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ABSTRACT Sleep Apnea is a breathing disorder that occurs while the patient is sleeping. Traditionally,
Polysomnography is used to diagnose it. However, it is quite inconvenient and expensive. Because of the
troublesome diagnosis, this ailment often remained undiagnosed. This paper aims at the development of
such a method that provides an easy diagnostic solution to the doctors. Electrocardiogram (ECG) is one of
the most common tests done at the hospitals. In this paper, we aim to develop a method which deploys ECG
data to diagnose the sleep ailment, Apnea. A technique deploying wavelet packet transform on RR interval
of ECG has been presented. Probability density functions of data, both when Apnea is present and when
it is not, are obtained by constructing histograms of decision variable for each signal segment. From the
overlapping PDFs of the normal and abnormal cases, a threshold is then derived. This helped in segregating
the Apnea cases from normal cases. The stated method provided a 100% accuracy in diagnosing Sleep
Apnea.

INDEX TERMS Sleep Apnea, ECG, signal processing.

I. INTRODUCTION
Sleep Apnea (SA) is an extremely common sleep time dis-
ease. An episode of Apnea is considered to occur when there
is an absence of breathing for ten seconds or more. A single
episode of Apnea can last for more than a minute, in extreme
cases. An occasional episode of Apnea is common and treated
as normal until there are more than ten episodes per hour.
According to the American Academy of Sleep Medicine,
a person is considered to have Sleep Apnea if he/she has more
than 10 Apnea events per hour. Although, it is roughly as
common as asthma [14], however, it remains unrecognized by
primary care physicians [10]. Apnea causes constant disrup-
tion of sleep and low oxygen levels because of which people
with Sleep Apnea face early morning headaches and fatigue,
loss of memory and may also lead to brain impairment. Sleep
Apnea is sometimes also a factor of high blood pressure,
heart disease and stroke [10]. In a few death cases, dying
silently in sleep appears to be a merciful way of departure
but indeed it may sometimes be unnecessary death because
of untreated Sleep Apnea [10]. A comprehensive study for

The associate editor coordinating the review of this manuscript and
approving it for publication was Salman Ahmed.

its timely diagnosis is necessary because there are many
high-risk health issues associated with Sleep Apnea.

Clinically, SA is diagnosed using nocturnal Polysomnog-
raphy of the patient. At least one night of polysomno-
graphic recording of patient’s usual sleep hours is required
for diagnosis. Clinical Polysomnography involves Electrocar-
diogram (ECG), Electroencephalogram (EEG), Electromyo-
gram (EMG), Electrooculography (EOG) and a number of
other electrophysiologic measures [6]. The detection tests
are done in sleep laboratories. The number and arrangement
of the signals vary from one laboratory to the other but,
in general, there is a minimum montage of 12 channels.
Based on the recorded data of these signals, a comprehensive
study of the nocturnal activity is performed and based on
the results the suspected patient is diagnosed [6]. Although
polysomnography has a very high accuracy, however, it is
very expensive since it involves a number of costly electro-
physiologic tests. In addition to the expenses, the associated
physical fatigue also demoralize the patients to investigate the
sleep disorders they are facing.

Research has been started on signal processing based
diagnosis of SA. The disruption in breathing caused by
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Sleep Apnea affects few physiological signals, in one way
or the other. For the extraction of the discriminatory fea-
tures in the stated signals, many signal processing tools, like
Fourier transform, wavelet transform, etc., are in use. Several
researchers have deployed signals like EEG, SpO2 and ECG,
both individually and in different combinations of each other
for developing a signal processing based solution to Sleep
Apnea diagnosis [3]–[5], [7], [8], [11]–[13], [15], [16], [18],
[19], [22], [23]. Some algorithms have shown 100% accu-
racy for diagnosing Sleep Apnea [7], [12], [13], [18]. How-
ever, there are several issues including complexity, memory
inefficiency and the need for human intervention, etc. that
are needed to be addressed. There appears a wide scope
for improvement in the signal processing diagnostic algo-
rithms especially regarding simplicity, memory efficiency
and robustness in diagnosis.

