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ABSTRACT Co-clustering algorithms have been widely used for text clustering and gene expression
through matrix factorization. In recent years, diverse co-clustering algorithms which group data points
and features synchronously have shown their advantages over traditional one-side clustering. In order to
solve the co-clustering problems, most existing methods relaxed constraints via matrix factorization. In this
paper, we provide a detailed understanding of six co-clustering algorithms with different performance and
robustness. We conduct comprehensive experiments in eight real-world datasets to compare and evaluate
these co-clustering methods based on four evaluation metrics including clustering accuracy, normalized
mutual information, adjusted rand index, and purity. Our findings demonstrate the strengths and weaknesses
of these methods and provide insights to motivate further exploration of co-clustering methods and matrix
factorization.

INDEX TERMS Machine learning, co-clustering, graph regularization, clustering, matrix factorization.

I. INTRODUCTION
Clustering has long been a fundamental topic in unsupervised
machine learning. It focuses on partitioning data points into
groups based on their similarities. In order to solve clustering
problems, diverse algorithms have been proposed in recent
years [1]. Clustering algorithms such as k-means [2], spectral
clustering [3], [4], normalized cut [5], min-max cut [6] and
non-negative matrix factorization (NMF) [7], have been suc-
cessfully applied to data mining [8], [9] and computer vision
[5], [10]–[12].

Traditional clustering algorithms are designed for one-
side clustering and proposed to cluster samples based on
the similarities along the feature side and vice versa [13].
However, in the one-side clustering mechanism, there is
a lack of consideration about the duality between sam-
ples and features. Thus co-clustering algorithms have been
proposed and demonstrated the superiority to traditional
one-side clustering. For instance, Van Pham et al. [14]
proposed a new cluster tendency assessment method for
fuzzy co-clustering, Hu et al. [15] proposed a unsupervised
audiovisual learning model, named as deep co-clustering,
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Jacques and Biernacki [16] proposed a model-based co-
clustering algorithm for ordinal data and Gu and Zhou [17]
proposed a Dual Regularized Co-Clustering algorithm.

Non-negative matrix factorization [18], [19] has captured
enormous interest in machine learning and computer vision.
NMF gains advantages in numerous problem formulations
optima for clustering algorithms. It is noteworthy that
k-means and spectral clustering are able to be expressed
as certain canonical forms of non-negative matrix factoriza-
tion [20], [21].

It is examined that most co-clustering algorithms are
designed via matrix factorization and evaluated with diverse
perspectives and datasets. The focus of this paper is to revisit
existing matrix factorization based co-clustering algorithms
and compare these algorithms in co-clustering problem based
on eight real-world datasets.We provide insights and evaluate
the performance of these algorithms with a set of metrics.

The contributions of this paper are:

• Provide insights about the taxonomy and differences
of the various co-clustering algorithms. This is bene-
ficial for understanding the problem formulation and
optimization routine and comparing the advantages and
disadvantages of each method.
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• Demonstrate the visualization of described algorithms
in a set of point data constructed in two moons pattern.
The results of these algorithms are compared by dif-
ferent clustering performance. Then we evaluate these
algorithms with a set of metrics including clustering
accuracy (ACC), normalizedmutual information (NMI),
adjusted rand index (ARI) and purity which are of bene-
fit to comprehend the performance of these algorithms.

The rest of this paper is arranged as follows. In Section II,
we provide understanding with a set of co-clustering via
matrix factorization. In Section III, datasets, evaluation met-
rics and experimental results and analyses are provided.
Finally, this paper is concluded in Section IV.

II. CO-CLUSTERING ALGORITHMS
Compared with the traditional one-side clustering,
co-clustering algorithms which can categorize data points
and features synchronously have more powerful perfor-
mance [22]. Co-clustering could be used for an extensive
range of applications [23]. For instance, Rege et al. [24]
used document-word co-clustering for clustering similar doc-
uments and topics. Chen et al. [25] and Felzenszwalb and
Huttenlocher [26] made use of image co-clustering for image
processing. Meanwhile, co-clustering has also been applied
to identification of interaction networks [27], [28].

Therefore, this paper provides detailed understanding
about six matrix factorization based co-clustering algorithms
and analyzes their performance. It is worth noting that we
provide insights of these algorithms from an algorithmic
level and compare them through comprehensive experiments.
Meanwhile, these algorithms introduced diverse novelties
and insights, which is useful to beginners who are new to co-
clustering.

For the co-clustering problem formulation, given a dataset
X = {x1, · · · , xn} = {f1, · · · , fd } ∈ Rd×n, group the data
points {x1, · · · , xn} into c clusters {Ci}ci=1, while the features

{f1, · · · , fd } into m clusters
{
C ′j
}m
j=1

. A partition matrix F ∈

{0, 1}n×c is used to represent the clustering result of data
points, while G ∈ {0, 1}d×m corresponds to the result of
features. And ‖◦‖F represents the Frobenius norm.

A. NON-NEGATIVE MATRIX FACTORIZATION
Non-negative matrix factorization (NMF) is a useful decom-
position for multivariate data [7], [29]. Nonnegativity is a
helpful constraint for matrix factorization and can be used
for learning a portion of representation of the data [29], [30].
Several new variations on the theme of NMF were proposed,
such as semi-NMF [31] and SNMF [32]. This algorithm aims
to solve the following problem:

Given a non-negative matrix V , find non-negative matrix
factorsW and H such that:

V ≈ WH (1)

where the dimension of matrix V is n × m. This matrix is
approximately resolved into factors: an n × r matrix W and
an r × m matrix H .

