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ABSTRACT With the development of deep convolutional neural networks in recent years, the network
structure has become more and more complicated and varied, and there are very good results in pattern
recognition, image classification, scene classification, and target tracking. This end-to-end learning model
relies on the initial large dataset. However, many data are gradually obtained in practical situations, which
contradict the deep learning of one-time batch learning. There is an urgent need for an incremental learning
approach that can continuously learn new knowledge from new data while retaining what has already been
learned. This paper proposes an incremental learning algorithm based on convolutional neural network and
support vector data description. CNN and AM-Softmax loss function are used to represent and continuously
learn image features. Support vector data description is used to construct multiple hyperspheres for new
and old classes of images. Class-incremental learning is achieved by the increment of hyperspheres. The
experimental results show that the incremental learning method proposed in this paper can effectively extract
the latent features of the image and adapt it to the learning situation of the class-increment. The recognition
accuracy is close to batch learning.

INDEX TERMS One-class classifier, loss function, feature extraction, incremental learning.

I. INTRODUCTION
Natural vision systems are inherently incremental: new visual
information is gradually incorporated while existing knowl-
edge is preserved. For example, a child visiting the zoo will
learn about many new animals without forgetting the pet at
home. In contrast, most artificial object recognition systems
can only be trained in a batch setting, where all object classes
are known in advance and the training data of all classes can
be accessed at the same time in arbitrary order. Incremental
learning is an imitation of the cognitive process of human
learning, and is possible to learn step by step without forget-
ting the knowledge that has already been learned. The concept
of class-incremental learning is defined as follows:

1) it should be trainable from a stream of data in which
examples of different classes occur at different times;

2) it should at any time provide a competitive multi-class
classifier for the classes observed so far;

3) it can learn step by step without forgetting the knowl-
edge that has already been learned.

The associate editor coordinating the review of this manuscript and
approving it for publication was Bora Onat.

Interestingly, despite the vast progress that image clas-
sification has made over the last decades, there is not a
satisfactory class-incremental learning algorithm nowadays.
Although CNN has reached an unprecedented high level in
the task of face recognition and image classification, it is
based on the training of huge data sets and batch learn-
ing. For incremental learning, most classification tasks can
only deal with a fixed number of categories or learn all
kinds of images in one batch. Intuitively, one could try to
overcome this by training classifiers from class-incremental
data streams, e.g. using SGD optimization, however, this
will cause a problem known as catastrophic forgetting in the
literature [1].

In order to achieve class-incremental learning, we need to
face two key issues: 1) how to extract effective features of
images. 2) find a suitable incremental classification method
to distinguish the new category from the old one, which has
good generalization performance and excellent classification
performance.

To solve these two problems, this paper combines con-
volutional neural network and one-class classifier SVDD
to achieve incremental learning of classes. Undoubtedly,
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FIGURE 1. Overall system framework.

the convolutional neural network has proved its advantages
in Feature Engineering in various tasks. Therefore, we use
the convolutional neural network as a feature extraction tool
and to learn and represent different types of samples. One-
class classifier, SVDD, is often used for anomaly detection.
In this paper, the class-incremental learning is innovatively
divided into multiple incremental classifiers and the iter-
ative updating is also very easy to understand. Moreover,
SVDD encapsulates hyperspheres of high-dimensional data
and combines them with AM-Softmax’s feature processing
method mentioned later, which is proven excellent incremen-
tal performance by experiments. The overall block diagram
of our method is shown in Figure 1, whose details are given
in Section 3.

Our main contributions are as follows:
1) We use a convolutional neural network combined with

the improved loss function for feature extraction to obtain
effective features with strong generalization characterization.

2)We propose a classifier design approach based on SVDD
for class-incremental learning. The recognition rate curve of
the verification set of the classifier determines the termination
point of network training.

3) We evaluate our overall incremental learning approach
in open datasets (MNIST, EMNIST, and CIFAR100), and
experiments show that our method can effectively extract the
latent features of images and implement the updating and
iteration of class-incremental learning.