This paper presents a simple method for Sleep Apnea
diagnosis deploying ECG data of the suspected patients.
For the study purpose, the ECG data of patients has been
borrowed from online MIT-BIH Sleep Apnea database [1].
RR intervals of the ECG waveform have been researched
for detecting possible changes in case of SA. Based on the
physiological aspects associated SA, there is a particular
narrow band of frequency in the spectrum of the RR interval,
where the changes are expected to occur in case of SA. The
presented technique deploys Discrete wavelet packet trans-
form (DWPT) [2] in the stated narrow frequency band. The
frequency transformation and statistics generated from it are
followed by a comprehensive statistical study to obtain the
right threshold for diagnosing Apnea cases. The performance
of the developed method is evaluated and validated in terms
of probability of detection and probability of error, accuracy,
specificity and sensitivity. This paper is organized as follows.
The proceeding section discusses the data sources and the
technique in detail. Section 3 presents the results with the
associated discussion. Section 4 concludes the paper followed
by the references in section 5.

II. MATERIALS AND METHODS
A. STUDY GROUP
In this research,MIT-BIH online sleep apnea database [1] has
been deployed. The single channel ECG data was extracted
from the Polysomnographic recordings by a sampling rate
of 100 Hz. The average duration of recording is 8 hours.
The sleep recordings originated from subjects between 28 and
63 years of age, with the weight in range of 53 and 135 kg.
The duration of the recordings varied between 401 and
578 min (average: 492, standard deviation: 32 min.). Two
databases have been provided, one for training and testing
(dataset A) and the other for validation (dataset Av). We have
subdivided dataset A in Al and At for the learning and testing
phase respectively. By learning the features from Al , a thresh-
old is achieved, which is later tested using At , whereby cases
in the dataset At are classified as normal or abnormal. Later,
the decision of our scheme is compared with the human

annotations provided by MIT online database. To observe the
behavior of our developed technique in a diverse and richer
database, it would be validated using Av, which contains
35 unique cases of normal andApnea patients, all shuffled up.
Similarly, as in the testing phase, the decisions are compared
with the human annotations provided by MIT-BIH online
Sleep Apnea database and results are recorded.

B. OUR HYPOTHESIS
Since Sleep Apnea refers to the cessation of breath for 10 sec-
onds or more [6], more dominant low-frequency components
are expected to be present in the power spectrum of RRI.
Drinnan et al. [8] have noticed these low frequency compo-
nents using Fourier Transform and have developed a tech-
nique that relies on the ratio of the spectral power between
0.01 and 0.05 cycles/beat and 0.005 and 0.01 cycles/beat
to detect Sleep Apnea. Fig. 1 depict the power spectrum of
RRI in Apnea and normal case, respectively, as observed by
Drinnan et al. [8].

FIGURE 1. Power spectrum Apnea FFT (left) and normal FFT (right).

In Fig. 1, it is observable that the power spectrums of
RRI data contain distinctive features when Apnea is present
(spectral peak between 0.005-0.05Hz). Our technique also
makes use of this distinctiveness, in its own way, in order to
make it simpler and time efficient. It takes the ECG data as an
input and derives the RRI data from it and then obtains mag-
nitude squared DWPT coefficients over the frequency band of
interest (FbOI)(to be discussed in detail later), where the fre-
quency features specific to Apnea are prominent. A suitable
decision variable (DV) is defined in order to classify Apnea
or normal cases.

Assume that the underlying statistics of the decision vari-
able (DV) when Apnea is present and also when Apnea is
absent are both Gaussian (having different mean values say
µa and µn for Apnea and normal respectively). This assump-
tion would provide a smarter way to derive the probability
of miss detection as well as false alarm. Hypothetically, let
Fig. 2a and 2b represent the PDF of the decision variable
in normal and abnormal case respectively, while Fig. 2c is
the combined plot of Fig. 2a and 2b. Confusion Area (CA)
in Fig. 2c represents the overlap between the PDF of normal
and abnormal cases, giving rise to the false alarm and miss
detection. Th in Fig. 2c represents the Threshold, which is
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FIGURE 2. Expected PDF in FbOI for normal and abnormal (Apnea) cases.

defined here as the intersection point of the two overlapping
curve.

