manually
revise the original LSTM model in Tensorflow to add new
hidden states and manipulation logic.

A. BASELINE APPROACHES
We employ three baseline approaches in performance eval-
uation, including the convolutional neural network machine
translation (conv-seq in short) model [4], the attention-based
sequence-to-sequence machine translation (attn-seq in short)
model [1], and semantic parsing model with feedback (SPF
in short) [7]. Note that SPF does not work on the IMDB and
MAS dataset. Because SPF uses templates to enlarge training
data, and there is no template for join operations on these two
datasets.

B. PERFORMANCE METRICS
Wemeasure F1 accuracy of the results based on the recall and
precision of the query results. To get the recall and precision,
we executing these queries in the relational database and
compare the results against that of the ground-truth queries.

FIGURE 4. Testing results on IMDB. (a) Query result accuracy. (b) Query
rejection accuracy.

FIGURE 5. Testing results on MAS. (a) Query result accuracy. (b) Query
rejection accuracy.

C. EXPERIMENTAL RESULTS
We report the experimental results of translation and rejec-
tion on three databases in Figures 4, 5 and 6 respec-
tively. On IMDB database (Figure 4(a)) and MAS database
(Figure 5(a)), we present the testing results with three types of
workloads, Mixed workload with all join and select queries,
as well as Join and Select workloads with individual type of
queries only. On GEO database, we present the results with
the original workloads(Figure 6a).

Generally speaking, NADAQ outperforms conv-seq and
attn-seq in all settings by a significant margin, because
the addition of grammar states brings benefits to save the

FIGURE 6. Testing results on GEO. (a) Query result accuracy. (b) Query
rejection accuracy.

unnecessary efforts on grammar understandings. Though
NADAQ and SPF both performed well on the GEO dataset,
the F1 score of NADAQ(0.839) is still higher than that of
SPF(0.836) on GEO database. Moreover, NADAQ involves
fewer manual operations. The F1 scores of NADAQ on IMDB
database and GEO are above 80%, close to the standard of
commercial usage.

We also report the F1 score of the query rejection mech-
anism with two alternative models on all the three datasets.
For the threshold method, the candidate is rejected if its
entropy is larger than the mean of the valid questions’ average
entropy and the invalid questions’ average entropy. For the
MLP method, a multi-layer neural network method is trained
to determine the threshold. As shown in the figures, the MLP
method outperforms the threshold method over all the three
datasets. In detail, the F1 score of the threshold approach is
around 0.75 on IMDB and GEO, and 0.65 on MAS, while
that of the MLP method is above 0.9 on IMDB and MAS,
and 0.84 on GEO.

VI. CONCLUSION
In this paper, we demonstrate our new natural language
database querying (NADAQ) system. The design of NADAQ
combines the state-of-the-art deep learning techniques and
the mature SQL parsing techniques. It enables the system
to significantly improve the quality of query translation and
inspire new solutions to meaningless question rejection and
query candidate recommendation. The results show NADAQ
provides nearly commercial standard service as a querying
interface to human users, even when they neither understand
SQL nor comprehend the database schema.

REFERENCES
[1] D. Bahdanau, K. Cho, and Y. Bengio. (2015). ‘‘Neural machine trans-

lation by jointly learning to align and translate.’’ [Online]. Available:
https://arxiv.org/abs/1409.0473

[2] K. Cho et al., ‘‘Learning phrase representations using RNN
encoder-decoder for statistical machine translation,’’ in Proc. EMNLP,
2014, pp. 1724–1734.

[3] L. Dong and M. Lapata, ‘‘Language to logical form with neural attention,’’
in Proc. ACL, 2016, pp. 33–43.

[4] J. Gehring, M. Auli, D. Grangier, D. Yarats, and Y. N. Dauphin,
‘‘Convolutional sequence to sequence learning,’’ in Proc. ICML, 2017,
pp. 1243–1252.

[5] K. Guu, P. Pasupat, E. Z. Liu, and P. Liang, ‘‘From language to programs:
Bridging reinforcement learning and maximum marginal likelihood,’’ in
Proc. ACL, 2017, pp. 1051–1062.

35016 VOLUME 7, 2019



B. Xu et al.: NADAQ Based on Deep Learning

[6] S. Hochreiter and J. Schmidhuber, ‘‘Long short-term memory,’’ Neural
Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[7] S. Iyer, I. Konstas, A. Cheung, J. Krishnamurthy, and L. Zettlemoyer,
‘‘Learning a neural semantic parser from user feedback,’’ in Proc. ACL,
2017, pp. 963–973.

[8] R. Jia and P. Liang, ‘‘Data recombination for neural semantic parsing,’’ in
Proc. ACL, 2016, pp. 12–22.

[9] A. Kannan et al., ‘‘Smart reply: Automated response suggestion for
Email,’’ in Proc. KDD, 2016, pp. 955–964.

[10] J. Lafferty et al., ‘‘Conditional random fields: Probabilistic models for
segmenting and labeling sequence data,’’ in Proc. 18th Int. Conf. Mach.
Learn. (ICML), vol. 1, 2001, pp. 282–289.

[11] F. Li and H. V. Jagadish, ‘‘Constructing an interactive natural language
interface for relational databases,’’ Proc. VLDB Endowment, vol. 8, no. 1,
pp. 73–84, 2014.

[12] C. Liang, J. Berant, Q. Le, K. D. Forbus, and N. Lao, ‘‘Neural symbolic
machines: Learning semantic parsers on freebase with weak supervision,’’
in Proc. ACL, 2017, pp. 23–33.

[13] P. Liang, ‘‘Learning executable semantic parsers for natural language
understanding,’’ Commun. ACM, vol. 59, no. 9, pp. 68–76, 2016.