II. RELATED WORK
A. INTEGRATED LEARNING FOR INCREMENTAL
LEARNING
Integrated learning [2] is to acquire multiple base classifiers
through training samples and use a specific combination
method to solve a problem together. Based on its charac-
teristics, integrated learning is more suitable for incremental
learning. According to the integration method, incremental

learning can be divided into two categories: single classifier
incremental learning and integrated incremental learning.

Single classifier incremental learning has only one learn-
able classifier from beginning to end, which can adjust the
internal structure of the classifier according to the received
sample information, to adapt to the new data. Although the
single classifier incremental learning structure is relatively
simple, in order to adjust the classifier structure and adapt
to the new data, it is necessary to set the parameters manu-
ally. If these parameters are not properly selected, there will
be problems with overfitting. In the process of incremental
learning, the internal structure of the single classifier needs
to be continuously adjusted, and it is difficult to estimate
the storage space, to predict speed, etc., so that we can’t
choose the suitable algorithm to train the data, and structural
adjustments can also easily lead to catastrophic forgetting of
learned knowledge.

Related algorithms include ARTMAP [3] (Adaptive Res-
onance Theory modules map), EFuNNs [4] (Evolving Fuzzy
Neural Networks), incremental decision trees [5], incremen-
tal SVM [6] and so on.

Integrated incremental learning is to train each new data
into a newmodel, and then combine thesemodels for compre-
hensive utilization. The integrated model thus contains incre-
mental information each time to enable incremental learning.
Compared with single classifier incremental learning, it is
more robust.

In 2001, the Learn++ algorithm was proposed by
Polikar et al. [7], which is a supervised incremental learning
based on AdaBoost. The weight can be given to the new data,
and then the update of sample weight is performed according
to the result of the classification, and the weak classifier
trained with the new data is added to the integrated classifier.
In 2003, Seipone and Bullinaria [8] proposed EEN (Evolved
Neural Network) based on traditional neural network. Facing
the changes of the data sample environment, genetic algo-
rithms were used to evolve the connection weights, network
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layers, learning rates and other parameters of the neural
network. When there is new data, the network structure
can be changed to achieve incremental learning. In 2005,
Tnoue and Narihisa [9] proposed SONG (Self-Organizing
Neural Grove) as an integrated incremental learning based on
self-generated neural trees. All training sets are constructed
into trees, and training samples correspond to the leaf nodes
of trees. Through the multiple input of training samples in
different orders, multiple generated trees are obtained to con-
struct the integrated classifier, and finally the incremental
learning is completed by using the pruning algorithm to
reduce the time and space overhead.

B. INCREMENTAL LEARNING WITH DEEP LEARNING
Xiao et al. [10] proposed a network that can grow hierarchi-
cally. Each node is composed of clusters of similar classes.
Through the tree structure, only the local part of the model
needs to be adjusted when the model is updated, and the
adjustment can be strictly controlled. Incremental learning is
realized through the growth of the network, but the solution
faces the difficulty of training the large network and how
to effectively increase the network capacity. Aiming at the
catastrophic forgetting problem in incremental learning of
convolutional neural networks, Rusu and Andrei [11] pro-
posed a progressive NN to solve the problem of adapting the
network to new tasks (incremental). The idea is to keep all the
networks of the previous tasks, create a new network for each
new task, and retain the low-level features of the old network.
This method can better solve the problem of catastrophic
forgetting, but it comes with the continuously growth of the
network scale, and the need for manual knowledge in the
design of different tasks.

Venkatesan andRagav [12] uses GAN to generate Phantom
Sampling to retain the information of the original training
samples. These phantom samples are used to train new deep
networks together with incremental samples, achieving better
class incremental training effects. However, this method takes
a long time to train and is difficult to apply to the case of
new incremental samples of old categories. ICaRL proposed
by Rebuffi et al. [13] uses convolutional neural network for
feature learning and characterization. The new class samples
and the previously stored old class samples are jointly trained
in convolutional neural network to update the current model
parameters and obtain new feature representations. In the
classification, the NCM [14] idea is used to classify the
extracted feature vectors in the sample set by using Nearest-
Mean-of-Exemplars. Based on iCaRL, Wu and Yue [15]
redefined the loss function (cross-entropy loss function +
distillation loss function), and added GANS [16] to generate
a few samples of the old categories to improve generalization
ability.