NMF does not aim to find an exactly factorization
V ≈ WH , but aims to make V and WH as approximate
as close as possible. Thus a cost function J (V ,W ,H) is
necessary to quantify the quality of the approximation. If J is
smaller, V will be more approximate toWH . NMF consider
the features (such as continuity or concavity) of J to use
suitable optimization methods for working out theW and H .
This cost function could be diverse and two useful measures
are shown below:

• J = ‖V −WH‖2F is the square of the Euclidean distance
between A and B [33].

‖A− B‖2F =
∑
ij

(
Aij − Bij

)2 (2)

This is lower bounded by 0 and clearly vanishes if and
only if A = B.

• J = D (V ‖ WH) is simply the Kullback-Leibler diver-
gence between A and B.

D (A ‖ B) =
∑
ij

(
Aij log

Aij
Bij
− Aij + Bij

)
(3)

It reduces to the relative entropy. If
∑

ij Aij =∑
ij Bij = 1, A and B could be regarded as normalized

probability distributions.

Both measures work out the optimal solution through
Lagrangian multiplier method and Karush Kuhn Tucker
(KKT). When W and H are stable point, the iteration is
convergent.

In this paper, we use the performance of NMF to cluster
data as the baseline. The clustering application of NMF could
be regarded as: a dataset has m examples and each example
has n features, so that it constitutes matrixX . Then we need to
use the NMF to find out W and H . The whole process aims
to transform the clustering problem of matrix X to cluster-
ing problem of matrix H through dimensionality reduction.
While NMF is able to be utilized to solve clustering problems,
it needs a post-processing step to output the clustering result.

B. DUAL REGULARIZED CO-CLUSTERING
Dual regularized co-clustering (DRCC) algorithm [17] is
based on semi-non-negative matrix tri-factorization and
this algorithm inherits the strengths of ONMTF [34].
Gu and Zhou [17] considered that data points and features
should be both sampled from some manifolds, then they
embedded the geometric structure of data manifold and fea-
ture manifold. The processes of co-clustering are formulated
as semi-non-negative matrix tri-factorization through these
two graph regularizers. It is worth noting that cluster labels
of data points/features should be smooth concerning to the
intrinsic data/feature manifold. In summary, DRCC takes
into consideration the geometry of data points and features,
thus it could perform well for clustering data on manifold.
Meanwhile, DRCC could be optimized by iterative multi-
plicative updating algorithm and it is convergent in theory.
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Gu and Zhou [17] supported that existing co-clustering
algorithms [34]–[36] do not take into account the geomet-
ric structure when clustering data on manifold. Therefore,
DDRC focuses on constructing data graph and feature graph
to explore the geometric structure of data/feature manifold.
• Data Graph
According to cluster assumption, Gu and Zhou [17]
supported that if data point xi is close to xj, then its
cluster labels x ′i should be close to the x ′j . The degree of
x ′i close to x

′
j could be expressed byW

F
ij which is shown

as follows:

WF
ij =

{
1, if xj ∈ N (xi) or xi ∈ N

(
xj
)

0, otherwise

where N (xi) denotes the k-nearest neighbor set of xi.
Heat kernel [37] also can be used for measuring this
affinity. The formulation is shown below:

1
2

∑
i,j

∥∥∥x ′i − x ′j∥∥∥2F WF
ij =

∑
i,j

x ′iW
F
ij x
′
i
T
−

∑
i,j

x ′iW
F
ij x
′
j
T

=

∑
i

x ′iD
F
ii x
′
i
T
−

∑
i,j

x ′iW
F
ij x
′
j
T

= tr
(
FT

(
DF −WF

)
F
)

= tr
(
FTLFF

)
(4)

where DFii =
∑

jW
F
ij is the diagonal degree matrix and

LF = DF −WF is the graph Laplacian [38] of the data
graph.

• Feature Graph
Similar with the construction of the data graph. If feature
fi is close to fj, its cluster label f ′i should be close to the
f ′j . The feature affinity matrixWG is shown as follows:

WG
ij =

{
1, if fj ∈ N (fi) or fi ∈ N

(
fj
)

0, otherwise

where N (fi) denotes the k-nearest neighbor set of fi.
The formulation is demonstrated below:

1
2

∑
i,j

∥∥∥f ′i − f ′j ∥∥∥2F WG
ij = tr

(
GT

(
GG −WG

)
G
)

= tr
(
GTLGG

)
(5)

where DGii =
∑

jW
G
ij is the diagonal degree matrix and

LG = DG−WG is the graph Laplacian [38] of the feature
graph.

According to the data and feature graph regularizers,
the objective function of co-clustering JDRCC is shown as
follows:∥∥∥X − GSFT∥∥∥2

F
+ λtr

(
FTLFF

)
+ µtr

(
GTLGG

)
(6)

where λ,µ ≥ 0 are the regularization parameters which
are used to balance the reconstruction error and the label
smoothness. And S is a matrix which could be any signs.