The RRI data, given by symbol x(i), is segmented into
5 minutes blocks. Let the decision variable (DV) be written
as dk , where k is the block number. dk is an average number
derived from magnitude-squared of the DWPT coefficients

of the RRI data over FbOI. If its statistics (as provided by
PDFs p(dk |Apnea) and p(dk |normal) are assumed Gaussian,
as illustrated in Fig. 2a and 2b respectively, then probability
of miss detection and probability of false alarm are given by:

Pmd =
∫
R0
P(dk |Apnea) =

1√
2πσ 2

a

∫ Th

−∞

e
−(dk−µa)

2(σa)2 ddk (1)

Pfa =
∫
R1
P(dk |normal) =

1√
2πσ 2

n

∫
∞

Th
e
−(dk−µn)

2(σn)2 ddk (2)

where R0 is the normal region on the left side of threshold
line and R1 is the Apnea region on the right side of threshold
line.

Hence, the probability of error, Pe, can be defined as:

Pe = Pmd + Pfa (3)

Accordingly, the probability of correct detection, Pd is:

Pd = 1− Pe (4)

The assumption of Gaussianity (specifically at the tails
of PDFs where confusion area exists) is subject to verifi-
cation. The first step was to obtain the histogram of the
decision variable dk in both normal and Apnea cases, and,
use that to obtain (empirically ) the threshold and thereby,
semi-analytical values of Pe and Pd . In the light of the above
discussion, it is important to derive a suitable decision vari-
able that may support an accurate yet simple diagnosis of
Sleep Apnea.

C. THE SYSTEM MODEL
The system model is based on three core phases, i.e., RRI
processing, designed technique and the developed decision
phase, as depicted in Fig. 3. In Fig. 3, x(i) represents RRI data
stream, xk (m) are the processed RRI data blocks; dk refers to
decision variable extracted by the technique phase and A/N

FIGURE 3. The system model.
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represents the decision phase output referring an RRI data
block as abnormal or normal.

1) RRI PROCESSING PHASE
In RRI processing phase, the RRI data is initially prepared
according to the need of the next phase. First of all, x(i) is
segmented into N blocks, each of length M . Thus,

xk (m) = x(i− kM ), (5)

where k is the block number and 0 6 m 6 M − 1, 0 6 i 6
N − 1 and 0 6 k 6 N/M − 1.
Afterwards, xk (m) is corrected by removing outliers and

false shoot up in xk (m). R-R intervals often have missed
or impractical magnitudes due to several reasons including
equipment sensitivity and programming limitations. In order
to eliminate the issue of false shoot up/shrink magnitudes,
two thresholds (thl = 0.4 and thu = 2) have been defined
for lower and upper cut-off limits. If a sample of xk (m),
crosses the defined threshold, its value is adjusted by taking
the mean of two previous and two later samples. The false
shoot up/shrink magnitudes in xk (m), as discussed earlier,
are replaced with the corrected values in xk (m), which is the
output of RRI processing block.

2) THE TECHNIQUE PHASE
This phase is the backbone of the methodology as it provides
the decision variable as its output while taking in xk (m)
as its input. The schematic diagram of this block along
with the sub-blocks is depicted in Fig. 4. The frequency

FIGURE 4. The components of the technique phase.

domain analysis of RRI is considered as a tool to discriminate
between normal and abnormal cases. Logical determination
of frequency band of interest (FbOI) is of core importance,
as the rest of the analysis totally depends on it. FbOI has been
defined from 0−0.125Hz. This selection has a physiological
explanation as Sleep Apnea events consist of respiratory
arrests lasting over 10 sec, including the awakening response
after Apnea. The minimum limit of respiratory cessation
is 10 seconds, that corresponds to the frequency of 0.1Hz.
The longest Apnea time usually observed lasts approximately
2 min (0.008 Hz) [21]. Therefore, SA-positive(Sleep Apnea
Positive) subjects are expected to have a higher power in
0.008 − 0.1Hz. In this research, we are performing short
time analysis of ECG signal, whereby the whole night of
ECG signal is divided in blocks of 5 minutes intervals. Due
to programming limitations the upper limit of 0.125Hz has
been used. Given the presence of new frequencies in FbOI
during Apnea event, the technique relies on an in-depth study
of FbOI, utilizing wavelet transformation.

