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ABSTRACT In recent years, much attention has been paid to wireless localization schemes that exploit
receptions of messages sent by a mobile unit. However, existing methods assume an accurate knowledge of
the location of the mobile unit and a precise propagation model of the actual radio environment. By getting
rid of these two requirements, our proposed localization algorithms make mobility-assisted localization far
more practical as we do not need to equip the mobile unit with a global positioning system or run a time-
consuming campaign to survey radio environment. LEMOn estimates the position of target nodes by using
known locations of a small set of fixed anchor nodes while receiving messages sent from a mobile unit from
unknown arbitrary locations. LEMOn-M, on the other hand, solves the localization matching problem by
mapping an arbitrary number of target nodes to the known set of locations. Both algorithms first estimate an
inter-node distance using a similarity between received signal strength indicators of beacons received from
the mobile unit. The conventional location estimators are then employed to localize target nodes with an
unknown location. The obvious examples of real-world applications include but are not limited to unmanned
aerial vehicle assisted wireless sensor networks and indoor IoT systems. The various simulations show that
the two algorithms achieve a very high localization accuracy even in harsh radio environments while static
localization techniques fail.

INDEX TERMS Wireless localization, UAV, WSNs, mobility-assisted localization, IoT, sensor networks,
RSSI, cooperative localization, localization matching.

I. INTRODUCTION
With improvements in wireless communication technol-
ogy over the last decades, the Internet of Things (IoT)
is now widely deployed in smart cities, buildings, and
houses [1]. Typically, an IoT system consists of low cost and
low power devices which interact with each other through
the Internet. The main goal of IoT is to ensure every
device, including sensors, smart-phones, wearable sensors,
tablets, transportation system, etc., can connect with each
other through a common interface. This allows machine-to-
machine (M2M) communication without human interven-
tion [2], thus can reduce manual cost. There are numerous
key issues in IoT including wireless localization. Wireless
localization, which refers to extracting geo-location infor-
mation of an object, has therefore been well researched and
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developed [3]. Although a Global Positioning System (GPS)
module can provide location information of a wireless device,
this incurs additional cost and huge power consumption.
GPS is thus not always suitable for many IoT applications.
To alleviate such problems, several radio-frequency (RF)
based localization methods have been developed to esti-
mate the devices’ location. These methods measure either
devices’ proximity (i.e. connectivity) [4], Angle of Arrival
(AoA) [5], Time of Arrival (ToA) [6], Time Difference of
Arrival (TDoA) [7], or Received Signal Strength Indicator
(RSSI) [8], [9] to localize target devices deployed at unknown
locations. In contrast to AoA measurements and time-based
measurements that require additional hardware and tech-
niques, RSSI can be obtained from almost all wireless hard-
ware. Therefore, RSSI based localization is an cost-effective
solution for most IoT applications. This paper, therefore, con-
siders localization problems using RSSI. Typically, an RSSI
value r is estimated through the log-distance propagation
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model [10].

r = P− 10η log10 d + X [dBm] (1)

where d is the distance between the transmitter and the
receiver, η is the path loss exponent, P is a reference power
value measured in dBm at a distance of one meter from the
transmitter, and X is a random variable characterizing the
ranging error caused by multi-path fading and shadowing.

Depending on network paradigms, RF-based localiza-
tion can be broadly divided into two categories: inter-node
communication based localization schemes and mobility-
assisted localization schemes. The former type of schemes
(referred as static localization schemes in this paper), first
estimate the Euclidean distances between communicating
nodes using inter-node RFmeasurements, then localize target
devices using either multi-lateration methods [11] or cooper-
ative localization methods [8], [12]–[14]. These schemes are
deemed suitable for mesh network paradigms. On the other
hand, mobility-assisted localization schemes use a wireless
mobile unit, which is aware of its location (e.g., equippedwith
GPS), to assist in estimating the location of target wireless
nodes [15], [16]. A mobile unit can use an Unmanned Aerial
Vehicle (UAV), a drone, a ground vehicle, etc.

A node could be any device that equipped with a wire-
less hardware, position of which is often assumed to be
fixed or changed only infrequently. In this paper, we call
these devices as sensor nodes to distinguish from the mobile
unit. Unlike the power-constrained sensors, the energy of
the mobile unit is typically assumed to be unconstrained.
Therefore, these mobility-assisted localization methods are
more advanced and practical than static localization meth-
ods as reliable inter-node distance is hard to obtain for
the latter schemes [16]. For instance, while static localiza-
tion techniques suffer from the problem of non-line-of-sight
(NLoS), e.g. due to obstruction, line-of-sight (LoS) com-
munication links can be established between the UAV and
sensor nodes over time when UAV moves. Besides, in sparse
node deployments, a nodes may not be able to inter-connect
due to their energy constraints. A more powerful UAV, how-
ever, can often connect to every sensor node and can thus
help localize these nodes. With the rapid development of
UAV-assisted WSNs [17], mobility-assisted localization sys-
tems are attracting greater attention [18].

However, all of the above localization techniques suffer
from the following limitations.
• Difficulty in Estimating Accurate path loss exponent:
The value of path loss exponent η depends on the mea-
sured environment. For instance, it is approximately 2
for free space, and varies from 3 to 5 in shadowed urban
cellular radio [19]. Estimating accurate values of these
parameters is often prohibitively expensive in practice,
and is even impossible in human-inaccessible environ-
ments, for instance, WSNs for post-disaster monitoring.

• Difficulty in the Calibration Process: An RSSI value is
a function of the calibration of both the transmitter and
receiver. Transmitted powers and received powers vary

from device to device due to use of different hardware
components. Wireless nodes might be designed to mea-
sure and report their own calibration data to each other.
This, however, complicates the design [14].

• Large Ranging Error : Even if calibration process can
be reliably done and path loss exponent is estimated
accurately, there is a ranging error caused by multi-path
fading and shadowing. These effects can be reduced
only if sensor nodes are equipped with specific hard-
ware or technologies. For instance, multiple antennas
can mitigate the effect of shadowing [20] and a spread-
spectrum method can reduce the effect of frequency-
selective fading [14]. However, an ordinary wireless
node is not always equipped with such hardware.
A calculation in Appendix illustrates that ranging error
can be up to six times larger than the distance itself
(see Appendix).

• In Mobility-assisted Localization: Uncertainty of the
Mobile Unit’s Position: Certain application deployment
areas or environmental conditions can prevent from
accurately determining position of the mobile unit [21].
These factors may include unavailability of the GPS in
indoor environments or under poor weather conditions.
Even if GPS is available, determining accurate position
of the mobile unit is challenging in real-time, especially
for a high-speedmobile unit. A standard non-differential
GPS receiver has an error of 5 m to 10 m. In addition,
delay caused by a low update rate, which varies from 1 to
10 Hz on average, and GPS response further increases
the positioning error of a high-speed UAV. Moreover,
the GPS position accuracy is known to deteriorate when
fewer satellites are reachable [22]. To the best of our
knowledge, these issues have not been considered and
solved in mobility-assisted techniques.

