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ABSTRACT Multifunction vehicle bus (MVB) is the most widely used train communication network whose
performance degradation and anomaly will heavily affect the train’s safe and stable operation. However,
current scheduled maintenance and post-failure maintenance of MVB cannot detect the early anomaly and
evaluate the health condition of the network in time. This paper provides a method to detect the anomaly
and evaluate the health condition of MVB based on a one-class classification (OCC) algorithm called
density-based sample reduction for support vector data description (DBSRSVDD). First, network features
are extracted from physical layer waveform parameters. In order to reduce the computational complexity
of SVDD, a sample reduction operation is conducted to screen out the edge samples as support vector
candidates. Then, the SVDD models representing the normal patterns of a single MVB node are trained
based on the support vector candidates. Performance degradation of the node is quantified by the distance
between the tested sample and the trained hyper sphere. The whole network’s health condition is the linear
weighted sum of the nodes’ scores based on their bandwidth occupancy. The experimental results show that
the proposed method can detect the anomaly and degradation of MVB successfully, improve accuracy, and
reduce training time compared with the existing methods.

INDEX TERMS Support vector domain description, sample reduction, health evaluation, anomaly detection,
multifunction vehicle bus.

I. INTRODUCTION
MVB is the central nervous of the train which transmits
control data and monitoring data. Its health condition is
closely related with the train’s safe and stable operation.
However, current means of MVB maintenance remain in
simple schedule maintenance and post-failure maintenance,
leaving the incipient fault undetectable until it develops into
major failure and causes an emergency train stop. Therefore,
the anomaly detection and health evaluation of MVB are of
great importance to eliminate potential risk.

The approach of MVB anomaly detection and health eval-
uation is to train a model representing the normal behaviors
of MVB and use the model to identify anomalies. Feature
extraction and health evaluation method are the key issues
to address. For the first issue, a MVB protocol analyzer
is utilized in our work to extract features from physical
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waveforms of MVB which characterize the network sta-
tus. For the second issue, performance deterioration and
health evaluation are conducted to find and quantize pat-
terns that do not conform to the expected behaviors. Com-
mon methods of anomaly detection and health evaluation
include classification-based techniques, cluster-based tech-
niques, statistical techniques.

Classification-based techniques operate in two steps. In the
first step a classifier is learned based on both positive class
data and negative class data. In the second step, tested
instances are classified into normal class or anomalous class
by the trained classifier. Wen and Meng [1] have applied
Support Vector Machine (SVM) trained by both normal and
abnormal data to quantify the health condition of ethernet.
Features are extracted from the quality of service (QOS)
indicators of ethernet. Xie et al. [2] has presented a fast
support vector data description (SVDD) algorithm to detect
outliers in wireless sensor networks. Rätsch et al. [18] have
presented an anomaly detection method called One-Class
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Support Vector Machine (OCSVM) by separate the origin
from normal data with a maximum distance classification
hyper plane. Replicator Neural Networks method has been
introduced in detecting anomaly by Hawkins et al. [3] and
Williams et al. [40].Wang et al. [16] have introduced the hier-
archical temporal memory (HTM) network to detect anomaly
of In-vehicle network.

Clustering algorithms are used to group similar data pat-
terns into one cluster [22], [23]. The principle of cluster
based anomaly detection is declaring any data instance that
does not belong to any cluster as an outlier. Clustering algo-
rithms which will not force every data to be grouped into
a cluster such as DBSCAN [24], Robust Clustering using
Links (ROCK) [25], Shared Nearest Neighbor (SNN) [26]
can be used in anomaly detection. The distance between the
tested data and its closest cluster centroid is calculated as its
anomaly score [5]–[7]. Self-Organizing Maps (SOM) algo-
rithm has been also introduced into anomaly detection and
fault diagnostic [27]–[29]. Wang et al. [41] have presented
a Service Feature Clustering method in telecommunication
network performance anomaly detection.

Statistical techniques assume that the normal samples dis-
tribute in high probability region of stochastic model while
anomalies lie in the low probability regions of stochastic
model. Boxplot is the simplest method in anomaly detection.
Solberg and Lahti [10] have applied boxplot method in digital
health and Guttormsson et al. [11] have introduced it in
steam turbine rotor maintenance. Jia et al. [4] have introduced
Gaussian Mixture Model to fit the power curve of wind
turbine based on its power andwind speed data. The deviation
between current condition and normal condition is used to
evaluate the degradation of the wind turbine.