Then [17] releases F and G into continuous non-negative
domain for reducing difficulty of calculation. Thus DRCC in
Equation (6) converts into the objective function below:∥∥∥X − GSFT∥∥∥2

F
+ λtr

(
FTLFF

)
+ µtr

(
GTLGG

)
s.t. G ≥ 0,F ≥ 0 (7)

Equation (7) could be regarded as Dual Regularized
Semi-Non-negative Matrix Tri-Factorization (DRSNMTF).
In order to solve Equation (7), it could repeat the processes of
fixing most of variable except one variable until convergence.
The summary processes are demonstrated in Algorithm 1.

Algorithm 1 Dual Regularized Co-Clustering

Input: Data matrixX ∈ Rd×n, the number of data clusters c,
the number of feature clusters m, regularization parame-
ters λ, µ, maximum number of iterations T .

Output: Partitions F ∈ Rn×c, G ∈ Rd×m.
1: Initialize F and G using k-means.
2: while not convergent and t ≤ T do
3: Compute S = (GTG)−1GTXF(FTF)−1.

4: Update Fij← Fij

√ [
λL−FF+A

+
+FB−

]
ij[

λL+FF+A
−
+FB+

]
ij
.

5: Update Gij← Gij

√ [
λL−GG+P

+
+GQ−

]
ij[

λL+GG+P
−
+GQ+

]
ij
.

6: end while
7: return F and G.

where A = XTGS, B = STGTGS and A = A+ − A−, B =
B+ − B−, A+ij =

(∣∣Aij∣∣+ Aij) /2, A−ij = (∣∣Aij∣∣− Aij) /2 and
P = XFST , Q = SFTFST .
DRCC is difficult to be applied to large-scale data in real

world applications because intensive matrix multiplications
involved in each iteration step, which takes up a lot of com-
putation time for solving the clustering problems.

C. GRAPH DUAL REGULARIZATION NON-NEGATIVE
MATRIX TRI-FACTORIZATION
Graph dual regularization non-negative matrix
tri-factorization (DNMTF) [39] makes use of non-negative
matrix tri-factorization to solve co-clustering problems and
proposes an optimization scheme which grounds on iter-
ative updating rules. The objective function of this algo-
rithm simultaneously group the graph regularizers of data
manifold and feature manifold. Similar to DRCC [17],
DNMTF constructs data graph and feature graph to effec-
tively model the geometric structures of data and feature
manifold. Shang et al. [39] constructed a k-nearest neighbor
data graph: {x1, · · · , xn} firstly. Then as mentioned in [40],
DNMTF uses the {0, 1} weighting scheme for constructing
neighbor graph above. The data weight matrix is shown as
follows:

WV
ij =

{
1, if xj ∈ N (xi)
0, otherwise
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where i, j = {1, · · · , n}, and N (xi) refers to the set of
k-nearest neighbors of xi. The graph Laplacian of the data
graph is defined as LV = DV −WV , where DVii =

∑
jW

V
ij .

Here also constructs a k-nearest neighbor feature graph:
{f1, · · · , fd }, The feature weight matrix is shown as follows:

WU
ij =

{
1, if fj ∈ N (fi)
0, otherwise

where i, j = {1, · · · , d}, the graph Laplacian of the feature
graph: LU = DU −WU .

Based on two graph regularizers of data manifold and
feature manifold, the objective function is formulated below:

JDNMTF =
∥∥∥X − USVT

∥∥∥2
F
+ λtr

(
VTLVV

)
+µtr

(
UTLUU

)
, s.t. U ≥ 0, S≥0, V≥0

(8)

where λ,µ ≥ 0 are the regularization parameters which
are used to balance the reconstruction error and graph
regularizers.

Shang et al. [39] optimized this objective function with
respect to one variable while fixing other variables, so that
Equation (8) could be rewritten as follows:

JDNMTF = tr
((

X − USVT
) (

X − USVT
)T)

+ λtr
(
VTLVV

)
+ µtr

(
UTLUU

)
= tr

(
XXT

)
−2tr

(
XVSTUT

)
+tr

(
USVTVSTUT

)
+ λtr

(
VTLVV

)
+ µtr

(
UTLUU

)
(9)

where the constraints U ij,V kj ≥ 0, and this function could
be handled through Lagrange multiplier.

The updating formulas are shown as follows:

Sjl ← Sjl
[UTXV ]jl

[UTUSVTV ]jl
(10)

U ij ← U ij
[XVST + µWUU]ij

[USVTVST + µDUU]ij
(11)

V kj ← V kj
[XTUS+ λWVV ]kj

[VSTUTUS+ λDVV ]kj
(12)

Shang et al. [39] proved the convergence of the updating
rules in Equations (10), (11) and (12). For X,U,V ,S ≥ 0,
they proved that the objective function in Equation (8) is non-
increasing under the updating rules.

Following [34] and [40], the multiplicative updating rules
in Equations (10), (11) and (12) are special cases of gradient
decent which could select an automatic step parameter. The
iterative multiplicative updating rules converge to a local
optimum can be guaranteed. It is worth noting that DNMTF
relaxes the orthogonality constraint as nonnegativity, which
may deteriorates robustness and performance.

D. PENALIZED NON-NEGATIVE MATRIX
TRI-FACTORIZATION
Penalized non-negative matrix tri-factorization (PNMT) [41]
presents its advantages in introducing three penalty terms
to guarantee the near orthogonality of the clustering indi-
cator matrices, on account of most existing algorithms
relaxed the orthogonality constraint as nonnegativity,
which may decrease the performance and robustness for
NP-completeness of the co-clustering problems.