To eliminate the above drawbacks of existing mobility-
assisted localization methods and static localization
methods, we propose two localization techniques that can
combine the strength of both schemes. In our network model,
we assume that a mobile unit broadcasts beacon messages
(referred to as beacons for short) periodically to sensor
nodes. Unlike conventional mobility-assisted localization
techniques, we assume that neither the position of the mobile
unit nor the signal propagation model is known. However,
we assume that the following information is known: 1) Posi-
tion of some of the fixed sensor nodes also called anchor
nodes, or 2)A set of node positions, however, we do not know
which node locates at which position. The former localization
problem is often found in literature [12], [14]. On the other
hand, the latter localization problem has been investigated
only recently [8] and is called as the wireless localization
matching problem. Using the RSSI values estimated from
the beacon transmissions we propose two methods called
LEMOn1 and LEMOn-M2 to respectively resolve the above

1LEMOn: Localization Employing a location-unaware MObile unit
2LEMOn-M: LEMOn for localization matching
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TABLE 1. Comparison of localization techniques.

two problems. The main advantages of the proposed LEMOn
and LEMOn-M are:
• Suitable for both indoor and outdoor environments as
the location of the mobile unit is not required,

• Easily applicable as thesemethods do not require system
calibration as well as a priori measurements to estimate
the path loss exponent,

• Robust to noise as these methods use statistical features
of RSSI measurements rather than a single or few RSSI
measurement that indeed fluctuates a lot.

The characteristics of the above localization techniques are
summarized in Table 1. The main contributions of this paper
are as follows:
• We define and motivate new localization problems that
are hybrid between static localization and mobility-
assisted localization.

• We propose and analytically study the performance of
LEMOn and LEMOn-M as candidate solutions to the
above problems,

• We highlight some potential applications related to real-
world scenarios.

The remainder of this paper is organized as follows.
In Section II, we describe the system model and problem
definitions. In Section III, we highlight conventional work
on mobility-assisted localization and localization estimation
algorithms with a focus on algorithms that are used in this
paper. In Section IV, we present the details of our proposed
LEMOn and LEMOn-M techniques. In Sections V and VI,
we evaluate the performance of the above algorithms through
an extensive simulation-based study. In Section VII, we high-
light potential real-world applications. Finally, we conclude
this paper with a summary of our results and discuss our
future plans in Section VIII.

II. SYSTEM MODEL AND PROBLEM DEFINITIONS
Consider a wireless network consisting of N sensor nodes,
n1, n2, . . . , nN that are deployed in a domain of interest D.
A mobile unit moving along an arbitrary trajectory inside
a domain of interest V broadcasts beacons periodically to
all sensor nodes. Each beacon includes its unique sequence
number k, k ∈ {1, 2, 3, . . . ,K } (K is the number of beacons).
We assume that signals transmitted by the mobile unit are
strong enough to reach all wireless sensor nodes. Each sensor

node ni receives the beacon transmissions, estimates their
RSSI values, then constructs a vector ri ∈ RK with entries
ri,k equal to the RSSI value retrieved from the k-th beacon.
Node ni then sends its corresponding vector ri back to a
server (potentially via the mobile unit) for post-processing.
The server is then tasked with estimating the locations of the
target nodes. Without loss of generality,D and V are assumed
as two-dimensional spaces, i.e. D,V ⊂ R2. We assume that
either a wireless node or the mobile unit is equipped with an
isotropic antenna. RSSI ri,k is, therefore, relatedwith distance
di,k between a wireless nodes ni and the mobile unit when it
sends the k-th beacon through the log-distance propagation
model [10].

ri,k = Pi − 10η log10 di,k + Xi,k [dBm] (2)

where η is the path loss exponent, which is approximated
to 2 for free space, and a value between 3 and 5 for urban
environments. Since wireless nodes can be deployed in any
environment, we assume that η is an unknown constant but is
identical for all nodes. Pi is a reference power corresponding
to node ni value at a distance of one meter from the trans-
mitter, and X is a random variable characterizing the noise
factors. The reference power Pi corresponding to node ni is
an unknown constant, as sensor nodes are assumed not to
be calibrated. The distribution of X depends on the wireless
propagation environment. For example, the long-term signal
variation is known to follow the Log-normal distribution,
whereas the short-term signal variation can be described by
several other distributions, such as the Rayleigh distribution.
For simplicity, in our analysis, X is assumed to follow the
Log-normal distribution, namely Gaussian distribution in dB,
i.e. X ∼ N (0, σ 2

X ), where the standard deviation σX can be
as low as three [8] and as high as 12 [14].

We define two different problems, called the localiza-
tion problem and the localization matching problem, which
are motivated through real-world applications described
in Section VII.

A. THE LOCALIZATION PROBLEM
The localization problem can be defined in a similar way as
in [14]. Given a set A comprising of A (A < N ) anchor
nodeswith known-positions (acquired through GPS or or as a
result of deployment process), the problem is to estimate the
location of other sensor nodes, called target nodes.
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B. THE LOCALIZATION MATCHING PROBLEM
The wireless localization matching problem, which is a varia-
tion of localization problems [8], is defined as follows. Given
a set ofN positions p1, p2, . . . ., pN whereN sensor nodes are
located, the problem is to correctly match each node label ni
with its correct position pi′ . In the beginning, it is unknown
which position pi′ node ni is located at.

III. BACKGROUND AND RELATED WORK
Since our proposed algorithms adopt a hybrid approach based
on mobility-assisted and static localization techniques, this
section highlights existing work on mobility-assisted local-
ization as well as localization estimation algorithms for static
networks. Section III-A describes a brief history of mobility-
assisted localization and differentiates these localization tech-
niques from our proposals. Section III-B provides a back-
ground on localization estimation algorithms for static net-
works, mainly focusing on the representative algorithms used
in this paper.

A. MOBILITY-ASSISTED LOCALIZATION
Mobility-assisted localization schemes locate target nodes
using mobile units that are aware of their own location and
are capable of moving around the target nodes arbitrarily. The
mobile units periodically broadcast beacons with their loca-
tion, enabling the nearby target nodes to hear this information
and estimate their own location [18].

