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ABSTRACT The traditional solid-state drive buffer management algorithm generally adopts fixed structures
and parameters, leading to their poor adaptability. For example, after the underlying flash translation
layer (FTL) or the upper workload is changed, the traditional algorithm’s performance fluctuates sig-
nificantly. Focusing on this problem, based on the cross-layer aware method, we propose an Advanced
Adaptive Least Recently Used buffer management algorithm (AALRU). The core idea of the AALRU is
that by sensing the characteristics of the upper workload and the status of the underlying FTL, the AALRU
adaptively adjusts its structure, parameters, and write-back strategy to optimize the buffer’s performance.
First, the AALRU divides the buffer into two parts: read buffer and write buffer, and their proportion is
adjusted by sensing the read-write characteristics of the workload and the underlying read-write latency.
Second, the AALRU employs different granularities to manage the buffer. On one hand, for data loading
and migrating, the AALRU adopts page-level granularity, which can avoid the problem of hot and cold data
page entanglement in block management, and thus improve the buffer hit ratio. On the other hand, for data
writing back to the FTL, the AALRU adopts block-level granularity, which can enhance the continuity of
write requests and thus reduce the underlying FTL’s garbage collection overhead. Finally, when the clustered
data are written back, by sensing the underlying FTL’s garbage collection status, the AALRU adaptively
adjusts the page-padding trigger threshold to reconstruct the continuity of the write-back data, which can
mitigate the underlying FTL’s garbage collection overhead. The experimental results show that the AALRU
has the best adaptability to different FTLs and test workloads, and it can achieve optimal or near-optimal
results.

INDEX TERMS Solid-state drive, buffer management, adaptive algorithm, cross-layer aware.

I. INTRODUCTION
The performance of processors has increased rapidly in accor-
dance withMoore’s Law over the past few decades. However,
the performance improvement of a storage system based
on a hard disk drive (HDD) has been slow, which has led
to an increasing performance gap between computing and
storage [1]. Compared with the traditional HDD, the solid-
state drive (SSD) based on the NAND flash memory has
many excellent features such as its low power consump-
tion, fast reading and writing speed, light weight, small
size, shock resistance, and noise-free performance [2], [3].

The associate editor coordinating the review of this manuscript and
approving it for publication was Guan Gui.

Therefore, SSD is widely used in consumer electronics and
enterprise-level computer systems.

Despite the SSD’s performance advantages, due to the
characteristics of the underlying NAND flash memory,
it retains many disadvantages [4]–[6]. For example, the in-
place update is not allowed because NANDflash memory has
the erase-before-write physical restriction, i.e., once a storage
unit is written, it cannot be programmed until it is erased.
Injecting electrons into the floating gate always takes longer
than sensing its status, resulting in SSD’s asymmetric per-
formance between read, write and erase. Moreover, NAND
flash memory has limited program/erase (P/E) times, that is
to say, when the erase counts exceed the maximum value,
the dedicated storage unit cannot store data reliably.
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To solve or alleviate the above problems caused by the
characteristics of underlying NAND flash memory in the
SSD, two methods are mainly used: 1) Add a flash trans-
lation layer (FTL) to the SSD to hide the characteristics of
the underlying flash memory [7], [8] so that the SSD can
work like a traditional HDD. 2) Add a buffer layer to the
SSD and design a corresponding buffer management algo-
rithm (BMA), so that most of the requests can be served in
the buffer. In this paper, we focus on the latter.

Generally, the size of the buffer is limited andmuch smaller
than the storage space. To maximize the usage of buffer
space, the BMA should load the frequent-access data into the
buffer and evict the infrequent-access data when the buffer is
full. Due to the physical restriction of NAND flash memory,
i.e., the read, write and erase performance of NAND flash
are asymmetrical and the cost of write is significantly higher
than that of read [9]–[11], the traditional BMA developed
for the HDD is not applicable on SSD. Therefore, many
BMAs are proposed for SSD’s buffer management. However,
the existing BMAs for SSDs generally adopt fixed structures
and parameters, leading to their poor adaptability. After the
underlying FTL or the upper workload is changed, their
performance may degrade dramatically.