In order to achieve FbOI and decomposition of FbOI for
frequency content analysis,Wavelet multi-resolution analysis
would be performed on xk (m). Till the achievement of FbOI,
detailed coefficients are discarded to ensure minimal memory
usage. However, both approximate and detailed components
are used while decomposing and analyzing FbOI. In order to
fit into wavelet multi-resolution framework, xk (m) is consid-
ered to be the approximate coefficients at scale m = 0 (S0,n),
defined by

S0,n = xk (m), (6)

where n is the translation parameter in the wavelet trans-
formation. In order to achieve maximum simplicity, Haar
function [2] has been deployed as base wavelet, which
later proved to be sufficient enough to segregate normal
and abnormal cases successfully. The general formulas for
approximate(Sm,n) and detailed coefficients (Tm,n) usingHaar
function are:

Sm,n =
1
√
2
[Sm,2n + Sm,2n+1], (7)

and

Tm,n =
1
√
2
[Sm,2n − Sm,2n+1]. (8)

Using Eq. 7 and 8, the first step wavelet decomposition of
S0,n leads to the approximate and detailed coefficients as,

S1,n =
1
√
2
[S0,2n + S0,2n+1], (9)

and

T1,n =
1
√
2
[S0,2n − S0,2n+1], (10)

where S1,n and T1,n represents the approximate and detailed
coefficients respectively. Using the wavelet-multi-resolution
concept, two further decompositions are performed on
approximate coefficients to achieve the FbOI while detailed
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coefficients are discarded. Third level approximate coeffi-
cient S3,n contains the required FbOI.

S3,n =
1
√
2
[S2,2n + S2,2n+1]. (11)

At m = 3, S4,n and T4,n are achieved as follows:

S4,n =
1
√
2
[S3,2n + S3,2n+1], (12)

and

T4,n =
1
√
2
[S3,2n − S3,2n+1]. (13)

For an in-depth analysis of the FbOI, from this point
onward detailed coefficients would also be decomposed. Till
m = 6, decomposition is performed using Eq. 7 and 8. Fig. 5
highlights the decomposition tree.

FIGURE 5. DWPT decomposition of RRI.

The concatenated array of decomposed wavelet coefficient
would be,

W 6
i = (Di−7,Di−6, ....,Di), (14)

where i = 12. W 6 depicts that six steps of decomposition
have been performed. The achieved set of decomposed values
provides an insight to the defined FbOI. Hence, our focus is
to analyze and mark the differences in W 6

i for normal and
abnormal cases. Now in order to obtain a decision variable
fromW 6

i , few mathematical steps have to be performed. First
of all, for avoiding the value cancelation between positive and
negative value while averaging, magnitude squared DWPT
coefficients are calculated, as shown in Eq. 15

pk (l) = |W 6
i (l)|

2 (15)

where l is the length of the array. Later, in order to avoid the
block to block variations in peak values, normalization has
been done. Normalized pk (l) is given by Pk (l),

Pk (l) =
pk (l)

max(pk (l))
(16)

However, it is seen that the Apnea attributes in Pk (l) are a
small fraction of unity. In the proposed method, the relative
emphasis of these small fraction coefficients is increased by
adopting a logarithm approach. We convert Pk (l) to their
respective decibel value, 10log10Pk (l). By doing so, the peak
value of unity becomes 0dB while all other smaller fractions
are in a range from −20dB to −80dB whose range is far nar-
rower than their linear counterpart in Pk (l). Now an average
of this set is taken - an average that is no longer skewed to
unity if it was taken without logarithm.

Let this average be given by Pk , and defined as:

Pk =

l∑
n=1

10log10p(n)

l
(17)

where k denotes the kth block. We assume that Pk carries the
Apnea attributes and can act as the suitable DV. Asmentioned
in section II-B, if the underlying statistics of this DV are
Gaussian under two cases of normal and Apnea, it can be
usefully used for detecting Apnea. In order to validate this
assumption, we now undertake a histogram analysis of Pk in
two cases separately - one where Pk is for normal cases and
another when it is for Apnea cases. Pk is the output of the
technique block - the decision variable, dk , of section II-B.
In the next section, Pk would be used to represent the decision
variable, instead of the assumed DV, dk .

3) THE DECISION PHASE
The role of this phase is to provide robust and reliable detec-
tion based on the decision variable (Pk ) provided by the devel-
oped technique. PDFs of Pk have been determined, in both
the Apnea and normal cases. It was assumed in section II-B
that if the PDF were Gaussian, the Pfa and Pmd could be
easily determined. In this section, we will verify whether
the Pk is indeed Gaussian or not. If not, whether it can still
be used in the same manner. Towards this end, we take the
ECG data fromMIT online Sleep Apnea database. In order to
study the underline statistics and features, we are deploying
data set Al (as discussed in section II-A that contains data
from 17 patients with no, mild or severe Apnea).