RSSI-based mobility-assisted localization techniques are
pioneered by Sichitiu and Ramadurai [15]. They use a wire-
less device carrying truck that broadcasts messages contain-
ing its known location to sensor nodes deployed in an outdoor
environment. The nodes estimate RSSI values of the received
messages to determine their distance to the truck. The nodes
finally calculate their locations using a probabilistic method.
Menegatti et al. [23] estimate the location of a robot while
mapping the nodes simultaneously using RSSImeasurements
and odometry from the robot. They use a log-distance prop-
agation model, which is calibrated before the experiments to
calculate the distance between the robot and sensor nodes.
Caballero et al. [24] use a robot equipped with Differential
GPS (DGPS) moving in an outdoor parking lot to measure
RSSI values from neighboring nodes. Similar to the above
approaches, the propagation model is calibrated before the
experiments.

Besides, mobility can be combined with time-based rang-
ing techniques to localize the sensor nodes. For instance,
Sun and Guo [25] use a mobile beacon traversing deployed
area of sensor network and broadcasting location-containing
packets. On receiving the beacon packets, nodes combine the
received locations with the time of arrival of the packets to
calculate its own location. Localization is performed using
either non-parametric or parametric probabilistic estimation
techniques.

In contrast to the ranging techniques described above,
some range-free approaches [26]–[28] use connectivity

information for locating nodes, thus no extra hardware or data
communication is needed for the sensor nodes.

Recently, with the rapid research and development on
UAV, there are numerous works on using a UAV to localize
unknown devices [29], [30]. For instance, Villas et al. [30]
use a UAV equipped with GPS broadcasting its geo-location
when flying over the monitoring area. Using these 3D geo-
locations and the corresponding RSSI values, sensor nodes
can calculate its 3D location. Yang et al. [29] use a UAV
carrying GPS and a camera to collect sensor node images.
Locations of non-occluded nodes are then determined using
image processing techniques. These nodes are then used as
anchor nodes to localize occluded nodes using RSSI ranging
localization techniques.

It is, however, worth noting that all of the above techniques
require an accurate distance estimation method (i.e. calibra-
tion of the propagation model for ranging techniques, or con-
nectivity model for range-free techniques), and an accu-
rate mobile unit position, which can be hard to obtain in
practice [21].

Recently, an RSSI-based localization method [31] is pro-
posed that relaxes the requirement for the UAV to know its
location. This work, however, can localize sensor nodes that
are equipped with the exactly same hardware for the wireless
devices. It is, therefore, less practical than the proposals
in this paper. To overcome such limitations, the proposed
methods in this paper, to the best of our knowledge, are the
first ones that require neither calibration nor location of the
mobile unit.

B. LOCATION ESTIMATION ALGORITHMS
Location estimation algorithms (see [32] for a detailed
survey) can be broadly divided into two categories: non-
cooperative methods and cooperative methods. In non-
cooperative localization, distance measurements are made
only between anchor nodes and target nodes. Each target
node estimates its distance to the anchor nodes using mea-
sured RSSI values, then uses localization algorithm such as
multilateration [11] to locate itself. These methods are suit-
able for either target tracking problem, or mobility-assisted
localization.

On the other hand, cooperative localization methods,
where distance measurements between target nodes are also
made, estimate all node positions simultaneously rather than
localizing each target node individually. These methods
enhance localization accuracy of non-cooperative techniques
by using more measurements. These methods are, therefore,
ideal for wireless mesh networks where nodes can commu-
nicate with each other [14]. There are numerous localization
algorithms such as Multi-Dimensional Scaling (MDS) [33],
Semi-Definite Programming (SDP) [12], stochastic optimiza-
tion (e.g. simulated annealing (SA) [34]), and localization
matching [8].

All above methods can determine nodes’ location given
estimated distances between them. This paper focuses on
proposing new distance estimation techniques rather than
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new location estimators. Therefore, we use the existing loca-
tion estimators. We choose SDP localization method for
resolving the localization problem because it can output
deterministic solutions and can also enhance accuracy com-
pared to other methods [12]. On the other hand, a localization
matching method called MLMatch [8] is the unique location
estimator that can solve the localization matching problem.

The remainder of this section depicts a high-level descrip-
tion of SDP localization and MLMatch, while more details
can be found in [8] and [12].

1) SDP LOCALIZATION METHOD
The problem can be stated as follows: given a set of anchors
A with known locations aj, (j ∈ A), a set of target nodes T
whose locations are unknown, and some estimated distances
d̂i,j(i, j ∈ A∪T ), find xi, (i ∈ T ) the location of target nodes,
such that: ∥∥xi − xj∥∥ = d̂i,j, i, j ∈ T∥∥xi − aj∥∥ = d̂i,j, i ∈ T , j ∈ A (3)

The problem in (3) can be reformulated as follows.

min
xi

N∑
i=1

(∑
j∈A

(d̂i,j−
∥∥xi−aj∥∥)2+∑

j∈T
(d̂i,j−

∥∥xi−xj∥∥)2) (4)

To solve the non-convex optimization problem in (4),
Biswas et al. [12] use relaxation techniques and reformulate
it as an SDP problem that can be solved in polynomial time.
Note that the solutions may not be global optima.

2) MLMatch METHOD
MLMatch is formulated using a maximum likelihood tech-
nique and a statistical model between RSSI values and dis-
tances. Each possible matching between nodes and positions
is formulated through a permutation h, where h(i) = i′ if node
ni is guessed to be located at position pi′ . Given an RSSI
matrix R consisting of RSSI values between sensor nodes,
MLMatch tries to find the best matching h∗ whose likelihood
is biggest. Namely, nodes ni are most likely to be located at
positions h∗(i). Using the correlation between RSSI values
and distances, MLMatch reduces the problem into a simple
mathematical formulation as follows:

h∗ = argmin
h∈H

∑
i<j

(
ri,j ln dh(i),h(j)

)
, (5)

where H is the set consisting of all permutation h. It then
applies an appropriate searching method, for instance, meta-
heuristic or LP relaxation, to find the best matching h∗.
Similar to SDP localization, MLMatch may not output the
global optima.

IV. PROPOSED ALGORITHMS LEMON AND LEMON-M
We illustrate algorithms for LEMOn and LEMOn-M.We first
derive the relationship between an inter-node separation dis-
tance and the similarity between RSSI values in Section IV-A.
We then illustrate localization methods using this similarity

in Sections IV-B and IV-C. Finally, we analyze factors that
affect the localization accuracy in Section IV-D.

A. DISTANCE ESTIMATION
Inter-node distance estimation is fundamental in any local-
ization method. The proposed algorithms make use of the
correlation between inter-node separation distance and the
similarity between RSSI values. Intuitively, if nodes ni and
nj are close to each other, then the distance from the mobile
unit to ni is close to the distance from the mobile unit to nj.
In contrast, if nodes ni and nj are far from each other, their
distances to the mobile unit are different from each other.
Since an RSSI value ri,k correlates with the distance between
the mobile unit and a sensor node ni, it follows that inter-
node distance di,j between nodes ni and nj correlates with
some similarity metric between RSSI vectors ri and rj, where
ri = [ri,1, ri,2, . . . , ri,K ]. Using standard deviation of the
elements of vector (ri − rj) denoted as si,j, as a similarity
metric, we prove that it is a monotonically increasing function
of distance di,j under some assumptions.
Theorem 1: Standard deviation of the elements of vector

(ri− rj) is approximately a monotonically increasing polyno-
mial function of distance di,j when K and V are large enough.