In this paper, based on the cross-layer design idea, we
propose an advanced adaptive least recently used (AALRU)
buffer management algorithm for SSDs. The key idea is to
adaptively adjust the buffer structure, parameters, and write-
back strategy by sensing the characteristics of the upper work-
load and the status of the underlying FTL, thereby increasing
the buffer hit rate, reducing the actual flash writes and erase
counts, and improving the SSD’s performance. The experi-
mental results show that under different FTLs and different
test workloads, AALRU has the best adaptability and can
achieve optimal or near-optimal results. Specifically, com-
pared with the classic BPLRU in [12], FAB in [13], CFLRU
in [14], and ADLRU in [15], AALRU improves the buffer
hit rate, block erasure counts, and average response time, as
shown in Table 1.

TABLE 1. Experimental results.

The rest of this paper is organized as follows. In Section 2,
we present relatedwork, including introduction of flashmem-
ory, various existing FTLs and BMAs. The proposed BMA is
described in Section 3. The experimental results are explained
in Section 4. The conclusions are presented in Section 5.

II. RELATED WORK AND MOTIVATIONS
A. FLASH MEMORY
There are two types of flash memories: NOR and NAND.
NOR flash memory supports random accesses in bytes and

it is mainly used for storing code. NAND flash memory
is designed for storing data with denser capacity and only
allows access in pages. Nowadays, Most SSDs available on
the market are based on NAND flash memories.

NAND flash memory can be classified into three cate-
gories: single-level cell (SLC), multi-level cell (MLC) and
triple-level cell (TLC). The SLC, MLC and TLC flash mem-
ory cells store one bit, two bits, three bits or even more,
respectively. For all types of NAND flash memory, a package
is composed of one or more dies (chips). Each die within a
package contains multiple planes. A typical plane consists of
thousands (e.g., 2,048) of blocks. Each block in turn consists
of 64 to 128 pages. Each page has a data area, for storing
user data, and an out-of-band area, for storing other data
(e.g., identification, page state, and error correcting code).

Flashmemory supports three major operations: read, write,
and erase. Read and write are done in units of pages while
erase is done in units of blocks. Flash blocks must be erased
before they can be reused, known as the erase-before-write
property. In addition, each block has a finite number of P/E
times. The P/E cycles are usually around 1,000 to 100,000,
depending on the type of the flash type. For example, the SLC
flash has about 100,000 erase cycles and the TLC has only
about 1,000 erase cycles.

B. FLASH TRANSLATION LAYER
As an essential firmware of SSD, FTL plays a key role
in providing address mapping, garbage collection and wear
leveling, which allows hosts to access flash memory in the
same way as conventional HDDs. Address mapping is the
core functions, because the flash does not support in-place
updating and requires erase before write, so an address map-
ping scheme is required to store the updated data in other free
pages of the flash and then invalidate the pages that previously
stored the data.

According to the size of the address mapping granularity,
address mapping can be divided into page-level, block-level,
and hybrid mapping. Page-level mapping needs to maintain
the mapping relationship between the physical page and the
logical page. Block-level mapping needs tomaintain themap-
ping relationship between the logical block and the physical
block. Since a block of flash memory usually contains multi-
ple (64 or 128) pages, the block-level mapping has a much
smaller table size than the page-level mapping. However,
the consistency of the intra-block data page offset address in
block-level mapping results in low efficiency. To overcome
the shortcomings of these twomappingmethods, hybridmap-
ping uses a dedicated log block to record updated data, a page-
level mapping scheme is used in the log block, and other
storage spaces use a block-level mapping scheme, effectively
reducing the occupation of the page-level mapping table and
reducing the erase counts of the block-level mapping scheme.

Representative hybrid address mapping algorithms are
FAST [16], Superblock [17], LAST [18], etc. However,
hybrid mapping generally has the problem of full merge
caused inefficient garbage collection. The cost of full merge is
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too high, which seriously affects the read-write performance
and increases the wear of the SSD. Therefore, many new
page-level address mapping algorithms have been proposed,
such as DFTL [19], OAFTL [20], K-CPM [21], DAC [22],
DVPFTL [23], MVFTL [24], etc. Currently, hybrid mapping
or new page-level mapping are the commonly used address
mapping algorithms.

C. BUFFER MANAGEMENT ALGORITHM
The buffer is an optional module of SSDs, which is located
between the host interface layer and the FTL and mainly
used to improve the read-write performance and extend the
life of SSDs. In the BMA design for SSDs, it is necessary
to cache the write request of high-frequency access as much
as possible, reconstruct the random request as the sequential
request, and reduce the FTL’s write amount and garbage col-
lection overhead. According to themanagement granularities,
the BMA can be divided into page-level BMA and block-
level BMA.