In order to investigate the statistical trends followed by Pk ,
a histogram is constructed using the value of Pk from data
in Al . Later the threshold is evaluated and Th, Gaussian curve
fitting has been done on the histograms, as shown in Fig. 6.
MATLAB 2009a [17], curve fitting tool (cftool) has been
deployed to curve fit the histogram.

Individual characteristic equations have been obtained, for
both cases. Eq. 18 represents the curve-fit equation for the
normal case.

fn(α) = β1 × e(−((α−γ1)/ζ1)
2)
+ β2 × e(−((α−γ2)/ζ2)

2), (18)

where α, γ , ζ , and β denotes Pk , mean, variance and relative
strength of each curve in the Gaussian mixture.

The available range of the coefficients for curve fit-
ting is obtained whereby the 95% confidence bound values
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FIGURE 6. Histogram of Pk values in Apnea and normal cases for Al
along with Gaussian Fit.

are utilized. For the normal case, a summary of the available
and chosen values of coefficients is mentioned in Table 1.

TABLE 1. Variable values for Normal case for 50% learning data.

TABLE 2. Variable values for Apnea (Abnormal) case for 50% learning
data.

Eq. 19 represents the curve-fit equation for Apnea. For the
Apnea case, a summary of the available and chosen values of
coefficients, of Eq. 19, is mentioned in Table 2.

fa(α) = a1 × e(−((α−b1)/c1)
2)
+ a2 × e(−((α−b2)/c2)

2)

+ a3 × e(−((α−b3)/c3)
2) (19)

where α, b, c, and a denotes Pk , mean, variance and relative
strength of each curve in the Gaussian mixture.

From Fig. 6, it is clear that although both the curves are
not pureGaussian however, instead superposition ofGaussian
functions. However, their tails in the confusion area are quite
close to the Gaussian tails of Fig. 2. In the confusion area,

an interesting phenomenon is observable whereby, we notice
that for normal curve sometimes,

|α − γ1| < |α − γ2| (20)

Because of this relationship, e−(α−γ2)/ζ2 in Eq. 18 would
be increased incredibly as compared to e−(α−γ1)/ζ1 , hence,
in confusion area, Eq. 18 reduces to,

fn(α) = β2 × e(−((α−γ2)/ζ2)
2) (21)

While depending upon the values of γ1 and γ2 sometimes,

|α − γ2| < |α − γ1| (22)

Hence, at some α, either of the curve would be negligible
reducing the Eq. 18 to only one Gaussian curve equation.
Lets assume i denotes the curve with potentially higher value,
hence,

fn(α) = βi × e(−((α−γi)/ζi)
2) (23)

On the similar grounds, the reduced equation in the confu-
sion area for Apnea curve can be written as:

fa(α) = ai × e(−((α−bi1)/ci)
2) (24)

From Eq. 23 and 24 it is obvious that in the confusion area
there exist only two Gaussian curves. Accordingly, the maxi-
mum likelihood criteria can be used tomaximize the detection
of Apnea. The optimum values of Pfa and Pmd are thus
uniquely obtained using the threshold, Th, as discussed in
the next section. In order to achieve the optimum threshold,
a new function H (α) has been defined,

H (α) = fa(α)− fn(α). (25)

The optimum threshold that maximizes the detection of
Apnea is the intersection point of fa(α) and fn(α) i.e., when
α = Th, H (Th) = 0. Th has been obtained using the
well-known Newton Raphson’s Method [9] with initial value
α = −70. By this method th = −64.82. Accuracy, speci-
ficity, and sensitivity have been calculated for Al .

D. DATA SIZE OPTIMIZATION TEST
The ratio selection of learning and testing database is crucial.
Our aim is to extract the optimum threshold in order to
achieve the statistically sufficient size of the learning set.
An in-depth study has been done using different ratios of Al .
This test provided an insight to the statistical properties of the
dataset A. The change in the value of threshold when the per-
centage of learning data is changed, is summarized in Fig. 7.
The threshold value becomes stable when more than 40% of
data is used in the learning set, as depicted in Fig. 7. However,
it has been observed that the threshold value fluctuates only a
little from the learning data size variation of 10% to 50%. It is
because the overlapping area between the two curves is only
about 1% of the total area. Hence, our method is dynamic
and robust enough to tolerate the small changes in threshold
level caused by different ratios of training and testing data.
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FIGURE 7. Value of threshold vs learning data size.