Proof: The mathematical proof of the above theorem is
provided in the Appendix.

Theorem 1 suggests that si,j can be used to estimate dis-
tance di,j. For the following reasons, we assume that si,j
is an approximately linear function of distance di,j, and is
expressed through Equation (6). First, the accuracy of the
assumption is illustrated through simulations (see Section V).
Second, a linear function has a minimal number of unknown
parameters compared to other polynomial functions. Thus,
these parameters are easy to estimate using measurements
between anchor nodes.

si,j = α + β × di,j + Y (6)

where α and β are constants, Y is a variable characterizing
the error between the linearity, i.e. α + β × di,j, and si,j.
Y is a function of the noise that is caused by RSSI noise
(see the proof in Appendix) and the difference between si,j
and the linear function of the distance. Since Y is unknown,
it is considered as a random variable. Using Equation (6),
algorithms for resolving the two localization problems are
described next.

B. LEMON ALGORITHM
LEMOn is designed to solve the localization problem
described in Section II-A. It first calculates Euclidean dis-
tance di,j and the similarity si,j between each pair of anchor
nodes ni, nj (∀i, j ∈ A), to derive values of α and β in (6)
using the least squared linear regression technique. It then
estimates distance d̂i,j between every pair of sensor nodes ni,
nj using the inversion of (6), namely:

d̂i,j =
si,j − α
β

(7)
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Algorithm 1 LEMOn Algorithm
Input: ri,∀i ∈ {1, . . . ,N } {ri = [ri,1, ri,2, . . . , ri,K ]},

ai,∀i ∈ A {positions of anchor nodes}
Output: xi,∀i ∈ T {positions of target nodes}
1: s← new Array; d ← new Array
2: for each i, j ∈ A do
3: d .append(

∥∥ai − aj∥∥) {distance between two anchor
nodes}

4: si,j← std(ri − rj)
5: s.append(si,j)
6: end for
7: α, β ← Linear_Regression(s, d)
8: for each i ∈ A, j ∈ A ∪ T do
9: si,j← std(ri − rj)
10: d̂i,j←

si,j−α
β

11: end for
12: for each i ∈ T do
13: xi ← position of node ni derived by SDP localization

method
14: end for

Algorithm 2 LEMOn-M Algorithm
Input: ri,∀i ∈ {1, . . . ,N } {ri = [ri,1, ri,2, . . . , ri,K ]},

pi′ ,∀i′ ∈ {1, . . . ,N } {positions of sensor nodes in an
arbitrary order}

Output: Permutation h∗ that node ni locates at position
ph∗(i), ∀i ∈ {1, . . . ,N }

1: H ← set of all permutations of a set of elements
1, 2, . . . ,N

2: h∗ ← argmaxh∈H
∑

i<j

(
si,jdh(i),h(j)

)
{h∗ is found using

searching methods as in Reference [8]}

It finally applies SDP localization method [12] (see
Section III-B) to estimate location of target nodes. A pseudo-
code of LEMOn is described in Algorithm 1.

C. LEMON-M ALGORITHM
LEMOn-M is designed to solve the localization matching
problem described in Section II-B. It is designed similar to
the MLMatch algorithm described in Section III-B. While
MLMatch use a logarithmic relationship between an RSSI
value and the corresponding distance, in LEMOn, this rela-
tion should be substitute by the linear relationship between
the similarity si,j and distance di,j. Consequently, the formula
(5) (cf. Section III-B) is substituted by (8).

h∗ = argmax
h∈H

∑
i<j

(
si,jdh(i),h(j)

)
. (8)

LEMOn-M then uses the same searching methods as in
MLMatch to find the best matching. A pseudo-code of
LEMOn-M is described in Algorithm 2.

D. LIMITS ON LOCALIZATION ACCURACY
Similar to other RSSI-based localization methods, the pro-
posed algorithm cannot guarantee 100% accuracy. It is mean-
ingful to understand factors causing localization error, and the
impact of those factors on localization accuracy. This can give
insights to optimize the localization accuracy.

As discussed, the proposed algorithms consist of two
phases namely distance estimation phase and location esti-
mation phase. Therefore, localization error can accumulate
in both phases. The location estimation error is a function of
number target nodes and anchor nodes, sensor geometry, and
error of approximate solutions due to the location estimators.
We recommend the readers to refer to [8] and [14] for further
details.

As this paper focuses on distance estimation techniques,
we analyze factors that affect the distance estimation error.
As discussed in Section IV-A distance estimation error
(which is denoted by the variable Y in Equation (6)) is
a function of the difference of the similarity si,j and the
linear function of the distance di,j and the noise due to
the RSSI fluctuation. Theoretically, due to the proof of
Theorem 1, the difference can be minimized if we increase
the area of V , i.e. making the mobile unit move in a large
domain. In practice, however, the trajectory of the mobile unit
is often pre-determined. In many applications, V typically
equals to D which is the deployment area of sensor nodes
(cf. Section VII). Besides, simulations in Sections V and VI
will show that V = D is enough to realize accurate
localization.

On the other hand, distance estimation error can be reduced
by reducing the effect of RSSI noise, i.e. reducing the varia-
tion of random variable Z in Equation (12). Its variation can
be reduced by increasing the number of beaconsK . Note that,
the distance estimation error cannot be reduced to zero even
if K approaches infinity because the error is also affected
by the difference described above. We call the localization
accuracy that can be achieved when K approaches infinity
the limitation of localization accuracy. In fact, there is a finite
value of K , often called a threshold, that can achieve the
limitation of localization accuracy. Finding this value can not
only optimize the localization accuracy but can also opti-
mize the number of beacons. This value, however, is difficult
to be derived mathematically as it is dependent with other
parameters. The value can be estimated through simulations
as in Sections V and VI. All of the above arguments will be
confirmed in the two followed sections.

V. PERFORMANCE EVALUATION OF LEMON
THROUGH SIMULATIONS
In order to substantiate the performance of LEMOn, we per-
form and analyze three simulations in various environments.
Further, for reference, we also perform static cooperative
localization methods for which RSSI values between indi-
vidual nodes are used. Note that we do not benchmark our
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TABLE 2. Description of parameter settings.

results against those of static methods because of significant
differences in the structure and assumptions of our system.
In static cooperative localization methods, we assume that
all sensor nodes are perfectly calibrated and the path loss
exponent is accurately estimated. We also assume that RSSI
values between individual nodes are measured or known.
In both cases, the SDP method is used as a localization
estimator [12].