In detail, co-clustering is formulated as matrix tri-
factorization with dual orthogonality constraints, and two
indicator matrices are used to present clustering results in
two approaches. These two matrices are difficult to optimize
because of the orthogonality and nonnegativity of constraints.
Pompili et al. [42] supported that it is a tough task to design
efficient co-clustering algorithms because of the orthogonal-
ity constraints. Wang and Huang [41] made use of the penalty
terms to approximately solve high-order orthogonality con-
straints, so that co-clustering is formulated as quadratic non-
negative matrix factorization and could be efficient iterate.

According to the problem formulation, for the given the
dataset where with d features and n samples could propose
the data matrix X ∈ Rd×n. G ∈ Rn×c is used to transform
the discrete k-means clustering results, where Gij = 1√

|Cj|
if

sample xi belongs to cluster Ci and Gij = 0 [43]. It is not dif-
ficult to find that GTG = I if I ∈ Rc×c is a unit matrix. Thus
the clustering problem could be approximately formulated as
following problem according to the clustering matrix.

min
S,G

1
2

∥∥∥X − SGT∥∥∥2
F

s.t. G ≥ 0, GTG = I (13)

where S ∈ Rd×c is a coefficient matrix, G ∈ Rn×c is
a clustering matrix. Approximately, co-clustering problem
could be formulated as follows:

min
F,S,G

1
2

∥∥∥X − FSGT∥∥∥2
F

s.t. F ≥ 0, G ≥ 0, FTF = I, GTG = I (14)

where F ∈ Rd×c1 , G ∈ Rn×c2 are indicator matrices,
S ∈ Rc1×c2 is a coefficient matrix. And any matrix X =(
X ij
)
d×n ∈ Rd×n,

‖X‖F =

 n∑
j=1

d∑
i=1

X2
ij

 1
2

. (15)

PNMT introduces three penalties to take the place of
FTF = I and GTG = I , so that the co-clustering problem
is transformed into the following function:

min
F,S,G

1
2

∥∥∥X − FSGT∥∥∥2
F
+
α

2
tr
(
F8FT

)
+
β

2
tr
(
G9GT

)
+
γ

2
tr
(
STS

)
s.t. F ≥ 0, G ≥ 0 (16)
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where8 ∈ Rc1×c1 ,9 ∈ Rc2×c2 are two penalized matrices to
guarantee the near orthogonality of F and G, tr(STS) is used
for keeping F and G big enough and α, β, γ are the weights
of three terms.

Wang and Huang [41] proposed the penalized matrix as
follows:

8 =


0 1 · · · 1
1 0 · · · 1
...

...
...

1 1 · · · 0

. (17)

It can be observed that

tr
(
F8FT

)
= tr

(
FTF8

)
=

∑
i6=j

FTi Fj (18)

which could be minimized by an orthogonal vector group
{F1, · · · ,Fc1}.

Wang and Huang [41] addressed the penalized non-
negative matrix factorization through the Lagrange multiplier
method and Karush-Kuhn-Tucker (KKT) conditions. The
outline of PNMT algorithm is illustrated as follows.

Algorithm 2 Penalized Non-Negative Matrix Tri-
Factorization for Co-Clustering (PNMT)

Input: Data matrix X ∈ Rd×n, the numbers of the clusters
c1, c2, and parameters 8,9, α, β, γ .

Output: Two clustering labels {Ci}
c1
i=1 and {C

′
j }
c2
j=1.

1: Initialize F, S and G.
2: while not convergent do
3: Fix S, G update F by

Fij← Fij[
(
XGST

)
ij(

FSGTGST+αF8
)
ij
]
1
2 .

4: Fix F, G update S by

Sij← Sij[
(
FTXG

)
ij(

FTFSGTG+γS
)
ij
]
1
2 .

5: Fix F, S update G by

Gij← Sij[
(
XTFS

)
ij(

GSTFTFS+βG9
)
ij
]
1
2 .

6: end while
7: Denote the feature space {x1., · · · , xd .} and the sample

space {x.1, · · · , x.n}. Then xi. ∈ Cj if Fij = max
k

Fik , and

x.j ∈ C ′j if Gij = max
k

Gik .

E. STRUCTURED OPTIMAL BIPARTITE GRAPH
Structured optimal bipartite graph (SOBG) [44] is a novel
co-clustering algorithm to learn a bipartite graph with exactly
k (the number of clusters) connected components. Compared
to the most existing graph based co-clustering algorithms,
they usually describe the feature-sample relations by con-
structing a bipartite graph and conduct clustering on the
graph achieved from the original data matrix which may lead
to ambiguous cluster structure. These existing algorithms
require a post-processing step such as k-means clustering to
obtain the final results, while SOBG was proposed to address

this problem. SOBG could be used to learn new bipartite
graph which is approximate to the original graph while keeps
an explicit cluster structure. This insights realized by impos-
ing constraints on the rank of its Laplacian or normalized
Laplacian matrix.

According to the problem formulation, firstly viewX as the
weight matrix of a bipartite graph (see Figure 1). The green
nodes are the d rows ofX and the red nodes are the n columns
of X , and the weight of the i-th blue node to the j-th red node
is bij. An affinity matrix A ∈ Rn1×n1 is shown below:

A =
[
0 X
XT 0

]
(19)

Then a new graph similarity matrix S ∈ Rn1×n1 or
P ∈ Rd×n were learned as:

S =
[
0 P
PT 0

]
(20)

such that this new graph is more appropriate for clustering
problem and could provide clear clustering structure. Here,
matrix S that has exact k connected components (Figure 1)
can help to obtain the final clustering result directly, without
running discretization procedures (such as k-means) as tradi-
tional clustering algorithms.