However, in this particular research we have deployed 50%
to 50% data division between Al and At .

Moreover, it is interesting to note that the adjusted
R-square (goodness of fit) becomes closer to 1 when the data
size is increased from 10% to 40% showing that the fit is a
good representation of the statistics of the data. Similar trends
can be observed in R-square and RMSE (Root Mean Square
Deviation) values from 10% to 40% of data division between
learning and testing set when compared with their definitions.

E. CONFIDENCE BOUND TEST
Confidence bound test was performed in order to assure that
the developed scheme is not dependent on the patients data
being chosen for learning or testing; rather the evaluated
threshold has negligible fluctuations when the data sets are
changed. For example, in one iteration patient 3 data was cho-
sen for learning while in the second iteration it was dropped
and patient 5 was selected. Similarly, about 10 iterations
were performed by choosing and dropping different data
sequences. The Standard deviation of the thresholds has been
evaluated.

F. PERFORMANCE EVALUATION
The performance of the developed technique is evaluated
using Pfa, Pmd , Pd , Pe, accuracy, sensitivity and speci-
ficity. These measures were evaluated using confusion matrix
parameters, as mentioned in Table 3.

TABLE 3. Confusion matrix.

The probability of false alarm can be evaluated using the
parameters of confusion matrix as follows.

Pfa = lim
n→∞

FP
TN

, (26)

where n denotes the number of experiments. This equation
represents the ratio of false alarm with respect to the correctly
determined negative cases.

The probability of misdetection can be evaluated using the
parameters of confusion matrix as follows.

Pmd = lim
n→∞

FN
TP
, (27)

where n denotes number of experiments. This equation rep-
resents the ratio of misdetection with respect to the correctly
determined positive cases.

The error introduced in our case is either a false alarm or a
misdetection, hence the net probability of error would be the
sum the probabilities of these two entities. Mathematically,

Pe = Pfa + Pmd . (28)

The probability of error-free detection or simply the prob-
ability of detection can be determined as:

Pd = 1− Pe. (29)

The specificity indicates the ability of a classifier to detect
negative cases, i.e. normal cases. It is calculated using Eq. 30.

Specificity =
TN

(TN + FP)
× 100% (30)

The sensitivity represents the ability of a classifier to detect
the positive cases, i.e. SA cases. It is calculated using Eq. 31.

Sensitivity =
TP

(TP+ FN )
× 100% (31)

The accuracy represents the overall performance of a clas-
sifier. It indicates the percentage of correctly classified pos-
itive and negative cases from the total number of cases. It is
calculated using Eq. 32.

Accuracy =
(TP+ TN )

(TP+ FP+ TN + FN )
× 100% (32)

III. RESULTS AND DISCUSSION
This section presents the results obtained from the developed
scheme along with the associated discussion. In order to test
the developed method for block-based detection, ECG data
stream is divided into 5 minutes data blocks. The status of
each minute (as annotated by human experts in the database)
is checked and if there is a single Apnea minute in a block the
whole block is marked as Apnea. An annotation array, Arra,
is created for storing the status of all the blocks.

The developed scheme is tested using data set At . There
are total18 cases in At , out of these 18 cases, 10 are abnor-
mal, 5 are normal, and 3 are borderline. One by one, ECG
signal from each case is taken that later passed through our
model, as described in section II-C and final decision for each
block is determined as either normal or abnormal. A decision
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array Arrd stores the status for each block as decided by
the developed scheme. At the end, a comparison is made
between Arra and Arrd in order to acquire the accuracy
status of the developed scheme. The performance has been
evaluated using probability measures along with accuracy,
specificity, and sensitivity, as discussed in section II-F. The
results obtained by these steps are summarized in Table 4.

TABLE 4. Block based detection testing.

Afterwards, for the validation of the consistency of the
results obtained through this technique, it was tested for a
larger database. A similar procedure was performed for the
dataset Av that contains a total of 35 cases, out of which
20 are Apnea, 10 are normal, and 5 are borderline (summa-
rized in Table 5). The performance was also evaluated by
comparing the obtained results with the results of the testing
data.