The mentioned methods above have their advantages and
disadvantages respectively. Statistical techniques need to
assume that abnormal samples are located in high probability
regions of stochastic model while anomalies lie in the low
probability regions of stochastic model. Large amount of nor-
mal and abnormal samples are indispensable in probabilistic
model estimation. The lack of negative samples in practical
use limits its application. Clustering algorithms’ effectiveness
for anomaly detection depends on the density distribution
in feature space. The Classification-based techniques test
fast in the testing phase since they use learned models for
classification but both labeled normal and abnormal data is
essential in the training phase. Normal data is sampled easily
in practical use while sampling abnormal data is often costly,
resulting in the training data set unbalanced and class skew
problem.

One-Class classification (OCC) algorithms need only one
class data and can avoid this problem. SVDD is one of
the most popular OCC algorithms and it aims at training a
minimum hyper sphere which contains most of the samples
in the feature space [12]. By calculating the Euclidean dis-
tance between the tested sample and hyper sphere centroid,
the health condition of a system is quantified. However,
model training of SVDD is a very slow process when the

sample size is large, since the quadratic programming (QP)
problem implies high training time complexity O(n3) and
space complexity O(n2). Besides, parameter optimization of
SVDD will also consumes large amount of time in cross
validation process. Therefore, speeding up the model training
of SVDD is a notable and significant issue. Dong et al. [31]
and Platt [32] have divided the original QP problem into small
pieces to reduce the size of the whole QP problem. In their
work the memory requirement in huge data set has been
largely reduced while the training time is still long. Another
group of approaches are scaling down the training set by
selecting support vector candidates. Because hyper sphere of
SVDD only relies on a fraction of samples called support vec-
tors, non-support vectors can be removed without affecting
the classification accuracy. Hence, sample reduction methods
are proved to be an effective way for SVDD to solve large
scale classification problems. Liu et al. [13] have presented
a geometry-based method and built a reduction sphere to
remove the inner samples. Since the data set is decreasing and
changing, the reduction sphere is also moving in the feature
space and finally the edge points are left behind. However,
it only works on convex set and fails to solve irregularly
distributed set. Information entropy has been introduced to
present the similarity between samples by Li et al. [14]. Sam-
ples distributed in edge region usually have higher entropy
than the inner ones since they are distributed sparsely and less
similar to each other according to their definition of entropy.
The samples in original data set whose entropy are greater
than a threshold θ are selected as support vector candidates
and put into the training set of SVDD. And θ is adjusted by a
parameter v. The bigger v is, the less θ is and themore support
vector candidates there are. But the proposed information
entropy based sample reduction for SVDD (IESRSVDD)
method takes a lot of time to calculate the entropy values of
all samples. Sample reduction has been applied to speed up
SVM in binary classificationwithout reducing its accuracy by
Li et al. [15]. The sample whose neighborhood contains both
positive and negative data is identified as edge sample in their
work. However, in health evaluation and anomaly detection
problem there is only one class data.

The local density of SVDD support vectors is sparse since
they are located in edge areas. Density-Based Spatial Clus-
tering of Applications with Noise (DBSCAN) is sensitive
to the local density of the data set and can screen out the
noisy data at the same time [24]. Inspired by this advantage
of DBSCAN we can relax the screening criteria and the
‘‘noisy data’’ distributed in edge areas can be selected as the
support vector candidates. In this paper we call the proposed
algorithmDBSRSVDD.MVBhealth evaluation and anomaly
detection have three steps. Firstly, a model is trained by the
support vector candidates to represent the normal condition
of nodes. Secondly, samples to be tested are classified by the
model and the health conditions of MVB nodes are quanti-
fied by the distances between the hyper sphere centroid and
them. Finally, the health condition of whole MVB network
is calculated as the weighted linear sum of the node scores.
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FIGURE 1. Typical application of multifunction vehicle bus (MVB).

We have made the following contributions:

1) A feature extraction method has been proposed which
samples data from physical layer waveforms to rep-
resent the operating condition of MVB. Most current
researches on control network focus on improvement of
its real-time capability. Few studies on network health
evaluation issues have been carried by academe.

2) Unlike some other evaluation methods, the proposed
evaluation method is based on trained models without
any human subjective factors of experts. The models
are trained from objective data. Abnormal condition
will be detected once the monitoring data deviates from
the models. Health condition of MVB is measured
at both device level and network level. Performance
degradation is quantified by the distance between the
hyper sphere centroid and the monitoring data. The
whole network’s health condition is the linear weighted
sum of the devices’ scores according to the bandwidth
occupancy of the devices. By this way, the maintenance
method of MVB can be improved to condition based
maintenance (CBM) based on the evaluation result and
potential risks can be eliminated in the bud.