A. PROPAGATION MODELS
Although our analysis described in Section IV-A assume that
the RSSI values follow the log-distance propagation model,
we argue that it is also sufficiently accurate even if RSSI val-
ues follow other models. We substantiate our claim through
numerical simulations shown below using a more advanced
propagation model that is validated through indoor measure-
ments at 2.4GHz [35]. We simulate a propagation environ-
ment experiencing Rayleigh fading and a non-singular path
loss. The RSSI values r̄ under this propagation model are
generated via

r̄ = Pi − 10 log10(ε + d
η)+ X [dBm] (9)

where ε > 0, and X is a random variable with density

fX (x) = P[X = x] =
d
dx

P
[
10 log10 |h|

2
≤ x

]
= λ10x/10 exp

(
− λ10x/10

) ln 10
10

(10)

In the rest of this paper, we call this model Rayleigh model
for short, while Gaussian model stands for the log-distance
propagation model encapsulated in Equation (2).

B. PARAMETER SETTINGS
Simulations 1 and 2 consider a UAV assisted WSNs where
N = 35 sensor nodes are deployed randomly in a square
domain D = 100 × 100 m2. The mobile unit (i.e. the UAV)
flies at a height of h = 20 m, randomly inside a domain
V = D = 100× 100 m2, which is an common case found in
practice. The path loss exponent is set as η = 3, which is a
common value noted by [19] for outdoor urban environments.

Simulation 1 investigates the localization error when num-
bers of beacons K varies. It validates the robustness of the
proposed method under different propagation models.Using
Rayleigh model, RSSI values between the devices are gener-
ated using Equation (9) with common parameters σX =5.57,
λ=e−γ , and ε=0.1 [8]. Using Gaussian model, RSSI values
are generated using Equation (2) with σX also equal 5.57.
We also use this parameter settings for all RSSI values that
follow the Rayleigh model in the rest of the simulations.
This way we can test the robustness of LEMOn against other
propagation models. The positions of the mobile unit are
also generated randomly in the domain V . The number of
beacons K is chosen in the range {100, 200, 300, . . . , 1000}.
This way we can observe the effect of K on the localization
error.

Simulation 2 observes the localization error of LEMOn
against different levels of signal noise. RSSI values are gen-
erated using a Gaussian model with σX is chosen in the range
{3, 4, 5, 6, . . . , 12}which is as low as in [8] as high as in [36].
The number of beacons K is set as 200 and 800. This way we
can test the robustness of LEMOn in a less noisy environment
and very noisy environments, and also the effect ofK on these
scenarios.

Simulation 3 considered an indoor IoT network where
sensor nodes are deployed in a room with area D = 10× 14
m2 and height h = 3 m. The path loss exponent is set as
η = 2.5, which is a common value used for indoor environ-
ments [8], [19]. It investigates localization error of LEMOn
against different numbers of sensor nodes. The number of
nodes N is chosen from the set {15, 20, 25, . . . , 45} among
which A = 5 or A = 10 nodes acted as anchors. RSSI values
were generated using the Rayleigh model. The number of
beacons K is set to 500.
In each simulation, the reference power Pi (cf. Equa-

tions (2), (9)) for each node is generated randomly. For each
set of parameters, simulations are performed 20 times to
obtain statistical averages.

The values of all other parameters used are detailed
in Table 2.
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C. SIMULATION ENVIRONMENT
We run our experiments with Python, a high-level program-
ming language. In each realization, position of N sensor
nodes are generated randomly under Poisson distribution in
domainD. Among these nodes, A nodes are chosen randomly
acting as anchor nodes. Position of the mobile unit when
it sends a beacon is also generated randomly in domain V .
An RSSI value ri,k is generated using either formulation
(2) or (9), where random variable X follows Gaussian dis-
tribution or Rayleigh distribution, respectively. In particular,
X is generated using random.py module, a Python pseudo-
random number generator that implements various probabil-
ity distributions.

D. IMPLEMENTATION OF SDP LOCALIZATION
In the proposed localization problem, we use [12, Formula
(6)], which is designed to localize nodes when distances
between some nodes are accurately known. On the other
hand, in the static localization problem, namely localization
using inter-node RSSI values, we use Formulas (11) and
(12) from [12] that solve RSSI-based cooperative localization
problems. We use MOSEK optimizer for Python [37] as the
SDP solver.

E. RESULT ANALYSIS
In every simulation, we run LEMOn to estimate the location
of target nodes using the mobile unit. For reference, we also
run SDP localization scheme using inter-sensor nodes’ RSSI,
which is a static cooperative localization technique. We then
output localization error that is the mean error (in meter). The
results are illustrated by Figures 1, 2 indicating that LEMOn
performs well in various environments. Localization errors
from Simulation 1 are illustrated in Figure 1 a) indicating that
the localization error decreases when the number of beacons
K are increased to 400. The average localization error, how-
ever, does not vary when K varies from 400 to 1000. This
confirms the argument on the threshold of K in Section IV-D.
Besides, LEMOn performs very well regardless of the dis-
tribution of RSSI values such as the Gaussian model or the
Rayleigh model. This simulation validates the robustness of
LEMOn against other random variable distribution models
for wireless fading such as the Rayleigh distribution.

Localization errors from Simulation 2 are illustrated in
Figure 1 b) indicating that the localization error increases
with the level of noise, especially when the value of K is
not large enough, e.g. K = 200. However, for a large K
(e.g., K = 800), LEMOn can achieve accuracy of less than
10 m in a noisy environment characterized by a σX = 10
when static localization technique fails (cf. Figure 2 b). This is
because static localization technique that estimates inter-node
separation distance directly fromRSSImeasurement between
them suffer a large error. The calculation in Appendix shows
that RSSI-based ranging error in this environment is even
larger than the inter-node separation distance. On the other
hand, LEMOn uses statistical RSSI similarity, thus can

FIGURE 1. Simulations 1-3 results: Average localization error obtained by
LEMOn (bars) and by using static localization, i.e. using inter-node RSSIs
(circles). a) Simulation 1: Impact of number of beacons on localization
accuracy; b) Simulation 2: Impact of noisy level on localization accuracy;
c) Simulation 3: Impact of number of nodes on localization accuracy.

suppress error caused by a single RSSI value. Simulation
2 validates the robustness of LEMOn in noisy environments.
Simulations 1 and 2 confirm the argument in Section IV-D
regarding the impact of the number of beacons on localization
accuracy. Besides, the localization error can be minimized to
5-10 m even in noisy environments.