1) DISCUSSION
It is worth mentioning that the basic idea of dividing the data
(in five minutes blocks) is to reduce the number of cycles
to determine the nature of data being normal or abnormal.
By this technique, instead of 5 iterations to determine the data
status of 5 minutes interval, only 1 iteration is required, which
makes our technique memory efficient and fast. If there is
only a single event of Apnea, the whole set is considered to
be abnormal which helps in cases based classification where
AASM1999 [20] criteria is deployed to segregate normal and
abnormal cases.

Careful study of the MIT BIH Sleep Apnea database has
reveled that in most cases, Apnea events occur in a continu-
ous pattern where there are Apnea (annotated) minutes from
10 contiguous minutes to an hour or more. However, it is also
noticed that in some scenarios there is a stand alone minute of
annotatedApnea in awhole series of normalminutes. In some
cases, where the pattern of previous and following normal
minutes is so strong as compared to a sudden and little event
of Apnea, this Apnea event remains hidden because of very
less activity in FbOI and the block is classified as normal

TABLE 5. Block based detection (validation).

which in turns reduces the sensitivity of the block-based clas-
sification. On the other hand, the situations where the person
is in the recovery phase after a severe Apnea episode, the fol-
lowing normal minutes after the long lasting Apnea episode
are highly under the influence of Apnea minutes. Although,
these minutes have been annotated as normal considering the
breathing pattern, but, they do have some traces of the passed
Apnea attack that sometimes forces our algorithm for a false
alarm of Apnea. In this way, some of the normal blocks that
follow intense Apnea episode are falsely regarded as Apnea
reducing the specificity of block detection scheme. However,
since the goal of this research is to diagnose Apnea cases,
it is crucial to note if the accuracy of case diagnosis (next
experiment) gets affected by this or not. If it gets affected, it is
also important to note the extent of incorrect results because
of the slightly reduced accuracy of block detection.

Since the primary goal of this research is to segregate
normal and abnormal cases, the block detection results, dis-
cussed above, provides the platform for overall diagnosis.
According to AASM 1999 criteria [20], a patient is consid-
ered to be a Sleep Apnea patient if he/she has 5 or more
episodes of Sleep Apnea in an hour. The decision record
of each block is kept in history and the number of blocks
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flagged as Apnea are counted on per hour basis. If there are
more than or equal to 5 Apnea blocks in an hour, the patient
is classified as Apnea patient [20]. Moreover, if there are
less than 5 blocks in an hour that shows presence of Apnea,
the patient is flagged as borderline. In this procedure, flag
history of the blocks in At and Av served as the input for
testing and validation of case diagnosis respectively. The
performance has been evaluated using probability measures
along with accuracy, specificity and sensitivity, as discussed
in section II-F. Table 6 encapsulates the results obtained for
testing scheme as stated above It also highlights the human
annotations as a comparison of our achieved results. Sim-
ilarly, results were achieved for Av, where in 6/35 cases,
a block faced misdetection (as summarized in Table 7). How-
ever, the overall diagnosis of the case did not suffer because
of this and the case was diagnosed correctly.

TABLE 6. Results of case diagnosis (testing).

All of the decisions of our classifier are in 100% agree-
ment with the results provided by human experts for each
case. Although our scheme does not yield 100% accuracy for
block based detection experiment, yet it does so for the cases
diagnosis. The reason lies in the fact that we have divided data
into 5 minutes blocks, which means there are 12 blocks in an
hour. For instance, if one block gives a miss detection or a
false alarm yet there are 11 more blocks to cover the mistake.
Moreover, we are using whole night data averaged 8 hours
of recording, hence in a very complex situation (normally the
borderline case) where because of a single miss detection our
count falls to 4 Apnea blocks in one hour where it should
have been 5Apnea blocks per hour, we still have the chance to
detect Sleep Apnea in the rest of 8 hours recording. This leads
to correct diagnosis of normal and abnormal cases yielding
100% accuracy.

However, these are only the worst case scenarios, or more
precisely it happens only in borderline cases where the patient
is only suspected of Apnea. An Apnea patient, as mentioned
earlier, usually has continuous disruption of respiration yield-
ing a lot of Apnea events. Moreover, the 98% classification

TABLE 7. Results of case diagnosis (testing).

TABLE 8. Cases based performance evaluation using At .