3) In order to accelerate model training and reduce com-
putational complexity, a new sample reduction method
improved from DBSCAN is proposed. When v is cho-
sen properly, the proposed method can significantly
reduce sample size and computational complexity.
DBSRSVDD takes much less time and space in model
training than IESRSVDD and SVDD and maintains
the classifier performance at the same time. Parameter
optimization process of SVDD can also be eliminated
in DBSRSVDD.

The rest of the paper is organized as follow. Section 2 intro-
duces some basic knowledge of MVB and Section 3 explains
the features extraction process. Our proposed sample reduc-
tion method is elaborated in Section 4. Section 5 gives an
introduction of SVDD evaluation process. Experiments and
results are presented and discussed in Section 6. Finally,
conclusion and further work are given in Section 7.

II. MVB FRAMEWORK AND HEALTH
EVALUATION SYSTEM
In modern electrical train, there are many control devices
and supervising devices in each vehicle, including Cen-
tral Control Units (CCU), Brake Control Units (BCU),
Human Machine Interfaces (HMI), Remote Input Output
Modules (IO) and so on. All of them are integrated to a
networked control system by control network. Multifunction

Vehicle Bus (MVB) is the vehicle-level control network and
can be reckoned as the subnet of the train-level network
which is called the Wired Train Bus (WTB). MVB is a
fixed topology network while WTB can be changed dynam-
ically according to the demand. Through the connection and
disconnection of WTB, the train’s length can be adjusted
in a flexible way. Figure 1 gives a typical example of the
train communication network. MVB1 connects the devices
in vehicle1 to vehicle4 and MVB2 connects the devices in
vehicle5 to vehicle8. WTB integrates the two subnets to a
whole through gateways (GW).

From the perspective of controllability, MVB is a multi-
agent network and can be divided into some subnetworks in
terms of time scales. Different control tasks have different
time scales according to their priority. Long et al. [9], [19]
have studied the group controllability of multi-agent net-
works with two-time-scale features and some easy-to-use
criteria have been proposed for them. From the perspective of
communication, MVB is a time division multiplexing (TDM)
mode master-slave network [35]. Some researches have been
done on the real-time features of MVB to improve the control
performance of thewhole networked system byYan et al. [20]
and Wang et al. [21]. Synchronization is another issue about
the train control network. However, almost all of the current
investigations on networked systems are interested in the
nodes of networked systems. Su et al. [8], [17] have focused
their attention on edge synchronization of networked system.
They have used Line graph to represent the communication
topology of the edges and obtained the feedback gain matrix
and observer matrix by resolving linear programming prob-
lems. The health condition of MVB will heavily affect the
controllability of the train networked system. In this paper,
we mainly focus on the health evaluation method of MVB
to ensure the stability and safety of the train control system.
The physical layer electrical connection of MVB is shown
in Fig.2. Baud rate of MVB is 1.5 M/bps and its frame is
encoded as Manchester code between 1.5V and 5V. The logic
states are defined as rising edge (’0’) and falling edge (’1’).
Fig.3 shows the typical MVB frame format which consists of
start delimiter, frame data and end delimiter. In aMVB frame,
the format of start delimiter and end delimiter is fixed.

The main task of MVB is transmitting the frame data
correctly in the harsh and complex operating environment.
MVB failure causes vary from situation to situation. Typical
MVB failures include communication latency, packet loss,
node shutdown fault and so on. The main causes of these fail-
ures are electromagnetic interference, impedance mismatch,
cable terminal fault, degradation ofmedium. According to the
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FIGURE 2. MVB electrical connection.

FIGURE 3. MVB frame format.

FIGURE 4. Waveform distortion.

industrial network experts, the majority of the failure modes
commonly occurring on MVB are due to one or more the
following factors:

Impedance mismatch. It is suggested in IEC 61375-1 that
characteristic impedance of the cable is 120� and each end of
the network needs to be terminated with a 120� resistor [35].
Missing terminating resistors caused by inappropriate main-
tenance or contact resistance increasing of cable connectors
may lead to this kind of failure. Impedance mismatch will
lead to channel reflection and physical waveform distortion.
As a consequence, bit error rate and packet loss rate dra-
matically increase. Besides, impedance mismatch will make
MVB vulnerable to electromagnetic interference. Waveform
distortion caused by impedance mismatch is shown in Fig.4.
The overshoot may breakdown electronic components on the
network card. The undershoot may cause decoding error and
result in the performance degradation of MVB.

Degradation of medium. The network performance will
deteriorate with the degradation of medium. Network
cables and cable connectors can be considered as durable

components in the vibrating, humid, low or high tempera-
ture train operating environment. Hostile environment and
improper maintenance can change the electronic properties of
the cables and connectors. For example, the contact resistance
will increase by vibration and corrosion. The broken cable
shield will also make the network vulnerable to electromag-
netic interference.