III. METHOD
A. FEATURE REPRESENTATION
For the incremental classification, whether it is new class
or old class, it is very important to characterize the image

or to continuously learn the image features. In the past, the
improvement of network mostly focused on the design of
network structure, which is deeper and more complicated,
but the most critical impact on feature distribution is the
objective function or loss function. This paper introduces the
AM-Softmax [17] function to improve the intra-class and
inter-class distance obviously, to achieve better incremental
classification.

Let’s review the traditional Softmax loss first. We define
the i-th input feature X i with the label yi. Then the Softmax
loss can be written as

L =
1
N

∑
i

Li =
1
N

∑
i

−log

(
efyi∑
j e
fj

)
(1)

where fj denotes the j-th element of the vector of class
scores f , and N is the number of training data. In the Softmax
loss, f is usually the activations of a fully connected layerW ,
so fyi can be written as fyi = WT

yiX i, Thus the loss becomes

Li = −log

(
e‖W yi‖‖X i‖cos

(
θyi

)
∑

j e
‖W j‖‖X i‖cos(θj)

)
(2)

where 0 ≤ θj ≤ π .
Before AM-Softmax, L-Softmax proposed by

Liu et al. [18] introduced the concept of angular margin to
add a parameter m to change the cos distance of the weights
W and X to cos (mθ), and adjust the distance between
features by m. Although L-Softmax enlarges the learning
difficulty of loss function through parameter m and can
significantly improve the intra-class and inter-class distance,
the learning difficulty of cos (mθ) increases exponentially
when the number of classes increases dramatically. Inspired
by these methods, the author proposes a more intuitive
and easy-to-understand method-Additive Margin Softmax
(AM-Softmax). Similar to the former, AM-Softmax rewrites
the expression of cos (θ) as cos (θ)− m.

The above formula is simpler than L-Softmax in form and
calculation. In addition, on the basis of L-softmax, the weight
and the feature vector are normalized: b = 0, ‖W‖ =
1, ‖X‖ = 1. Compared with L-Softmax loss, the differ-
ence between the classes is only related to the angle θ .
In the three-dimensional feature space, we can see that all
classes of features are distributed on the sphere. Visualizing
MNIST dataset as shown in Figure 2, we can clearly see that
AM-Softmax has a strong constraint on feature expression.
This distribution is also easier to integrate with subsequent
SVDD.

To sum up, we can write AM-Softmax loss function as:

LAM = −
1
N

∑
i

log
es·
(
cosθyi−m

)
es·
(
cosθyi−m

)
+
∑c

j=1,j 6=yi e
s·cosθj

(3)

At the same time, the scale factor s is added to control the
scaling. In this paper, the fixed value 10 is used to accelerate
the convergence and make it more stable.
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FIGURE 2. AM-Softmax feature distribution.

B. SVDD
SVDD is a classification method based on Support Vec-
tor Machine (SVM) [19] proposed by TAX [20] where a
hypersphere is used to separate the data instead of a hyper-
plane. The main algorithm idea is to map data samples
X = {x1, x2, . . . , xN } to high-dimensional feature spaces
through φ(xi). The objective of SVDD is to find the smallest
hypersphere with center a and radius R > 0 that encloses
the majority of the data in feature space. The SVDD primal
problem is given by

min F (R, a) = R2 + C
N∑
i=1

ξi (4)

constraint condition is

s.t. ‖φ(xi)− a‖2 ≤ R2 + ξi, ξi ≥ 0, i = 1, 2, . . . ,N (5)

whereN is the total number of samples; the distance from any
point xi to the center of the hypersphere a is ‖φ(xi)− a‖; R
is the radius of the hypersphere; ξi is the slack variable; the
parameter C controls the trade-off between the volume and
the errors.