Localization errors from Simulation 3 are illustrated in
Figure 1 c) indicating that the localization error does not vary
a lot with the variation in the number of nodes N . On the
other hand, decreasing number of anchors slightly reduces
the localization accuracy. Especially, LEMOn performsmuch
better than the static SDP localization when there is a small
number of anchors (for example A = 5). This suggests that
a high localization accuracy can be achieved using LEMOn
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FIGURE 2. Simulations 1-3 results: a) A visualization of location
estimation results by LEMOn (red triangles) and by using inter-node RSSI
(blue dots) in a less noisy environment, and b) in a noisy environment.
Black circles depict the position of anchor nodes, and green cross depict
the true position of target nodes; c) Relationship between RSSI similarity
and distances. a) Less noisy environment, b) Noisy environment,
c) Relationship between RSSI similarity and distances.

even for a small number of anchor nodes. Besides, the local-
ization error is around 1.5 m in this indoor environment.

The relationship between the similarity si,j and inter-node
distances di,j is illustrated in Figure 2 c) indicating that the
similarity is approximately linearly related to the distance.
This confirms the argument on the linearity discussed in
Section IV-A. Figure 2 c) also depicts that the linear fitting
of distance between anchor nodes and their similarities si,j is
close to that of the target nodes. This enables node localiza-
tion without a priori measurements.

All above results confirmed the robustness of LEMOn in
various environments, and against different propagationmod-
els. Especially, it is robust even in very noisy environments.

VI. PERFORMANCE EVALUATION OF LEMON-M
THROUGH SIMULATIONS
Similar to simulations in Section V, we perform three simula-
tions in different environments. Further, for reference, we also
performed the static localization matching method, i.e. inter-
sensor nodes RSSI values are used. In the static localization
matching method, we assume that all sensor nodes are per-
fectly calibrated. We also assume that RSSI values between
all node-pairs are obtained.

A. PARAMETER SETTINGS
Similar to Simulation 3 in Section V, we consider an indoor
IoT network where wireless nodes are deployed in a room
with area D = 10 × 14 m2 and height h = 3 m. The
path loss exponent η is set to 2, 2.5, and 3 based on the
real empirical measurements acquired from multiple indoor
environments in one of our earlier studies [8]. Use of multiple
path loss exponents thus enables us to evaluate our protocols
in different indoor environments. Wireless nodes attached to
light bulbs and air conditioners serve as fixed objects, while a
ground vehicle that moves around the room acts as a mobile
unit. Furthermore, V is set equal to D. Other parameters
are set to exactly same as the three simulations described
in Section V to evaluate the performance of LEMOn-M
in different scenarios, and whether it performs similarly to
LEMOn.

Simulation 4 evaluates the localization accuracy when the
number of beacons K varies. It also validates the robustness
of the LEMOn-M under different propagation models. The
position of the mobile unit is also generated randomly in
the domain V . The number of beacons K is chosen from
the set {100, 200, 300, . . . , 1000}. RSSI values are generated
randomly using the Gaussian model or the Rayleigh model.
This way we can observe the effect of K on the localization
error.

Simulation 5 observes the localization accuracy of
LEMOn-M against different levels of signal noise. RSSI
values are generated using a Gaussian model with σX chosen
from the set {3, 4, . . . , 12}. The number of beacons K is
set to 200 and 800. This way we can test the robustness of
LEMOn-M in environments characterized by different noise
levels, and also the impact of K on these scenarios.

Simulation 6 studies localization accuracy of LEMOn-M
against different numbers of sensor nodes. The number of
nodes N is chosen in the range {11, 13, . . . , 27}. RSSI values
are generated using the Rayleigh model. The number of
beacons K is set to 500. The path loss exponent η is set to
2 or 3, which is different than Simulations 4 and 5, in order
to test the performance of LEMOn-M in other environments.

In each simulation, the reference power Pi (cf. Equa-
tions (2), (9)) for each node is generated randomly. For each
set of parameters, simulations are run 20 times to obtain

40496 VOLUME 7, 2019



C. L. Nguyen, U. Raza: LEMOn: Wireless Localization for IoT Employing a Location-Unaware Mobile Unit

statistical averages. The values of all other parameters used
are detailed in Table 2.

B. RESULTS ANALYSIS
In every simulation, we run LEMOn-M and to determine
the best matching between nodes and positions using the
mobile unit. For reference, we also runMLMatch localization
using RSSI values between nodes that is the static localization
matching technique. We then output localization accuracy
that is defined as the ratio between the number of accurately
matched nodes and the number of total nodes [8]. The results
are illustrated by Figure 3 indicating that LEMOn-M per-
forms well in various environments. Localization accuracy
from Simulation 4 are illustrated in Figure 3 a). Localization
accuracy increases with increase in the number of beacons
K up to 500. The average localization accuracy, however,
does not vary when K increases further from 500 to 1000.
Besides, LEMOn-M performs very well regardless the RSSI
values follow theGaussianmodel or the Rayleighmodel. This
validates the robustness of LEMOn-M against other random
variable distribution models for wireless fading such as the
Rayleigh distribution.

Localization accuracy from Simulation 5 are illustrated
in Figure 3 b) indicating that the localization accuracy
decreases when the level of noise increases, especially when
K is not large enough, e.g. K = 200. However, when K is
large (e.g. K = 800), LEMOn-M can achieve localization
accuracy even in very noisy environment.

Localization accuracy from Simulation 6 are illustrated
in Figure 3 c) indicating that the localization accuracy does
not vary a lot with the variation of the number of nodes N .
The trend of localization error by LEMOn-M is similar

to that in LEMOn. Our results show that both algorithms
can outperform static cooperative localization methods when
there are sufficient number of beacon nodes K . Both methods
are resilient against high noise level especially for suffi-
ciently large K , which introduces diverse variations of dis-
tance between the mobile unit and sensor nodes. It helps
in suppressing the effect of noise by shadowing and fading.
On the other hand, in static localization techniques, multiple
transmissions between two fixed nodes can reduce the effect
only if nodes are equipped with specific hardware or tech-
nologies (cf. Section I).