However, current situation is that all these problems cannot
be detected and maintained in time until they deteriorate into
significant failures. Therefore, we have presented a health
evaluation and anomaly detection method of MVB based on
physical waveform features. The proposed health evaluation
system is illustrated in Fig.5.

FIGURE 5. Illustration of health evaluation system.

III. FEATURE EXTRACTION
Feature extraction is the base of MVB health evaluation. Rea-
sonably extracted features can effectively represent the state
of the network. Failures mentioned above will affect MVB
physical waveforms notably. Based on the high speed analog
signal acquisition of MVB analyzer, waveform parameters
are extracted from each bit of the start delimiter and the
network features are the averages of these parameters. These
physical waveform features are shown as follow:

Steady-state positive voltage Vp: the signal level when
waveforms reach the positive steady state.

Steady-state negative voltage Vn: the signal level when
waveforms reach the negative steady state.

Overshoot Vos: the difference between the maximum volt-
age and steady-state voltage.

Slew rate S: the slope of the waveform at zero crossing
point.

Rising slope Kp: the slope when the frame signal rises from
10 percent of Vp to 90 percent of Vp.

Falling slope Kn: the slope when the frame signal descends
from 10 percent of Vn to 90 percent of Vn.

Feature extraction process is shown in Fig.6.

IV. DBSCAN AND SAMPLE REDUCTION
A. DBSCAN
DBSCAN views clusters as areas of high density separated by
areas of low density. There are two parameters in DBSCAN,
MinPts and ε, which define the density of the data set in fea-
ture space. ε is the radius of the defined neighborhood. When
the sample size in ε neighborhood of xj is no less thanMinPts,
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FIGURE 6. Feature extraction.

we call xj a core sample. Large MinPts and small ε indicate
that the density of samples should be high to form a cluster.
A cluster in DBSCAN consists of core samples and non-core
samples close to the core samples. The formation of clusters
in DBSCAN is related to the connectivity between samples.
Given a data set D = {x1, x2, x3..., xj..., xn}, the main con-
cepts of connectivity in DBSCAN are defined as follow:

Directly density-reachable: If xj lies in the ε neighborhood
of xi and xi is a core sample, xj is directly density-reachable
from xi.

Density-reachable: If there is a sample sequence
xi, xi+1, xi+2..., xi+k ..., xm−1, xm and xi+k is directly density-
reachable from xi+k+1, we call that xi is density-reachable
from xm.

Density-connected: If there is a sample xk both density-
reachable from xi and xj, we call xi is density-connected
from xj.

As shown in Fig.7, MinPts = 3, x2, x3, x4, x5, x6, x7
are core samples. x1, x3, x4 are directly density-reachable
from x2. x1 is density-reachable from x3 and x8. x9, x10 are
noisy points.

B. SAMPLE REDUCTION BASED ON DBSCAN
A sample in sparse region that belongs to no cluster in
DBSCAN is identified as a noisy point. For OCC problem,
the samples located in margin area are likely support vectors
and their local densities are usually sparse. Inspired by the
noise elimination function of DBSCAN, the support vector
candidates in margin area may be screened out as ‘‘noisy
data’’ if the noisy data identification criterion of the algorithm
are relaxed. As a consequence, a reduced subset consist of
support vector candidates can be used to speed up training
the SVDD model in network health evaluation. MinPts can
be defined as fixed values such as 5,6,7,8,9,10. ε is defined
as follow:

ε = v(
1
n2

n∑
i,j=1

dist(xi, xj)) (1)

n is the sample size of the training data set and dist(xi, xj)
is the distance between xi and xj in feature space. ε is

FIGURE 7. DBSCAN.

proportional to the mean distance between the samples. Coef-
ficient v can be adjusted to change the noisy data identifi-
cation criterion and the size of support vector candidates.
The larger v is, the less samples will be selected into subset
since the ε neighborhood is larger so that we can easily
find at least MinPts other samples in it. The density-based
sample reduction (DBSR) process can be summarized as the
following 4 steps. A synthetic banana-shape data set is used
to verify the effectiveness of the proposed sample reduction
algorithm as shown in Fig.8.

1) Initialize the subset X with {∅}, MinPts and v with
a fixed value. Adjustment of parameter v can change
the subset size. As a rule of thumb, its value between
0.5 and 1 is preferable.

2) Calculate ε according to (1).
3) Based on parameters ε and MinPts, screen out the

samples in sparse regions of the original data set. For xj,
the sample size in its ε neighborhood is defined as
Nε(xj) = {xi ∈ D|dist(xi, xj) ≤ ε}. If Nε(xj) < MinPts,
xj is labeled as a support vector candidate and put
intoX . IfNε(xj) ≥ MinPts, xj and all samples which are
directly density-reachable, density-reachable, density-
connected from xj are labeled as inner points.