It is noted that the structured optimal graph similarity
matrix S should close to the affinity matrixA as possible, so it
could be transformed to the following problem:

min
P≥0,P1=1,S∈�

‖S− A‖2F (21)

according to Equations (19), (20) and (21), this problem could
be rewritten as:

min
P≥0,P1=1,S∈�

‖P − X‖2F (22)

while it is difficult to solve the constraint S ∈ �, Nie et al.
[44] proposed a novel and efficient algorithm for solving this
problem.

If the similarity matrix S is a non-negative matrix,
then the Laplacian matrix LS = DS − S associated
with S [38], [45], [46].

Nie et al. [44] proved that the multiplicity k of the eigen-
value 0 of the Laplacian matrix LS is equal to the number of
connected components in the graph associated with S, so that
S ∈ � could be solved if rank(LS ) = n1 − k:

min
P≥0,P1=1,rank(LS )=n1−k

‖P − X‖2F (23)

then suppose σi(LS ): the i-th smallest eigenvalue of LS and
σi(LS ) ≥ 0. The problem above is transformed to the follow-
ing problem for a large enough λ:

min
P≥0,P1=1

‖P − X‖2F + λ
k∑
i=1

σi(LS ) (24)

According to the Ky Fan’s Theorem [47]:
k∑
i=1

σi(LS ) = min
F∈Rn1×k ,FTF=I

tr(FTLSF) (25)
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FIGURE 1. Illustration of the structured optimal bipartite graph, the blue green on the left represent
features while red nodes on the right show samples. The affinity between the features and samples is
denoted by the weight of the corresponding edge.

Therefore, the problem is transformed into the following
problem which is much easier to handle:

min
P,F
‖P − X‖2F + λtr(F

TLSF)

s.t. P ≥ 0, P1 = 1, F ∈ Rn1×k , FTF = I (26)

The algorithm to solve the problem (26) is summarized in
Algorithm 3.

Algorithm 3 Algorithm to Solve the Problem (26)

Input: X ∈ Rd×n, cluster number k , a large enough λ.
Output: P ∈ Rd×n and thus S ∈ Rn1×n1 defined in

Equation (20) with exact k connected components.
1: Initialize F ∈ Rn1×k , which is formed by the k eigen-

vectors of L = D − A corresponding to the k smallest
eigenvalues, A is defined in Equation (19).

2: while not convergent do
3: For each i, update the i-th row of P, where the j-th

element of vi is vij =
∥∥fi − fj∥∥22.

4: Update F, which is formed by the k eigenvectors of
LS = DS−S corresponding to the k smallest eigenvalues.

5: end while
6: return P and S.

If the similarity matrix S is non-negative, the normal-

ized Laplacian matrix L̃S = I − D
1
2
S SD

−
1
2

S associated
with S [38], [45].

Nie et al. [44] proved that the multiplicity k of the eigen-
value 0 of the normalized Laplacian matrix L̃S is equal to
the number of connected components in the graph associated
with S, so that S ∈ � could be solved if rank(L̃S ) = n1 − k:

min
P≥0,P1=1,rank(L̃S )=n1−k

‖P − X‖2F (27)

Similarly, the problem (27) is equivalent to the following
problem with λ:

min
P,F
‖P − X‖2F + λtr(F

T L̃SF)

s.t. P ≥ 0, P1 = 1, F ∈ Rn1×k , FTF = I (28)

The algorithm to solve the problem (28) is summarized in
Algorithm 4. It could only update the m nearest similarities
for each data point and thus the complexity of updatingP orF
can be decreased dramatically.

Algorithm 4 Algorithm to Solve the Problem (28)

Input: X ∈ Rd×n, cluster number k , a large enough λ.
Output: P ∈ Rd×n and thus S ∈ Rn1×n1 defined in

Equation (20) with exact k connected components.
1: Initialize F ∈ Rn1×k , which is formed by the k eigen-

vectors of L̃S = I − D
1
2
S SD

−
1
2

S corresponding to the k
smallest eigenvalues, A is defined in Equation (19).

2: while not convergent do
3: For each i, update the i-th row of P, where the j-th

element of vi is vij =

∥∥∥∥ fi√
di
−

fj√
dj

∥∥∥∥2
2
.

4: Update F =
[
U
V

]
, where U and V are the leading

k left and right singular vectors of S̃ = D
−

1
2

Su PD
−

1
2

Sv

respectively and DS =
[
DSu

DSv

]
.

5: end while
6: return P and S.

F. FAST NON-NEGATIVE MATRIX TRI-FACTORIZATION
Fast non-negative matrix tri-factorization (FNMTF) [48]
algorithm could conduct co-clustering on macroscale data
efficiently. FNMTF constraints the factor matrices of NMTF
with cluster indicatormatrices, this process is a special type of
non-negative matrices. Due to this advancement, the cluster-
ing results are easily deposited in the resulted factor matrices.
Moreover, the optimization problems could be solved with
much less matrix multiplications which are benefit from the
property of indicator matrices. In summary, this algorithm is
superior to other algorithms in computing efficiency and the
scale of data.
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The process of problem formalization is similar to the
DRCC [17], It is noted that F, G is cluster indicator matrices,
each row of them has one and only one element equal to 1 to
indicate the cluster membership, while the rest are 0. Here,
given a set of all cluster indicator matrices: 9.
NMTF constraints the factor matrices of NMTF with clus-

ter indicator matrices and minimize the objective function
shown below:

JFNMTF =
∥∥∥X − FSGT∥∥∥2

F

s.t. F ∈ 9d×m,G ∈ 9n×c. (29)

It is worth noting that the orthonormal constraints on F andG
are disappeared in this objective.