Constraints (5) can be incorporated into Eq. (4) by using
Lagrange multipliers:

L (R, a, ai, γi, ξi) = R2 + C
N∑
i=1

ξi −

N∑
i=1

γiξ i

−

N∑
i=1

ai(R2 + ξi − ‖φ (xi)− a‖2) (6)

where the Lagrange multipliers ai ≥ 0 and γi ≥ 0. For each
R, a, ai, ξi the partial derivatives are derived and make it equal
to 0, namely:

∂L
∂R
= 0⇒

N∑
i=1

ai = 1

∂L
∂a
= 0⇒ a =

∑
i
aiφ(xi)∑
i
ai
=

N∑
i=1

aiφ(xi)

∂L
∂ξi
= 0⇒ C − ai − γi = 0

(7)

substituting (7) into (6), we can obtain the following equation:

L =
N∑
i=1

ai (φ (xi) · φ (xi))−
N∑
i=1

N∑
j=1

aiaj
(
φ (xi) · φ

(
xj
))
(8)

Equation (8) is a standard quadratic optimization problem
with an optimal solution ai. In the actual calculation, ai = 0 is
the majority, and a few xi with ai > 0 are the support vector.

To test an object Z, the distance to the center of the sphere
must be calculated. A test object Z is accepted when this
distance is smaller or equal than the radius:

‖φ (Z)− a‖2 = φ (Z) · φ (Z)− 2
N∑
i=1

aiφ (xi) · φ (Z)

+

N∑
i=1

N∑
j=1

aiaj
(
φ (xi) · φ

(
xj
))

(9)

By definition, R2 is the distance from the center of the
sphere a to the boundary. Support vectors which fall outside
the description (ai = C) are excluded. Therefore:

R2 = φ (xk) · φ (xk)− 2
N∑
i=1

aiφ (xi) · φ (xk)

+

N∑
i=1

N∑
j=1

aiaj
(
φ (xi) · φ

(
xj
))

(10)

for any xk ∈ SV<C , ak < C .

C. CLASS-INCREMENTAL CLASSIFICATION
This section describes the system framework and how to
achieve class-incremental classification. Firstly, the convo-
lution neural network is used to extract and represent fea-
tures. In order to obtain more compact features within classes
and more distinctive features between classes, we adopt the
latest AM-Softmax loss function to update and iterate the
parameters of CNN, so that the image features obtained by
the non-linear mapping of the CNN can meet the training of
SVDD.

Secondly, the feature vectors of the class incremental
dataset are obtained by forward propagation in the linear layer
ip1. We use SVDD to train the samples, wrap the samples
with a hypersphere. With the iteration of training, the intra-
class feature is more compact and the volume of hypersphere
is reduced, which makes the expression ability strong and
the boundary between classes obvious, so that the robustness
and classification performance of the subsequent incremental
classification are better. The support vectors and the radius of
the sphere center of each hypersphere in the feature space can
be preserved.

1) AM-SOFTMAX AND SVDD
As can be seen from Figure 2, AM-Softmax improves the
feature distribution significantly. Cross Entropy loss and
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Softmax functions are enough to solve many problems in
the original closed-set image classification. However, in an
open-set classification task (such as face recognition), in a
specific metric space, the maximum distance within the same
class is required to be smaller than the minimum distance
between different classes. In the traditional Euclidean dis-
tance metric space, the data distribution is scattered when
the number of classes increases, resulting in performance
degradation.

AM-Softmax adds restrictions to normalize weights and
feature vectors in classification layers: bias = 0, ‖W‖ =
1, ‖X‖ = 1. The bias term is set to 0, mainly for the con-
venience of geometric analysis, and many experiments show
that the bias term has little effect on the results. By weight
normalization, the impact of imbalanced training data is
reduced. The feature vectors normalization can reduce the
impact of excessive data scene differences. Finally, the metric
space is converted to the hypersphere, and the margin is
added to increase the learning difficulty and obtain a better
feature distribution. Therefore, this metric space distribution
coincides with the idea of SVDD.

By encapsulating intra-class data in hyperspheres and
increasing the distance between classes, incremental learn-
ing is divided into one-class classification by increasing the
number of hyperspheres, which realizes the training on open
sets and the possibility of incremental classification.

2) REJECTION RATE
Finally, a definition of rejection rate is introduced to adapt to
incremental learning scenarios. For hypersphere, in order to
reduce the volume of the sphere and redundancy space, only
all training samples are included as far as possible. Then in the
testing process, there will be some samples that do not belong
to any hypersphere in the current metric space, so these
samples are rejection samples, and thus there is rejection rate
for each class. After all, for pattern classification, the cost
of incorrect samples is often much higher. Rejected samples
can be retained and subsequent classified (such as updating
hypersphere support vectors).