4) Algorithm stops when all samples in original data set
are labeled as inner points or support vector candidates.

V. SVDD AND NETWORK HEALTH EVALUATION
A. SVDD
SVDD is a typical OCC algorithm. It aims at obtaining a
minimum hyper sphere which contains most data samples in
the feature space. The objective function of SVDD is defined
as:

F(R, a) = R2 + C
n∑
i=1

ξi

s.t. ‖8(xi)− a‖2 ≤ R2 + ξi, ξi ≥ 0, ∀i (2)
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FIGURE 8. The sample reduction with different v of DBSR in banana data set(red * stands for support vector candidates and blue + stands
for inner points). (a) v = 0.3. (b) v = 0.4. (c) v = 0.5. (d) v = 0.6. (e) v = 0.7. (f) v = 0.8. (g) v = 0.9. (h) v = 1.0.

R is the radius of the SVDD hyper sphere and a is the center.
ξi is the slack variable. C is the penalty factor. 8 maps xi to
high-dimensional space. As the same with SVM, Lagrange
multiplier method can be used to solve (2).

L(R, a, αi, γi, ξi)

= R2 + C
n∑
i=1

ξi −

n∑
i=1

γiξi −

n∑
i=1

αi{R2 + ξi

− (‖8(xi)‖2 − 2a8(xi)+ ‖a‖2)} (3)

α, γ are Lagrange multipliers and α, γ ≥ 0. Solve the
Lagrange equation and make the partial differential of R,a,ξi
we can get (4).

∂L
∂R
= 0 :

n∑
i=1

αi = 1

∂L
∂a
= 0 : a =

∑n
i=1 αi8(xi)∑n

i=1 αi
=

n∑
i=1

αi8(xi)

∂L
∂ξi
= 0 : C − αi − γi = 0 (4)

Substitute (4) into (3):

L =
n∑
i=1

αiK (xi, xj)−
n∑

i,j=1

αiαjK (xi, xj)

s.t. 0 ≤ αi ≥ C, ∀i
n∑
i=1

αi = 1 (5)

K (xi, xj) is the kernel function equal to the inner product of
8(xi) and 8(xj). When xi satisfies the inequality ‖8(xi) −
a‖2 < R2 + ξi, the constraint is satisfied and the corre-
sponding Lagrange multiplier will be zero(αi = 0). If a data
satisfies the equality ‖8(xi) − a‖2 = R2 + ξi,its Lagrange
multiplier will be unequal to zero(αi > 0).Thus, we have the
following conditions.

‖8(xi)−a‖2 < R2+ξi, αi=0, γi=C, ξi = 0 (6)

‖8(xi)−a‖2 = R2+ξi, 0<αi < C, γi=0, ξi = 0 (7)

‖8(xi)−a‖2 > R2+ξi, αi=C, γi > 0, ξi > 0 (8)
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(4) shows that the center of the SVDD hyper sphere is a
linear combination of the objects. Only samples xi whose αi is
larger than zero, namely the support vectors, have an effect on
SVDD hyper sphere. That’s the theoretical foundation of the
sample reduction in SVDD. By definition, R is the distance
from the center of the hyper sphere a to the hyper sphere
boundary and it can be calculated with any support vectors xk
that satisfies (7).

R2 = K (xk , xk )−2
n∑
i=1

αiK (xi, xk )+
n∑

i,j=1

αiαjK (xi, xj) (9)

If the decision function is satisfied in (10), the new tested
sample xz will be accepted.

‖8(xz)− a‖2 = K (xz, xz)− 2
n∑
i=1

αiK (xi, xz)

+

n∑
i,j=1

αiαjK (xi, xj) ≤ R2 (10)

The used kernel function in health evaluation is Gaus-
sian kernel function and the parameter of kernel function
is defined as (12). C = 1/n. n is the size of the training
set [14], [38].

K (xi, xj) = e−γ ‖xi−xj‖
2

(11)

γ = 1/
1
n2

n∑
i,j=1

‖xi − xj‖2. (12)

B. HEALTH EVALUATION BASED ON SVDD
In industrial application, pauta criterion has been adopted to
detect abnormal value. When the tested data is more than
3 times of the standard deviation, it is considered as an
outlier. According to the pauta criterion, we define the health
evaluation function as (13).

score(xz) =


100, d ≤ R

100− 40
d − d̄
3σ

, R < d < d̄ + 3σ

60
d̄ + 3σ
d

, d ≥ d̄ + 3σ

(13)

d is the distance between the tested sample and the center a
in the high dimensional feature space. d̄ is the mean value
of d . σ is the standard deviation of d . d̄ = ‖8(

∑n
i=1 xi
n )− a‖,

d = ‖8(xz)− a‖.