The page-level BMAmanages the buffer with the granular-
ity of a page; the representative algorithms include CFLRU,
LRU -WSR [25], CCF-LRU [26], CLRU [27], ADLRU, etc.
CFLRU takes into account the different read-write delays and
costs in the flash, and prioritizes replacing clean pages in the
buffer based on the LRU strategy. LRU-WSR divides the dirty
pages in the buffer into cold and non-cold by means of the
‘‘cold detection’’ scheme based on the secondary opportunity
and preferentially evicts the cold dirty pages when the dirty
pages are removed. CCF-LRU further recognizes the clean
pages of the buffer as cold and hot, and the buffer evicting
order is cold clean pages, cold dirty pages, hot clean pages,
and hot dirty pages. Based on CCF-LRU, CLRU recognizes
cold and hot data pages with relative access spacing and
dynamically distinguishes between cold and hot of clean
and dirty queues. However, in the actual system operation
process of LRU-WSR, CCF-LRU, and CLRU, a problem is
that the hot clean page cannot be recognized because the
cold region is gradually reduced. For this problem, ADLRU
sets the minimum cold region lower limit (min_lc). When
the cold region size reaches the min_lc, the hot region is
selected for eviction to ensure that the data in the cold region
can gradually become hot. In the processing of hot page and
cold page recognition, page-level algorithms, such as CARF
[28] and PR-LRU [29], recognize hot data based on the page
access history information. CARF converts the corresponding
page information into page weights and manages the data
pages by the weights. PR-LRU converts the corresponding
page information into the probability that the data page will
be accessed again, and selects the data page with the lowest
probability as the victim page. Generally, because of the page-
level granularity, the page-level BMA can better identify hot
and cold of the data page, thereby increasing the hit rate of
the buffer. However, when the data page is evicted from the
FTL, since the evicting size is a page, clustered write-back
data pages cannot be implemented, which may increase the
overhead of FTL’s garbage collection.

Unlike the page-level BMA, the block-level BMA man-
ages the buffer with the granularity of a block (i.e., the data
pages of the same logical block). Thus, it can reconstruct
random requests into sequential requests and cluster the
data pages of the same logical block to writeback, which
reduces the FTL’s garbage collection overhead. In the spe-
cific implementation, the block-level BMA only caches write
requests generally, and the representative algorithms are
FAB, BPLRU, CLC [30], etc. FAB sorts the clusters in
the buffer according to the cluster size. When the buffer is
full, the largest block is found for eviction. Based on the
LRU strategy, BPLRU adopts the LRU compensation scheme
when continuously writing and uses the page padding scheme
when evicting, which can improve the block-level BMA’s
performance. CLC divides the buffer block queue into high-
time and low-time local characteristic block queues. The
LRU strategy is used to manage high-time local character-
istics block queues, and FAB is used to manage low-time
local characteristics block queues. The ratio of the number
of blocks contained in the two queues is approximately α.
When the buffer is full, the largest block in the block queue
with the low-time local characteristics is selected for evic-
tion. Based on the CFLRU, CFDC [31] adopts hybrid man-
agement granularity. In the priority replacement region of
CDFC, the dirty pages are clustered into blocks to write-
back, which reduces the number of writeback compared
with CFLRU. Overall, the block-level BMAs has better
write-back performance, but the buffer hit rate is lower.
The comparison of mentioned BMAs are summarized in
table 2.

D. MOTIVATIONS
The above-mentioned BMAs have designed well the SSD’s
buffer management from the page-level and the block-level
perspectives. However, they have failed to solve the following
three problems at the same time:

1) NON-ADAPTIVE STRUCTURE AND PARAMETERS
The structure of the existing BMA is mostly fixed, and
many parameters are also specified in advance, which
makes the existing BMA not suitable for various workloads
generally.

In the actual application, many types of SSD workloads
exist, and their characteristics are difficult to predict. Even
the same workload exhibits different characteristics in dif-
ferent statistical periods. Figure 1 shows the read requests
ratio of Fin1 and Fin2 [32]. In Figure 1, the horizontal
axis represents the number of periods and 10,000 requests
of the workload are regarded as one period. Among them,
Fin1 is the write-intensive type, and Fin2 is the read-intensive
type. As illustrated in Figure 1, both Fin1 and Fin2 have
sharp changes in their read ratios. So the read-write ratio
of workloads changes always. However, the existing BMAs
have failed to be specifically designed for the workloads
characteristics.
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TABLE 2. Comparison of algorithms.