VII. APPLICATIONS
This section highlights some real-world applications of
LEMOn and LEMOn-M.

A. UAV ASSISTED WSNs
The proposed algorithm can be used in a UAV assisted WSN
which has various applications. For instance in agriculture,
a UAV can control the amount of chemical sprayed over a
piece of land [38], or to gather data from deployed wireless
sensors [39]. For the purpose of post-disaster monitoring,
UAVs are used to deploy a WSN in the area [40]. For data
collection, a UAV is designed to collect data from a WSN

FIGURE 3. Average localization error obtained by LEMOn-M (bars) and by
using static localization, i.e. using inter-node RSSIs (circles).
a) Simulation 4: Impact of number of beacons on localization accuracy;
b) Simulation 5: Impact of noisy level on localization accuracy;
c) Simulation 6: Impact of number of nodes on localization accuracy.

efficiently [41], or to dispatches mobile agents that are used
to collect data [42]. In all of these applications, it is necessary
to collect sensed data from nodes and is necessary to relate
the stream of data to the location of the corresponding sensor
node. The UAV is, therefore, planned to fly along an optimal
trajectory to collect the data from the WSN. To cover all
sensor nodes without leaving any gap, the UAV is made to
fly through an operation area parallel to the sensor node
deployment plane [43], [44] (see Figure 4). Because a sensor
node should detect whether the UAV is nearby, the UAV is
assumed to transmit beacon messages periodically (e.g. every
two seconds in [44]). It is often assumed that there is a small
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FIGURE 4. A UAV traveling around to collect data from sensor nodes.

number of sensor nodes that know their positions either
through GPS or deployment time configuration. These nodes
are often used as a cluster head that collects data from nearby
nodes. Since the energy supply of the UAV is not limited as
that of sensor nodes, it is possible to assume that the transmit
power of the UAV is large enough so that all the sensor
can receive the beacons. Under this network model, we can
obtain all necessary information to perform LEMOn. Further,
simulation results in SectionV show that LEMOn can provide
an accuracy of 5-10 m which is similar to the accuracy that
one can get from enhanced GPS.

FIGURE 5. A wireless mobile unit going around to collect RSSIs from IoT
devices.

B. WIRELESS LOCALIZATION FOR INDOOR IoT
Weconsider an indoor IoT systemwhere objects, for instance,
light bulbs, air conditioners, TVs, fans, etc., are equippedwith
wireless transceivers (see Figure 5). To control each object,
it is necessary to match its location and its ID (e.g., MAC
address). Whilst the equipment positions of some fixed
objects such as light bulbs, air conditioners, are well known
from the floor plan blueprints (often found in out-of-reach
positions, e.g., behind ceiling panels or rooftops), the specific
equipment ID may not be recorded by installation engineers
due to high manual labor cost [8].

Our previous work proposes a new problem called the
wireless localization matching problem (WLMP) that auto-
matically matches an object’s position and its ID [8]. The
problem is resolved using RSSI values between all pairs of
devices, and the set of positions of devices that are known
from floor plan blueprints. However, in some network sys-
tems, collecting RSSI values between those devices compli-
cates the network design. This is because wireless devices
are often designed to communicate to some peculiar wireless
controllers or sink nodes rather than to each other. The pro-
posed solution in [8] is, therefore, inappropriate for typical
sensor networked systems.

LEMOn-M can resolve the above problem. Moving the
controller or the sink node around the floor and connecting
it with a UAV or a ground robot such as vacuum cleaning
robot can efficiently collect RSSI values from the wireless
devices. A vacuum cleaning robot is often designed to move
around a floor, thus making collection process of the RSSI
values feasible.

Simulation results in Section VI show that LEMOn-M
outperforms in doing the localizationmatching in thewireless
mesh networks, thus being feasible for real-world applica-
tions. Consequently, devices such as light bulbs and air con-
ditioners can be matched to their exact position efficiently.

FIGURE 6. An example of application of indoor IoT localization.

Furthermore, besides matching known fixed positions to
the devices using LEMOn-M, LEMOn can be used to localize
devices for which localization is not known at all. Simula-
tion 3 in Section V shows that LEMOn achieves less than
2 meters of accuracy on average. This is sufficient for many
indoor applications. Figure 6 illustrates an application use-
case common to today’s smart homes. Electronic devices are
controlled through an Infrared Radiation (IR) controller. The
emitting angle of an IR controller is often between±10◦ and
±60◦. We assume that emitting angle of the IR controller
is ±25◦, and the distance between the controller and an
electronic device (e.g. a TV) is larger than 5 m. Then the IR
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controller can control the TV using an estimated position of
TV that is less than 2m away from its real position.

VIII. CONCLUSIONS
While RF localization has come a long way [45], [46], there
are many unconventional localization problems that are still
unexplored. This paper proposes two novel localizationmeth-
ods namely LEMOn and LEMOn-M that use a location-
unawaremobile unit to help estimating location of other wire-
less nodes. The mobile unit can be either an UAV, a ground
robot, or a mobile access point. The method can, therefore,
be used for many IoT systems, for instance, UAV assisted
WSNs which have attracted great attention recently.

The proposed methods advance conventional localization
methods in several dimensions. First, these can be used in
both indoor and outdoor environments because he location
of the mobile unit is not needed. Second, the techniques are
hardware-independent and do not require complex calibra-
tion, making these suitable for a wide variety of emerging IoT
applications. Third, we do not need to run lengthy campaigns
to estimate parameters (such as path loss exponents) of each
individual radio environment wherever the applications are to
be deployed.

We extensively evaluated the performance of LEMOn
and LEMON-M using simulations. LEMOn achieves a 5-
10 m accuracy on average similar to a GPS in outdoor envi-
ronments. In indoors, LEMOn accurately localize within 2
m on average, which makes it suitable for many indoor
applications. LEMOn-M is shown to outperform the static
localization matching techniques even in very noisy envi-
ronments where competing solutions fail. Finally, we high-
lighted real-world application scenarios such as UAV assisted
WSNs and indoor IoT systems where these techniques can be
applied.

Despite the encouraging results achieved by LEMOn and
LEMOn-M, there is still progress to be made on this front.
The performance of these techniques for large network
size and deployment area must be investigated. In addi-
tion, advanced data processing techniques can be exploited
to minimize the inaccuracies arising from signal strength
outliers, external interference, non-line of sight propaga-
tion, etc. Finally, we like many other authors assume per-
fectly isotropic antennas deployed on a 2D surface for this
study. Generalizing to WSNs equipped with an-isotropic
antenna deployed in a 3D space is an interesting research
direction.

APPENDIX
A. PROOF OF THEOREM 1
Notations, and assumptions used in the proof are first
described. si,j denotes standard deviation of vector (ri−rj). ck
denotes the position, i.e. coordinate, of the mobile unit when
it sends the k-th beacons. ni denotes the position of node ni.
‖x− y‖ is the Euclidean distance between two points locating
at positions x and y, e.g., di,j =

∥∥ni − nj∥∥. ln · denotes the
nature logarithm. x is the magnitude of vector x. V and D are
the areas of V and D. For simplicity, V and D are assumed

to be parallel to each other; h denotes the distance between
them.