VI. EXPERIMENTS
A. DBSRSVDD
The MVB network health evaluation process based on
DBSRSVDD is as follow.

1) Physical waveforms of each node are sampled in nor-
mal situation.

2) Extract features from physical layer waveforms and
form the training set X . Principal component analysis
(PCA) algorithm is conducted to reduce dimension of
the training samples.

FIGURE 9. Evaluation function.

3) Initialize the parameter v and MinPts.
4) Calculate the neighborhood parameter ε according

to (1).
5) Conduct the sample reduction algorithm on X . The

connectivity between samples is detected to screen out
the sparse points as ‘‘noisy data’’. These so-called noisy
points are support vector candidates and form the train-
ing subset Xs. In fact the true noisy points have been
also put into Xs in this step.

6) There is a small amount of noisy data in it during
the feature extraction process and sample reduction
process. Hence, the training data must be cleaned after
sample reduction operation. Otherwise, the trained
hyper sphere will be seriously affected by the noisy
data since the noisy data’s proportion in the training
set become larger after the sample reduction operation.
The left figure of Fig.10 is the boxplot of the subset
and the right figure shows the feature space before data
cleaning. As is shown in Fig.11, the hyper sphere can’t
enclose the training data well because the data set is
polluted by noisy data.

7) Train SVDD model based on subset Xs.
8) Collect waveforms data and extract features in opera-

tion situation. The node operation condition is quan-
tized with the trained model and evaluated according
to (13). EachMVBnode is tested 20 times continuously
and the average of them is reckoned as the evaluation
result.

9) The health condition of MVB is the linear weighted
sum of the node scores. Weight of each node is calcu-
lated based on their bandwidth occupancy.

B. EXPERIMENTAL SETTINGS
In order to verify the effectiveness of the proposed
DBSRSVDD, experiments under laboratory conditions have
been conducted on a test bed consisting of 6 MVB devices
(5 slave devices and 1 master device) as illustrated in Fig.12.
Fig.13 shows the experiments performed in normal condition
and four kinds of fault conditions. The sample size of normal
condition is 5000 for each network node and the sample size
is 1000 in fault conditions.
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FIGURE 10. The boxplot and feature space of the data set before data
cleaning.

FIGURE 11. Hypersphere.

FIGURE 12. Test bed in laboratory.

FIGURE 13. Schematic layout of MVB health evaluation.

1) Fault1:Series impedance increases when there is loose
connection or cable connectors are aging.

2) Fault2:Parallel impedance increases when the cable or
circuit components degrade.

3) Fault3:Cable disconnected. The vibration operation
environment of the train make it vulnerable to
disconnection.

4) Fault4:Terminating resistor mismatch. Improper main-
tenance and vibration operation environment may lead
to the mismatch of terminating resistors.

The classification performance is measured with G −
mean =

√
TPR ∗ TNR where TPR is the classification accu-

racy of positive class and TNR is the classification accuracy

of negative class [14]. The higher G-mean is the better is the
prediction and the hyper sphere. The training set consists of
80% of the samples randomly chosen without replacement
from the normal data, while the rest of the normal data
and the whole fault data are utilized for testing. SVDD and
IESRSVDD methods are also conducted to compare with
DBSRSVDD. Parameter optimization process of penalty fac-
tor C and kernel parameter γ will take large amount of
time and slow down the training process. This contradicts
our aim to accelerate training process. So all of the three
methods are trained on fixed penalty factor C and kernel
parameter γ according to equation (11)(12). Sample reduc-
tion and the trained hyper spheres of DBSRSVDD are shown
in Fig.15(v = 0.8 and the size of the reduced data set/the size
of the original data set).

C. HEALTH EVALUATION OF SINGLE NODE
G-mean values, the numbers of the support vectors, train-
ing time of SVDD, IESRSVDD, DBSRSVDD are shown
in Fig.17, Fig.18, Fig.19. In order to compare the perfor-
mance of the proposed method with IESRSVDD, the sample
reduction parameter v vary from 0.1 to 1. The trends of chang-
ing with parameter v are opposite between DBSRSVDD
method and IESRSVDD method.