In the optimization procedures, Wang et al. [48] fix
F and G and setting the derivative S as 0 to solve the three
variables in Equation (29), thus:

S =
(
FTF

)−1
FTXG

(
GTG

)−1
. (30)

Secondly,Wang et al. [48] fixF and S to obtainG to rewrite
the problem with each i(1 ≤ i ≤ n):

min
G∈9

∥∥∥xi − FSTgi∥∥∥2F . (31)

Because gi (1 ≤ i ≤ n) ∈ 91×c is a cluster indicator vec-
tor, so that:

gij =

1 j = argmink
∥∥∥xi − f̃k∥∥∥2

F
,

0 otherwise,
(32)

where F̃ = FS and f̃k is the k-th columm of F̃. This equation
could enumerate the c vector norms and find out the maxi-
mum one, without involving any matrix multiplication.

Finally, they fixG and S to obtain F to rewrite the problem
with each i(1 ≤ i ≤ n):

min
F∈9

∥∥∥xi − fjSGT∥∥∥2
F
. (33)

Because fj (1 ≤ i ≤ d) ∈ 91×m is a cluster indicator
vector, so that:

fij =

{
1 i = argminl

∥∥xj − g̃l∥∥2F ,
0 otherwise,

(34)

where G̃
T
= SGT and g̃l is the l-th row of G̃

T
.

The procedures to solve Equation (29) are summarized in
Algorithm 5.

G. BILATERAL K-MEANS ALGORITHM
Bilateral k-means algorithm (BKM) [49] algorithm is differ-
ent from traditional k-means algorithms, it has two indicator
matrices F and G and a diagonal matrix S to be handled,
which represents the cluster memberships of data and features
and the co-cluster centers, respectively.

BKM relaxes the minimum normalized cuts problem to
a special NMF with indicator matrices constraints problem.

Algorithm 5 Fast Non-Negative Matrix Tri-Factorization

Input: Data matrix X ∈ Rd×n.
Output: Indicator matricesG ∈ 9n×c for data point cluster-

ing and F ∈ 9d×m for feature clustering.
1: Initialize G and F with arbitrary class indicator matrices;
2: while not convergent do
3: calculate S by Equation (30);
4: calculate G by Equation (32);
5: calculate F by Equation (34);
6: end while
7: return G and F.

These indicators maintain the clustering results. Whereas,
it needs a post-processing steps to output the final result.
Han et al. [49] handled the optimization problem of BKM
through decomposing this problem into three subproblems
and solved in an alternative way.

The process of problem formalization is similar to the
FNMTF [48]. If i-th feature xiąď belongs to clusterC ′j , gij = 1,
and If i-th sample xąďi belongs to cluster Cj, fij = 1. Thus,
G and F represent to indicator matrices and G ∈ 8d×c and
F ∈ 8n×c .
BKM replaces the bipartitioning normalized cuts in

BSGP [35] by multipartitioning normalized cuts, the objec-
tive function is indicated as follows:

min
Y

c∑
k=1

yTk Lyk
yTk Dyk

s.t. Y ∈ 8(d+n)×m (35)

where D is the diagonal ‘degree’ matrix with Dii =
∑

k Aik ,
L = D− A, y = [GT ,FT ]T .

Because there is only one non-zero element in each row
of Y , and D is a diagonal matrix, the matrix YTDY is a
diagonal matrix with (k, k)-element equal to yTk Dyk . Thus,
Equation (35) could be rewritten as below:

min
Y

tr
(
YTLY

(
YTDY

)−1)
s.t. Y ∈ 8(m+n)×c (36)

Substituting L = D− A could be used in Equation (36) as:

tr
(
YTLY

(
YTDY

)−1)
= tr

(
I − YTAY

(
YTDY

)−1)
(37)

where I is an identity matrix.
Because the indicator matrix Y can be rewritten as YT =

[GT ,FT ], the objective function could be transformed as
follows:

min
F,G

tr
(
−FTXF

(
YTDY

)−1)
s.t. G ∈ 8d×c, F ∈ 8n×c. (38)

The objective in Equation (38) is a NP-complete
problem [50]. Han et al. [49] relax this optimization problem
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into a matrix decomposition problem, append two terms:
tr
(
YTDY−1GTG

(
YTDY

)−1
FTF

)
and tr

(
XTX

)
. The opti-

mization problem is indicated as follows:

min
F,G

∥∥∥∥X − G (YTDY)−1 FT∥∥∥∥2
F

s.t. G ∈ 8d×c, F ∈ 8n×c. (39)

Finally, due to
(
YTDY

)−1
is a diagonal matrix could be

replaced by a matrix S which could be considered as a
parameter. The optimization problem of bilateral k-means
algorithm is demonstrated below:

min
F,G,S

∥∥∥X − GSFT∥∥∥2
F

s.t. G ∈ 8d×c, F ∈ 8n×c, S ∈ diag. (40)

where diag represents the set of diagonal matrices.
The procedures of solving themodel of BKMEquation (40)

are summarized as follows:

Algorithm 6 Algorithm to Solve the Problem (40)

Input: Data matrix X ∈ Rd×n.
Output: Indicator matrices F for sample clustering and G

for feature clustering.
1: Initialize G F with arbitrary class indicator matrices.
2: while not convergent do
3: Calculating S by s = H−1r, here s is used to denote
f (S), and r to denote f (PTXQ), H is a diagonal matrix,
and H−1 is easily to be solved.