FIGURE 1. Read ratio of workloads from OLTP [32] application. (a) Read
ratio of Fin1. (b) Read ratio of Fin2.

2) UNBALANCED BUFFER HIT RATE AND
CLUSTERED WRITEBACK
As mentioned, the page-level BMA has a high buffer hit rate,
and the block-level BMA has a good clustered write-back

FIGURE 2. Hot and cold ratio of the data pages in the hottest 24 blocks of
Fin1.

performance, but the existing BMA cannot consider both at
the same time. Despite the page-level BMA’s high buffer
hit rate, there is no clustered writeback, which may cause a
large FTL garbage collection overhead. Although the block-
level BMA has a good clustered write-back performance,
due to the extremely uneven hot and cold data pages in the
hot blocks, a large number of cold pages in the hot blocks
occupy the buffer space, thereby reducing the buffer’s hit rate.
Figure 2 shows the hot and cold statistical ratio of the data
pages in the hottest 24 blocks of Fin1. The data pages with
access counts below 100 are recorded as cold data pages, the
access counts higher than 10,000 are recorded as hot pages,
and the others are recorded as non-cold pages. The statistical
results in Figure 2 show that only 1-3 hot data pages and about
50-60 cold data pages in the hot block. Therefore, the hot data
blocks are filled with a lot of cold data pages.

3) UNCONSIDERED UNDERLYING GARBAGE COLLECTION
In the above-mentioned BMAs, the underlying FTL’s garbage
collection status is rarely considered. Only BPLRU considers
that the excessively fragmented data will cause the increasing
overhead of the underlying garbage collection. Therefore,
when the data pages in the buffer write back, the page padding
scheme is used to improve the continuity of the write-back
data. However, BPLRU employs page padding in all write-
back blocks, which may sometimes lead to excessive over-
head in writing back.

Figure 3(a) shows the page padding counts distribution of
BPLRU when the workload is Fin1, and Figure 3(b) shows
the number of write caused by page padding and the actual
clustered write counts of BPLRU. Based on Figure 3, it can
be concluded that BPLRU’s page padding scheme can easily
cause an excessive amount of data writes. Therefore it is very
important to choose the right time to trigger the page padding
scheme according to the underlying garbage collection
status.

To solve the cited problems, this paper proposes a cross-
layer aware AALRU for the SSD’s buffer management.
Its main contributions are listed as follows:
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FIGURE 3. Page padding effect of BPLRU under Fin1. (a) Page padding
counts distribution of BPLRU. (b) Page padding caused write counts and
actual clustered write-back counts of BPLRU.

1) Adaptively Adjusted Read-Write Buffer Ratio: The
buffer is divided into two buffers for reading and writing, and
the ratio can be adaptively adjusted according to the read-
write ratio of the upper workload and the read-write cost of
the underlying flash memory.

2) Hybrid Management Granularity: Data loading and
migration of the read-write buffers are managed in page units
according to the LRU strategy. The victim buffer is adaptively
selected according to the current actual ratio and the expected
ratio of the read-write buffers. When the buffers’ data pages
are written back, they are clustered back to the FTL in block
units.

3) Adaptively Adjusted Page Padding Trigger Threshold:
To reduce the underlying FTL’s garbage collection overhead,
AALRU can sense the FTL’s garbage collection pressure by
means of the approximate flash write amplification factor,
and the page padding trigger threshold is adaptively adjusted
according to the FTL’s garbage collection pressure.

III. PROPOSED AALRU
A. STRUCTURE OF AALRU
Figure 4 shows the overall structure of AALRU. It is divided
into two parts: the data page buffer and the adaptive thresh-
old adjustment scheme. The data page buffer is further
divided into a read buffer (RB) and a write buffer (WB).
The WB caches dirty pages (data pages corresponding to
write requests), and the RB caches clean pages (data pages
corresponding to read requests). The granularity of data load-
ing and migration in the RB and the WB is page, and the
management strategy is the LRU. The dirty data pages of the
same logical block are clustered to write back. The adaptive

threshold adjustment scheme includes the read-write buffer
ratio threshold τ and the page padding trigger threshold Th.
By sensing the read-write ratio of the upper layer workload
and the status of the underlying FTL, AALRU can adaptively
adjust the thresholds τ and Th.