The definitions of rejection rate are: let test class
T = {t1, t2, . . . , tN }, there are n hyperspheres in metric
space, i.e. n classes, center are {a1, a2, . . . , an}, radius are
{R1,R2, . . . ,Rn}. Rejected samples {t1, t2, . . . , tk} satisfy∥∥φ(t i)− aj∥∥2 ≤ R2j + ξ, i = 1, 2, . . . , k. j = 1, 2, . . . , n

(11)

where ξ is the slack variable of this kind of training set. Thus,
the rejection rate is:

T =
k
N

(12)

IV. EXPERIMENTS AND RESULTS
A. CNN ARCHITECURES
This paper uses WideResNet [22] as the basic CNN net-
work. ResNet’s [23] has an indelible place in deep learning.

WideResNet widens the Basic Block in ResNet, and increases
the number of channels, to improve the accuracy, reduce the
number of network layers, and speed up network training. The
following experimental network structure is shown in Table 1.

TABLE 1. CNN architectures.

TABLE 2. The penalty coefficient C of SVDD (AC = ACCURACY).

Among them, the convolution layer unified convolution
kernel size is 3× 3, and padding is 1. All network structures
and training were implemented on Pytorch with an initial
learning rate of 0.1, a weight decay of 0.0005, and a momen-
tum of 0.9. The first fully connected layer output dimension
is fixed at 100 dimensions for feature output.

The system framework is shown in Figure 1. The two input
data sets do not interfere with each other. The M-classes
data sets are used to train the network, and the AM-Softmax
loss function is used to optimize parameters and nonlinear
mapping. The features of training dataset are extracted in
ip1 layer by the network. The trained SVDD in every epoch
output the incremental classification result, and the AM-
Softmax reduces the hypersphere volume to increase incre-
mental classification result. Finally, the training of network
and SVDD is stopped when the classification performance of
the verification set in the incremental data set reaches the best
level.

Firstly, the MNIST data set is initially classified for differ-
ent penalty coefficient C of SVDD. The value of C in SVDD
ranges from 0-1. The experimental results are as follows:

We can see that different C will affect the classification
results. Intuitively understanding, the bigger C is, the bigger
the hypersphere is, and the more attention is paid to the edge
samples. The smaller C is, the smaller the sphere is, and the
discarding part of the edge samples makes the accuracy and
size compatible.
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The penalty coefficient C of SVDD is set to 0.1 in the next
experiment. For each class of hyperspheres, support vectors,
sphere center and radius are preserved, and training samples
are discarded. When new untrained samples are added, fea-
ture representation is used to construct hyperspheres until the
training is completed.

In the next incremental classification experiment, there
are two types of data sets, MNIST/EMNIST and CIFIR100.
In contrast experiment, MNIST/EMNIST data sets, because
of its simplicity, we use the traditional Kernel-based SVDD
for comparison, which normalize the original image, per-
form RBF mapping, and achieve incremental classification.
In CIFAR100 data set, due to too high dimension, Kernel-
based SVDD cannot be processed well, thus only two kinds
of Softmax+SVDD are compared.

B. MNIST/EMNIST
MNIST [23] is a handwritten digital dataset and is widely
used as an introductory training set for convolutional neu-
ral networks. The EMNIST [24] dataset is derived from
the National Institute of Standards and Technology (NIST).
It is made up of 810,000 characters images handwritten by
3,600 people. The dataset includes a total of 62 classes of
Arabic numerals ‘‘0∼9’’, lowercase English letters ‘‘a∼z’’,
and uppercase English letters ‘‘A∼Z’’. In order to match with
MNIST, it is uniformly converted into a 28 × 28 grayscale
picture format.

In this section, the number of training dataset classes is
M = 30, and the incremental test classification datasets is
increased from 10 to 40 classes, in which N = 40− 30 = 10
is the incremental classes. The training set, verification set
and test set have 1500 images, 500 images and 500 images
respectively.