4: Calculating G by

pij =

{
1, j = argmink

∥∥xj. − lk.∥∥2
0, otherwise

where L = SGT , lk. is the k-th row of L.
5: Calculating F by

qij =

{
1, j = argmink ‖x.i − r.k‖2

0, otherwise
where R = FS, r.k is the k-th column of R.

6: end while
7: return G and F.

III. EXPERIMENTAL ANALYSIS
In this section, comprehensive experiments are conducted to
evaluate the performance of the described algorithms. we
concentrate on the evaluation metrics and datasets firstly.
Then we demonstrate the visualization based on a set of
points constructed in two moons pattern. Finally, the co-
clustering effectiveness and efficiency of the described algo-
rithms would be given and analyzed.

A. DATASETS
In our experiments, we choose eight machine learning
datasets to evaluate the performance of the described algo-
rithms. These datasets derive from diverse fields, which facil-
itate to make the experiments more comprehensive.

Coil20 dataset. This dataset contains 32 × 32 gray scale
images of 20 objects and each object includes 72 images.

CalTech 101 silhouettes dataset. This dataset is based
on the CalTech 101 image annotations and each of the
101 classes has at most 100 training instances. The minimum
quantity of training instances is around 20 per class.

MNIST database. The MNIST database of handwrit-
ten digits from Yann LeCun’s page has a training set
of 60,000 examples and a 10,000 examples test set.

ISOLET database. This dataset contains 150 subjects who
spoke the name of each letter of the alphabet twice. The
speakers are grouped into sets of 30 speakers.

Here, we also use the USPS handwritten image database
and two text datasets such as BASEHOCK dataset and
PCMAC dataset. Meanwhile UCI Statlog dataset is also used
to evaluate these algorithms. The detailed information of
datasets is summarized in Table 1.

TABLE 1. Description of real world datasets.

B. EVALUATION METRIC
In order to evaluate the clustering results of diverse clus-
tering algorithms, we adopt four evaluation metrics used in
[34], [51], and [52]. As the standard measures, these metrics
are widely used for clustering [17]. These evaluation met-
rics including clustering accuracy (ACC), normalized mutual
information (NMI), adjusted rand index (ARI) and purity.
• Clustering accuracy (ACC) describes the relationship
between clusters and truth label. It measures the degree
about each cluster contains sample data from the match-
ing class. Given a sample xi ∈ {xi}ni=1, pi denotes the
true class label and qi denotes the prediction clustering
label. The ACC is defined as follows:

ACC =

∑n
i=1 δ (pi,map (qi))

n
(41)

where δ(a, b) equals one if a = b and equals zero
otherwise. And map(◦) is the best permutation mapping
function such as the Kuhn-Munkres algorithm [53] that
matches the prediction clustering label to the true label.
The larger value of the ACC is, the better clustering
performs.

• Normalized mutual information (NMI) is used for
measuring the quality of clusters. Given two random
variables p and q, NMI is defined as follows:

NMI (p, q) =
I (p; q)

√
H (p)H (q)

(42)
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where I (◦) is the mutual information of input data and
H (◦) denotes the entropies. The clustering result C̃ =
{C̃i}C̃i=1 based on the true labels C = {Cj}Cj=1 for all
sample data. NMI is rewritten as:

NMI
(
C, C̃

)
=

C̃∑
i=1

C∑
j=1

∣∣∣C̃i ∩ Cj∣∣∣ log n
∣∣∣C̃i∩Cj∣∣∣∣∣∣C̃i∣∣∣|Cj|√√√√( C̃∑

i=1

∣∣∣C̃i∣∣∣ log ∣∣∣C̃j∣∣∣
n

)(
C∑
j=1

∣∣Cj∣∣ log |Cj|n
)

(43)

It is worth noting that C̃ and C are not necessarily
equal and the larger NMI becomes, the better clustering
performs.

• Adjusted rand index (ARI) is defined as the number
of couples of objects that are both located in the same
cluster and the same class or different otherwise and is
divided by the total number of objects classes [54], [55].
The ARI is defined as follows:

ARI =
a− bc

n(n−1)/2

(1/2)(b+ c)− bc
n(n−1)/2

, (44)

where a =
∑
i,j

Vij(Vij−1)
2 , b =

∑
i

Vi(Vi−1)
2 and c =∑

j

Vj(Vj−1)
2 . The number of objects that are in both of

class i and cluster j is expressed by Vij. Meanwhile, Vi,
Vj could be regarded as the quantity of objects in the
class i and cluster j, respectively. The larger value of
ARI, the more resemblant to the labels clustering results.