In terms of G-mean, DBSRSVDD achieves better per-
formance compared with IESRSVDD and the conventional
SVDD method except in Fault1 condition. The positive
class samples overlap with the negative class samples in
Fault1 condition because the performance of MVB decrease
slightly. The density of negative class data in the overlapping
region is larger than the one of positive class. DBSRSVDD
and IESRSVDD have trained their models based on the edge
samples so that their hyper spheres lie closer to the edge
region than SVDD.When the hyper sphere encloses the over-
lapping region, the positive samples in this region are classi-
fied into positive class but there are more negative samples
enclosed into hyper sphere at the same time. TPR increases
slightly but TNR decreases significantly, resulting in the
decrease of G-mean. Even so DBSRSVDD and IESRSVDD
can sustain their accuracy and significantly decrease the com-
putational complexity at the same time when the parameter v
is selected properly.

As is shown in Fig14, hyper spheres of SVDD don’t
enclose all positive samples well on fixed parameterC and γ .
Many positive samples of testing dataset are divided out
of the hyper spheres, resulting in low TPR and G-mean.
For example, TPR of SVDD is 51.96% and TNR is 100% in
Fault4 leading to that G-mean of SVDD is about 70 %. When
v is selected improperly in DBSRSVDD and IESRSVDD,
samples are not reduced significantly and we will get bad
hyper spheres as the same with SVDD. That’s why we get
low G-mean values in Fault2, Fault3, Fault4 even they are
divided from normal data clearly. But if proper v is chosen,
we can reduce samples effectively and the hyper spheres are
well trained based on edge samples, as is shown in Fig15.
Take Fault4 for example, the hyper spheres of DBSRSVDD
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FIGURE 14. Hyperplanes of SVDD with fixed parameter C and γ . (a) Fault1. (b) Fault2. (c) Fault3. (d) Fault4.

FIGURE 15. Hyperplanes of DBSRSVDD with fixed parameter C and γ (v = 0.8). (a) Fault1(496/5000).
(b) Fault2(501/5000). (c) Fault3(532/5000). (d) Fault4(545/5000).

is enlarging with the increase of v as shown in Fig16. Since
most data samples are screened out as edge samples when v
is less than 0.6, the hyper spheres don’t enclose all normal
data well, resulting in bad detection performance as shown

in Fig17. The detection performance of DBSRSVDD gets
better with the increase of v as well.When v is bigger than 0.8,
G-means of Fault3 and Fault4 are almost 100% and we can
get proper hyper spheres for network health evaluation.
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FIGURE 16. Hyperplanes of DBSRSVDD enlarge with the increase of v. (a) Fault4. (b) Fault4. (c) Fault4. (d) Fault4.

FIGURE 17. G-mean of SVDD, IESRSVDD, DBSRSVDD in 4 fault conditions (v = 0.1-1.0). (a) Fault1. (b) Fault2.
(c) Fault3. (d) Fault4.

Both DBSRSVDD and IESRSVDD can effectively reduce
the sample size and the support vector size as shown in Fig.18.
However, from the perspective of training time, DBSRSVDD
is much better than the conventional SVDD method and

IESRSVDD. The value of time includes the sample reduction
time and all the training and testing time. It takes at least
30 seconds to train the model with SVDD on fixed C and
γ since the sample size have not been reduced. IESRSVDD
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FIGURE 18. Numbers of support vectors of SVDD, IESRSVDD, DBSRSVDD in 4 fault conditions (v = 0.1-1.0).
(a) Fault1. (b) Fault2. (c) Fault3. (d) Fault4.

FIGURE 19. Time consumption of SVDD, IESRSVDD, DBSRSVDD in 4 fault conditions (v = 0.1-1.0).
(a) Fault1. (b) Fault2. (c) Fault3. (d) Fault4.

needs longer time which is at least 50 seconds because
the Euclidean distance between each other, probability of
uncertainty between two samples and entropy of each sample
need to be calculated. Probability of uncertainty between two

samples is defined as pij = distij/
∑n

k=1 distik and entropy
of each sample is defined as Hi = −

∑n
k=1 pik log pik (n is

the sample size of the original data set) [14]. Plenty of
time is spent on calculating information entropy before
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FIGURE 20. Health condition score of Node4.

TABLE 1. Health condition of each node.

sample reduction. In the sample reduction phase of
DBSRSVDD algorithm, besides the Euclidean distance cal-
culation between each other, there are only (n + n1 +
n2 + ... + ni + ...np) times of comparison operation.
p is the number of loops and ni is sample size in the
ith loop. In DBSRSVDD ni−1 are smaller than ni. That’s
why DBSRSVDD takes less time than IESRSVDD in sample
reduction operation. When parameter v is bigger than 0.4 the
sample reduction time is usually less than 5 seconds and the
training set size is less than one-tenth of the original sample
size. Therefore, the convex optimization process of SVDD
only consumes at most 0.1 second which is negligible due
to the significant reduction in sample size. In conclusion,
DBSRSVDD perform better than SVDD and IESRSVDD.