TABLE 9. Cases based performance evaluation using Av .

accuracy in block based detection scheme is quite high to help
in the correct classification at the overall case level. The tables
in this section highlight the values of performance evaluation
measures evaluated from the tables presented in section III
(with the help of the definitions explained in section II-F).
The value of Pfa is decreased while calculated for Av. It is
because of the fact that Av is a larger database and so owns
more number of normal blocks than that of At . Hence TN
cases increase, subsequently decreasing the Pfa.
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TABLE 10. Block based performance evaluation using Av .

TABLE 11. Block based performance evaluation using At .

IV. CONCLUSIONS
The main target of this study was the development of an ECG
based SleepApnea detection algorithm that is fast and simple;
which may contribute towards easy and early diagnosis of
sleep apnea. Most of the available schemes mentioned in
the literature are complicated either because of the use of
more discriminatory features or deployment of more than one
technique.

The scheme proposed in this research focuses on the least
number of features to be incorporated. Only the RRI time-
series, derived from the ECG signal, has been used and a
single decision variable Pk is selected. This unitary signal and
discriminatory variable selection have made the algorithm
quite simple.

Moreover, during the wavelet analysis, only FbOI is
focused and till the achievement of FbOI, detailed compo-
nents have been discarded, hence conserving the memory.
This technique not only helped in reducing the memory
consumption, but it also increased the accuracy as precisely
the activity during Apnea event is focused and redundant
detail is discarded. Hence, all the analysis iteration process
is performed on a small frequency band while neglecting the
rest of the spectrum.

As summarized in section III-.1, the proposed scheme
segregate Apnea patients from normal people with 100%
accuracy. The scheme has first been tested on 18 different
data sets followed by blind validation of 35 more cases.

Chazel et al. [7], have deployed multiple techniques while
using both the RRI and EDR (ECG Derived Respira-
tion) signals, in order to achieve 100% accurate classifi-
cation of Sleep Apnea patients. In contrast, our method
used only the RRI feature of ECG and used single DWPT
based technique to achieve the same accuracy. In 2008,
Khandoker et al., [13] had discovered a method for 100%
classification accuracy of SleepApnea patients usingWavelet
transform. But this technique also deploys two features of

ECG signal, i.e., RRI and EDR. Study of two features needs
more computation as compared to our technique where the
analysis of only one feature is required. Using Spectrogram,
McNames and Fraser [18], have achieved 100% accuracy but
they have also used two features, i.e., RRI and S-amplitude
of ECG wave. Jarvis and Mitra [12], have presented a spec-
trogram based solution, but the threshold of the technique is
not standard. Every time, the entire data has to be analyzed,
a new threshold is produced and in the end a decision can
only be made after the analysis of whole data once again.
On the other hand, we have trained our classifier based on
the statistics of learning data and a robust standard threshold
is achieved. Our proposed scheme makes decisions based on
five minutes data blocks and after the analysis of 12 blocks
(1 hour) a tentative decision can be made that may further be
strengthened by studying more blocks.

In a nutshell, a comprehensive statistical study has been
performed using the learning database. The best fit applied to
the probability density function validates that a simple binary
maximum likelihood detection can be used for the purpose.
Accordingly, a unique threshold is obtained that minimizes
the decision error. Based on the threshold, Sleep Apnea is
diagnosed in each block of every patient’s record in the testing
database. Overall classification of the patients is performed
by using the AASM 1999 criteria on the diagnosed blocks-
AASM 1999 criteria says that a person is said to suffer from
Sleep Apnea if he\she has 5 or more episodes of Sleep Apnea
per hour in whole night recording. Validation has been per-
formed by using a richer database containing 35 records. The
decisions of our scheme are compared with the human anno-
tations provided at the MIT-BIH online database. Validation
process revealed that this scheme has the capability to segre-
gate the Apnea and normal cases accurately. Hence, the tech-
nique serves to minimize the chance of undiagnosed Sleep
Apnea with 100% accuracy while being very simple and time
efficient as compared to the traditional methods.

The developed scheme may be employed to make a com-
mercial device for Sleep Apnea detection that will take dig-
itized ECG signal and will display the status of the patient
as suffering from apnea or normal. The hassles of Sleep
Apnea detections will lessen along with associated costs.
Moreover, this disease will nomore remain a silent killer after
the availability of a small and cheap handheld Sleep Apnea
detector.
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