The network is only trained for 30 classes, and gives multi-
classification results. The incremental data set has 40 classes,
10 classes are untrained data sets, and the image features are
uniformly output with the full connection layer ip1, which
uses SVDD to achieve compatibility and incremental clas-
sification of new classes and old classes. The experimental
results are shown in Table 3.

In this experiment, we can see that the incremental classi-
fication by combining SVDD with CNN is greatly improved
compared with the traditional SVDD classification, and
AM-Softmax also brings about the improvement of recog-
nition accuracy, which shows that the feature distribution
of the trained CNN is more reasonable and more suitable
for the incremental classification of SVDD. Moreover, our
method can also participate in the recognition of new classes
which have not been trained, and is compatible with the old
classes. Each hypersphere does not interfere with each other,
and must be opened in the metric space as far as possible.
Compared with traditional CNN, although the accuracy of
SVDD in fixed category recognition is slightly lower, the
error rate is close, and our method can incrementally classify
new categories. Among them, the average R2 of hyperspheres
is about 600, 180 and 100 respectively.

TABLE 3. MNIST/EMNIST incremental experiment results(Ac=Accuracy).

In the SVDD incremental classification, there is a value
of the rejection rate, meaning that part of the test samples
fall outside all the hyperspheres. From another point of view,
this is also the advantage of the hypersphere incremental
classification. Keeping some samples that are not correctly
recognized can take additional measures instead of directly
accounting for errors. AM-Softmax also performs best in
incremental classification, which also has a strong representa-
tion performance, and the recognition rate is close to the end-
to-end classification effect of the batch convolutional neural
network.

C. CIFAR100
The CIFAR100 dataset has a total of 100 classes of data,
a training set of 500 images per class, and a test set
of 100 images per class. As above, in this section, M = 80,
N = 20, and the incremental classification data set is
increased from 10 to 100 classes. Each class of verification
set draws 100 images from the training set.

In the training phase, we follow the standard data augmen-
tation [25] for training: 4 pixels are padded on each side,
and a 32 × 32 crop is randomly sampled from the padded
image or its horizontal flip. In the testing phase, we only
evaluate the single view of the original 32 × 32 image. The
incremental data set does not make any changes to the image.
The incremental classification results are shown in Table 4.
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TABLE 4. CIFAR100 incremental experiment results (Ac = Accuracy).

The performance of applying SVDD to incremental clas-
sification of 100-classes is excellent, which also shows that
our CNN + AM-Softmax non-linear mapping can be well
combined with SVDD. Compared with traditional CNN clas-
sification, SVDD can have a smaller error rate and a higher
accuracy in fewer classes, because hyperspheres can have
penalty coefficients to control the size of spheres, and can
appropriately expand the volume of spheres in metric spaces
with fewer classes. The average R2 of hyperspheres is about
90 and 40 respectively.

From the two experimental results, our method is shown to
be more capable of expressing features in class-incremental
learning scenarios, which intuitively enhances the intra-class
compactness and inter-class separability. Moreover, using
SVDD for class increment classification also achieves better
performance. In the case of an increase in the number of
classes, the overall average accuracy ofMNIST/EMNIST can
be maintained at a relatively high level, and the performance
in the CIFAR100 is also at a good level of recognition rate.

V. CONCLUDING REMARKS
In our work, we propose a new classification method for
class-incremental learning. We trained the convolutional net-
work with the improved Softmax loss function as a feature
extraction network to perform more efficient and generalized
feature representations on images, and then use one-class
classifier SVDD to implement incremental classification.
In the case of an increase in the number of classes, the original
hypersphere model is retained, and the new hypersphere is
iteratively updated to ensure that the overall classification
network performance maintains a certain accuracy rate.

Our future research directions include: (1) Base on the
support vector of hypersphere of SVDD, SVM classifier can
be used to achieve classification of positive and negative sup-
port vector samples, to improve the recognition rate of class
incremental learning, and provide solution of the rejection
samples. (2) To combine SVDDwith clustering to achieve the
split of the hypersphere and the increment of the classes, (3)
To optimize the SVDD construction process, such as making
use of different nonlinearly kernel function, and multiple
hyperspheres for one class, etc.
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