[14] L. Mou, Z. Lu, H. Li, and Z. Jin, ‘‘Coupling distributed and sym-
bolic execution for natural language queries,’’ in Proc. ICML, 2017,
pp. 2518–2526.

[15] A.Neelakantan, Q. V. Le,M.Abadi, A.McCallum, andD.Amodei. (2016).
‘‘Learning a natural language interface with neural programmer.’’ [Online].
Available: https://arxiv.org/abs/1611.08945

[16] M. Rabinovich,M. Stern, andD. Klein, ‘‘Abstract syntax networks for code
generation and semantic parsing,’’ in Proc. ACL, 2017, pp. 1139–1149.

[17] I. Sutskever, O. Vinyals, and Q. V. Le, ‘‘Sequence to sequence learning
with neural networks,’’ in Proc. NIPS, 2014, pp. 3104–3112.

[18] Y. Wu et al. (2016). ‘‘Google’s neural machine translation system: Bridg-
ing the gap between human and machine translation.’’ [Online]. Available:
https://arxiv.org/abs/1609.08144

[19] C. Xiao, M. Dymetman, and C. Gardent, ‘‘Sequence-based structured
prediction for semantic parsing,’’ in Proc. ACL, 2016, pp. 1341–1350.

[20] X. Yang, C. M. Procopiuc, and D. Srivastava, ‘‘Summarizing relational
databases,’’ Proc. VLDB Endowment, vol. 2, no. 1, pp. 634–645, 2009.

[21] X. Yang, C. M. Procopiuc, and D. Srivastava, ‘‘Summary graphs for
relational database schemas,’’ Proc. VLDB Endowment, vol. 4, no. 11,
pp. 899–910, 2011.

[22] P. Yin, Z. Lu, H. Li, and B. Kao, ‘‘Neural enquirer: Learning to query tables
with natural language,’’ in Proc. IJCAI, 2016, pp. 2308–2314.

[23] P. Yin and G. Neubig, ‘‘A syntactic neural model for general-purpose code
generation,’’ in Proc. ACL, 2017, pp. 440–450.

BOYAN XU received the B.S. degree in com-
puter science and technology from the Guangdong
University of Technology, in 2014, and the mas-
ter’s and Ph.D. programs in computer application
engineering for Ph.D. degree. His research inter-
ests include a variety of different topics includ-
ingmachine learning, natural language processing,
and their applications.

RUICHU CAI received the B.S. degree in applied
mathematics and the Ph.D. degree in computer
science from the South China University of Tech-
nology, in 2005 and 2010, respectively. He was a
Visiting Student with the National University of
Singapore, from 2007 to 2009, and a Research
Fellow with the Advanced Digital Sciences Cen-
ter, Illinois at Singapore Pte, from 2013 to 2014.
He is currently a Professor with the School of
Computer, Guangdong University of Technology.

His research interests include a variety of different topics including causality,
machine learning, and their applications.

ZHENJIE ZHANG received the B.S. degree from
the Department of Computer Science and Engi-
neering, Fudan University, in 2004, and the Ph.D.
degree in computer science from the School of
Computing, National University of Singapore,
in 2010. He was a Senior Research Scientist with
the Advanced Digital Sciences Center, Illinois at
Singapore Pte. He is currently the R&D Director
with Singapore R&D, Yitu Technology Pte Ltd.
His research interests include a variety of different

topics, including causality, database query processing, high-dimensional
indexing, and data privacy.

XIAOYAN YANG received the B.S. degree from
the Department of Computer Science and Engi-
neering, Fudan University, and the Ph.D. degree
in computer science from the School of Comput-
ing, National University of Singapore. She was
a Postdoctoral Fellow with the Advanced Digital
Sciences Center, Illinois at Singapore Pte. She is
currently a Senior Data Scientist with Singapore
R&D, Yitu Technology Pte Ltd.

ZHIFENG HAO received the B.Sc. degree in
mathematics fromSunYat-senUniversity, in 1990,
and the Ph.D. degree in mathematics fromNanjing
University, in 1995. He is currently a Professor
with the School of Computer, Guangdong Uni-
versity of Technology, and also with the School
of Mathematics and Big Date, Foshan University.
His research interests include various aspects of
algebra, machine learning, data mining, and evo-
lutionary algorithms.

ZIJIAN LI received the B.S. degree in software
engineering from the Guangdong University of
Technology, in 2017, where he is currently pur-
suing the M.S. degree in computer science and
technology. He has been a Visiting Student with
the Advanced Digital Sciences Center, Singapore,
since 2017, and has also been with Nanyang
Technological University, since 2018. His research
interests include a variety of different topic includ-
ing natural language processing, transfer learning,
and domain adaptation.

ZHIHAO LIANG received the B.E. degree in com-
puter science and technology from the Guangdong
University of Technology, in 2018, where he is cur-
rently pursuing the master’s degree. His research
interest includes natural language processing.

VOLUME 7, 2019 35017


	INTRODUCTION
	SYSTEM OVERVIEW
	MODELS IN NADAQ
	QUERY TRANSLATION
	ENCONDER PROCESSING
	DECODER PROCESSING

	QUERY REJECTION
	QUERY RECOMMENDATION
	SEARCH STRATEGY
	RANKING STRATEGY


	DEMONSTRATION WORKFLOW
	EXPERIMENTS
	BASELINE APPROACHES
	PERFORMANCE METRICS
	EXPERIMENTAL RESULTS

	CONCLUSION
	REFERENCES
	Biographies
	BOYAN XU
	RUICHU CAI
	ZHENJIE ZHANG
	XIAOYAN YANG
	ZHIFENG HAO
	ZIJIAN LI
	ZHIHAO LIANG