Using Equation (2), we have

ri,k − rj,k = Pi − Pj − 10η log10
di,k
dj,k
+ Xi,k − Xj,k

= Pi − Pj −
10η
ln 10

(
ln
di,k
dj,k
+ Xk

)
(11)

where, Xk =
(Xi,k−Xj,k ) ln 10

10η . Let δ = 10η
ln 10 , then Xk ∼

N (0, 2(σX
δ
)2). Since (Pi−Pj) and δ are constant, the standard

deviation si,j of the vector ri − rj divided by δ equals the
standard deviation of a vector r whose entries equals rk =
ln di,k

dj,k
+ Xk . Namely,

(
si,j
δ
)2 =

1
K

∑
1≤k≤K

(
ln
di,k
dj,k
+ Xk − ln

d̄i
d̄j
− X̄

)2
=

1
K

∑
1≤k≤K

(Xk − X̄ )2

+
1
K

∑
1≤k≤K

2(Xk − X̄ )(ln
di,k
dj,k
− ln

d̄i
d̄j
)

+
1
K

∑
1≤k≤K

(ln
di,k
dj,k
− ln

d̄i
d̄j
)2 (12)

where d̄i, d̄j, and X̄ denote, respectively, the average value
of distance di,k ,∀k , dj,k ,∀k , and Xk ,∀k . The first term of
the right side of (12) is the variance of Xk as K being large
enough, thus equaling 2(σX/δ)2.We denote Z the second term
of the right side of (12). Due to Central Limit Theorem (CLT),
Z is a random variable following zero mean Gaussian distri-
bution. Consequently, (12) equals

(
si,j
δ
)2 ≈ Z +

2σ 2
X

δ2
+

1
K

∑
1≤k≤K

(ln
di,k
dj,k
− ln

d̄i
d̄j
)2

≈ Z +
2σ 2

X

δ2
+ lim
K→+∞

1
K

∑
1≤k≤K

(ln
‖ck − ni‖∥∥ck−nj∥∥ −ln d̄id̄j )2

≈ Z +
2σ 2

X

δ2
+

∫
V
(ln
‖x− ni‖∥∥x− nj∥∥ − ln

d̄i
d̄j
)2dx (13)

Using the assumption thatV is large enough,V can approx-
imately be assumed to be a disc having radius of R =

√
V/π ,

and centered at the projection of the midpoint of ni and nj
onto the plane V (see Figure 7). Under this assumption, d̄i
equals d̄j therefore ln d̄i

d̄j
can be ignored. Let θ be the angle

between vector x and the projection of vector nj − ni onto
domain V , distances between x and ni,nj are formulated
as (14)

‖x− ni‖2 = h2 + x2 + (di,j/2)2 + xdi,j cos θ∥∥x− nj∥∥2 = h2 + x2 + (di,j/2)2 − xdi,j cos θ (14)
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FIGURE 7. An example of geometric relationship between domain V and
sensor nodes.

Using Taylor series expansion of ln(a + x) when x < a, i.e.
ln(a+ x) ≈ ln a+ x/a, (15) is obtained.

ln ‖x− ni‖
ln
∥∥x− nj∥∥ = 1

2
(ln ‖x− ni‖2 − ln

∥∥x− nj∥∥2)
≈

1
2

(
ln(h2+x2+(di,j/2)2)+

xdi,j cos θ
h2+x2+(di,j/2)2

−(ln(h2+x2+(di,j/2)2)−
xdi,j cos θ

h2+x2+(di,j/2)2
)
)

≈
xdi,j cos θ

h2 + x2 + (di,j/2)2
(15)

By substituting (15) into (13) we have:

(
si,j
δ
)2

≈ Z +
2σ 2

X

δ2
+

1
πR2

∫ R

0
xdx

∫ π

−π

( xdi,j cos θ
h2 + x2 + (di,j/2)2

)2dθ
≈ Z +

2σ 2
X

δ2
+

1
πR2

∫ R

0

πx3d2i,j
(h2 + x2 + (di,j/2)2)2

dx

≈ Z +
2σ 2

X

δ2
+

d2i,j
2R2

∫ R2

0

y
(y+ h2 + (di,j/2)2)2

dy

≈ Z +
2σ 2

X

δ2
+

d2i,j
2R2

∫ R2

0

( 1
y+ h2 + (di,j/2)2

−
h2 + (di,j/2)2

(y+ h2 + (di,j/2)2)2
)
dy

≈ Z +
2σ 2

X

δ2
+

d2i,j
2R2

(
ln
R2 + h2 + (di,j/2)2

h2 + (di,j/2)2

−
R2

R2 + h2 + (di,j/2)2
)

(16)

Let x =
( di,j
2R

)2, (16) can be rewritten as
si,j ≈ δ

[
Z +

2σ 2
X

δ2
+
x
2

(
ln

1+ (h/R)2 + x
(h/R)2 + x

−
1

1+ (h/R)2 + x

]1/2 (17)

Since R is large enough, x is smaller than 1, and is close to
0. Therefore, applying Taylor series expansion around x = 0
to (17), similarity si,j approximates

si,j ≈ δ
[
(Z +

2σ 2
X

δ2
)1/2 +

1

4(Z + 2σ 2X
δ2

)1/2

×
(
ln

1+ (h/R)2

(h/R)2
−

1
1+ (h/R)2

)
x +O(x2)

]
(18)

Consequently, similarity si,j is a monotonically increasing
polynomial function of distance di,j. It, therefore, can be used
to estimate distance di,j.

B. RANGING TECHNIQUE AND RANGING ERROR
The node separation distance can therefore be estimated via
the inversion of Formula (1)

d̂ = f −1(r) = 10
P0−r
10η (19)

Assuming that X ∼ N (0, σ 2
X ), the root mean squared ranging

error εX due to X can thus be calculated

εX = (E[(d̂ − d)2])1/2 =
(
E(d2(10

X
10η − 1)2)

)1/2
′
= d

[ ∫ ∞
−∞

1
√
2πσ

e
−X2

2σ2 (e
X ln 10
10η − 1)2dX

]1/2
= d

[ 1
√
2πσ

(
e(
√
2σ ln 10
10η )2

∫
∞

−∞

e−
1

2σ2
(X− 2σ2 ln 10

10η )2dX

− 2e
( σ ln 10
10
√
2η
)2
∫
∞

−∞

e−
1

2σ2
(X− σ

2 ln 10
10η )2

+ e−
X2

2σ2 dX
)]1/2

= d
[
e(
√
2σ ln 10
10η )2

− 2e
( σ ln 10
10
√
2η
)2
+ 1

]1/2 (20)

Thus ranging methods (19) are subject to errors that increase
exponentially with the signal fluctuations. For instance, con-
sidering two nodes with a separation distance of 100m, path
loss exponent η = 2, when σX = 3, σX = 6 and σX = 12 the
expectation of the instantaneous distance estimation error is
averagely 38 m, 102 m, and 642 m, respectively. In another
environment, η = 3, and σX = 10, the average error is
around 125 m.
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