• Purity measures the degree of each cluster containing
data points from one class [56]. The cluster purity value
is measured by:

Purity =
k∑
i=1

ni
n
P (Si) ,P (Si) =

1
ni

max
j
P
(
nji
)

(45)

where Si is a particular cluster with size ni and n
j
i denotes

the data of i-th input class which is expect to distribute to
j-th cluster. k is the number of clusters and n is the total
number of sample data. It is noted that the larger values
of purity represent the better performance.

There are some parameters to be decided in advance. Here
we also take into consideration the sensitivity of initial val-
ues of most clustering algorithms, so that experiments are
iterated 20 times and took their mean and standard deviation
as the results. For co-clustering algorithms, the quantity of
clusters to divide samples is adjusted to that of clusters to
converge features. And for all involved clustering algorithms
in experiments, the quantity of clusters is set from the label
information of classes provided in datasets. As to diverse
described clustering algorithms, their parameters are fixed as
default values. Numbers nearest neighbors for sample graph
and feature graph in DRCC and DNMTF which are learned
in manifold is set as 11. Meanwhile the weight mode is fixed
as binary values. The regularization parameters of DRCC are
tuned as λ = 1 and µ = 1, DNMTF are set as λ = 200 and
µ = 200 and PNMT are fixed as α = 1, β = 1 and γ = 1,
respectively. For the SOBG, the number of neighbors is set to
be 5, the value of λ = 1 and σ is self-tuned.

C. VISUALIZATION
For the process of visualization, it aims to present the
performance of these described algorithms. Given a set of
point data constructed in two moons pattern, this set con-
tains two natural clusters: the upper and the lower moon,
as shown in Figure 2(a). We conduct the clustering through
the described algorithms based on this set, respectively, and
demonstrate the clustering results. We aim to provide brief
insights and exhibition of these algorithms.

As we can observe, for this set the clustering result given
by DRCC 2(b) is well separated than others. While the clus-
tering results of PNMT 2(d) and FNMTF 2(e) are similar.
It seems that the clustering results given by DNMTF 2(c)
and BKM 2(f) are not so good as the dataset with low
dimension and low number of labels. This process con-
duct the visualization of described algorithms, the compre-
hensive experiments would be conducted to evaluate the
performance based on the evaluation metrics mentioned
above.

D. RESULT AND ANALYSIS
This section aims to evaluate the performance of described
algorithms based on the evaluation metrics above. The clus-
tering accuracy, normalized mutual information, adjusted

TABLE 2. Clustering accuracy (mean% ± std%) of diverse co-clustering algorithms on different datasets. The higher the better.
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FIGURE 2. Clustering on the two moons pattern. (a) original dataset. (b) Clustering results given by DRCC. (c) Clustering results given by DNMTF.
(d) Clustering results given by PNMT. (e) Clustering results given by FNMTF. (f) Clustering results given by BKM.

TABLE 3. Normalized mutual information (mean% ± std%) of diverse co-clustering algorithms on different datasets. The higher the better.

TABLE 4. Adjusted rand index (mean% ± std%) of diverse co-clustering algorithms on different datasets. The higher the better.

rand index and purity are listed in Tables 2, 3, 4 and 5 respec-
tively. Meanwhile, The described algorithms also are com-
pared with single-way clustering algorithms: k-means and
NMF which are regarded as the baselines. From the results

shown in these tables, some interesting observations emerged
this research. On one hand, the most proposed co-clustering
algorithms comes with better performance than the compared
single-way clustering algorithms in most mentioned datasets.
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TABLE 5. Purity (mean% ± std%) of diverse co-clustering algorithms on different datasets. The higher the better.

FIGURE 3. Runtime of diverse clustering algorithms in all tested datasets.

However, single-way clustering algorithms also have advan-
tages compared with co-clustering algorithms, which may
be resulted by the fact of the uncertainty class label infor-
mation and the quantity of clusters is treated as a latent
factor. We set the quantity of clusters for features equal to
the quantity of clusters for samples which may influence the
clustering performance to solve the uncertainty class label
information problem. On the other hand, the co-clustering
algorithms DNMTF and PNMT perform better than other
described algorithms in most tested datasets. It seems that
SOBG and FNMTF show superiority over other algorithms
in small datasets such as Statlog..

The runtime list of diverse clustering algorithms is shown
in Figure 3. We have the following observations from this
figure. With the increasing of sample data and features, dif-
ferent clustering algorithms demonstrate varying efficiency.
For example, described algorithms perform fast in the dataset
Statlog which contains less samples and features, while

slow in the dataset BASEHOCK. Meanwhile DNMTF and
FNMTF perform slower than other described algorithms in
most tested datasets. It seems to be true that the runtime of
described co-clustering algorithms is positively related to the
number of samples and features.

IV. CONCLUSION AND FURTHER WORK
In this paper, we revisited six existing co-clustering
algorithms. Then we conducted and compared them
through existing evaluation metrics. We concentrated the
co-clustering ability of these algorithms, through conducting
comprehensive experiments in a set of datasets to measure
the results to compare the performance of these algorithms.
Meanwhile, we analyzed the results to explore the relation-
ship between described algorithms and tested datasets in
runtime and clustering ability.

This paper aims to provide insights and advice for selecting
the co-clustering algorithms in diverse field such as text
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mining, recommendation systems and gene expression. In the
future, co-clustering algorithms will be improved on speed
and clustering ability.With the rapid development of this field
co-clustering will become much better and we will explore
more efficient algorithms via matrix factorization to address
more general co-clustering problems in our future work.
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