Health condition of each node in MVB is quantized by
DBSRSVDD in normal condition and four fault conditions.
Take Node4 for example, its health condition result is shown
in Fig.20(average value in each stage: 100/95/71/29/35 ).
Each node’s health condition in four faults is shown in table1.
Because Node1 and Node2 are off-line in Fault3, their evalu-
ation scores are 0.

D. HEALTH EVALUATION OF THE WHOLE NETWORK
The whole network’s evaluation result is the linear weighted
sum of the node scores. Their weights are determined by the
bandwidth occupancy of each node. Fig 21 and table2 show
the bandwidth occupancy information of each node. Accord-
ing to [35], themain communicationmode ofMVB is process
data (PD) port communication and its medium access control
method is time division multiplexing. PD ports communica-
tion can be seen as the basic transmitting unit of MVB nodes.
It takes two steps to complete one time PD communication.
A bus administrator (BA, Node4 in test bed) polls the periodic
scheduling list for addressing the logical ports, and broadcasts

FIGURE 21. MVB scheduling list in the experiments.

TABLE 2. The sizes of the communication data volume of each node.

main frames containing logical port addresses to MVB. The
slave node that matches to the logical addresses responds to
the bus administrator and broadcasts slave frames to MVB.
1 millisecond is a basic period and consists of several times
of ports communication. The macro period is the polling
cycle in which all ports will be polled at least once [35].
Amacro period consists of several basic periods, as illustrated
in Fig.21. In the experiments we set the macro period with
3 basic periods. Each node is configured with some PD ports
and gets access to the bus when it is polled by the master
frame. There are 7 times of PD ports communication in
period1, 5 times of PD ports communication in period2 and
7 times of PD ports communication in period3. Each time of
ports communication is made up of a master frame which is
transmitted by node4 and a slave frame which is transmitted
by the slave node. The length of master frame is fixed to
16 bits and the length of slave frame is 16/32/64/128/256 bits
depending on requirement.

Table2 shows the length of slave frames transmitted by
MVB nodes in each basic period. For node4, we can know
that it transmits 19(7 + 5 + 7) master frames, 1 slave frame
(16bits) in period1, 1 slave frame (32bits) in period2, 1 slave
frame (32bits) in period3 totally. So we can calculate that
there are 384 bits data transmitted by node4 in amacro period:
(7 + 5 + 7) ∗ 16 + 16 + 32 + 32 = 384 bits. As shown in
equation (14), bits number of node1 is 96bits, node2 is 80bits,
node3 is 64bits, node5 is 48bits, node6 is 112bits.

W (4) =
384

384+ 96+ 80+ 64+ 48+ 112
= 0.4898

W (1) =
96

384+ 96+ 80+ 64+ 48+ 112
= 0.1224

W (2) =
80

384+ 96+ 80+ 64+ 48+ 112
= 0.1020

W (3) =
64

384+ 96+ 80+ 64+ 48+ 112
= 0.0816

W (5) =
48

384+ 96+ 80+ 64+ 48+ 112
= 0.0612

W (6) =
112

384+ 96+ 80+ 64+ 48+ 112
= 0.1429 (14)
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FIGURE 22. Health condition of the whole network in 4 fault conditions.

Based on table1 and table2, evaluation result of the whole
network can be calculated as equation (15). W(k) is the
weight of node in equation (14) and score (k) is the node’s
evaluation result in Table1. The health conditions of the
whole network in 4 fault conditions are shown in Fig.22.

F =
6∑

k=1

W (k) ∗ score(k) (15)

VII. CONCLUSION
In this paper, a novel method has been proposed to evaluate
the network performance and detect the abnormal condition
of MVB. A health evaluation method combined SVDD with
a sample reduction strategy is proposed to reduce the train-
ing time and computational complexity. Samples lie in the
edge area of the positive class are selected as support vector
candidates by an density-based sample reduction method.
According to the results of experiments, the effectiveness
of the proposed method has been validated. The proposed
method can significantly reduce sample size and accelerates
model training. Without any optimization process of penalty
parameter and kernel function parameter, DBSRSVDD takes
much less time in trainingmodel than IESRSVDDand SVDD
while sustains the classification performance at the same
time. Moreover, parameter v in DBSRSVDD decides the
proportion of the selected samples. The effect of different
v values on sample reduction has been investigated and the
trend is opposite to IESRSVDD. When v is bigger than 0.6,
a good sample reduction result is achieved. Since fault diag-
nose and location of MVB are still problems that plagues
engineers, further researches will focus on these two issues.
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