B. ADAPTIVE UPDATING OF READ-WRITE
BUFFER RATIO THRESHOLD
AALRU periodically counts the read-write ratio of the work-
load and the read-write performance of the buffer to deter-
mine the appropriate read-write buffer ratio threshold τ for
the next period. Specifically, AALRU processes the number
of T access requests as a period. Next, AALRU counts the RB
read hit times RRH and the RB write hit times RWH, the WB
read hit times WRH and the WB write hit times WWHin the
period, and counts the average read delay Dr and write delay
Dw of the single data page in the period. It then calculates the
WB unit benefit WR and the RB unit benefit RR, as follows.

WR =
WWH × Dw +WRH × Dr

BS − τ ′
(1)

RR =
RWH × Dw + RRH × Dr

τ ′
(2)

where BS is the size of the total buffer and τ ′ is the threshold
in the last period. According to WR and RR, the threshold τ
of the next period is calculated as follows.

τ =
RR

WR+ RR
× BS (3)

where τ is the expected RB normalized size. When AALRU
needs to evict the data page from the buffer, it compares the
current RB size RL with the expected τ . If RL ≥ τ , the data
page in the RB is evicted, and otherwise evicted from theWB.

C. ADAPTIVE UPDATING OF THE PAGE
PADDING TRIGGER THRESHOLD
Different address mapping schemes used in FTL may cause
different garbage collection performance. Regardless of the
FTL’s address mapping scheme, its write amplification factor,
Wf,can reflect its garbage collection performance. The vari-
ableWf is the ratio of the actual flashwrite counts to the buffer
write-back counts Bfw. The actual flash write counts includes
Bfw and the write counts GCw caused by garbage collection.
The Wf can be calculated as follows.

Wf =
GCw + Bfw

Bfw
(4)

Calculating Wf by Equ. (4) requires the FTL to report GCw,
but sometimes, it is difficult to obtain GCw directly from the
FTL. Equ. (4) can be rewritten as:

Wf =
(GCw + Bfw)× Fw

Bfw × Fw
=

(
GCw
Bfw
+ 1

)
×Fw

Fw
'
Dw
Fw

(5)

where Fw is the standard writing delay of the flash page, and
Dw denotes the average delay of the actual page write-back
request of the buffer, which contains the standard writing
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FIGURE 4. Structure of AALRU.

delay and the average write delay caused by garbage col-
lection. The Dw can be obtained by counting the response
completion time and arrival time of each request in the buffer
management layer, and the Fw can be obtained according
to the parameters of the flash chip. When Wf increases, it
indicates that the garbage collection overhead of the current
FTL is large. It is necessary to reduce the randomness of the
write-back request when the data page in the buffer is evicted
into the flash memory.

In this paper, two methods are used to reduce the ran-
domness of the write-back data. 1) Using a clustered write-
back strategy, that is, all dirty data pages belonging to the
same logical block are written back to the flash memory at
the same time. 2) Using an adaptive page padding strategy.
AALRU introduces a page padding threshold Th, and then
compares ND (the number of dirty pages of the current vic-
tim logical block) with Th.If ND ≥Th, the page padding
scheme is adopted; Otherwise, there is no page padding. The
Th value is adaptively adjusted as the Wf changes. AALRU
models the relationship betweenWf and Th as linear, as shown
in Figure 5.

When Wf = 1, it means that there is no garbage col-
lection, so Th is set to BMS (the number of pages per
block) and page padding is prohibited. When Wf > β

(β is the write amplification factor for unconditional page
padding), it means that the garbage collection overhead is
very large; at this time Th is set to 0, that is, page padding
is used in all write-back pages. When Wf is in the interval
[1, β], Th exhibits a linear relationship withWf. According to
Figure 5, the relationship between Th andWfcan be obtained

FIGURE 5. Linear relationship between threshold Th and Wf.

as follows.

Th = −
BMS
β

Wf + BMS (6)

Equ. (6) shows that in the threshold adjustment region, when
Wf increases, it indicates an increasing pressure of the FTL
garbage collection, at this time, Thdecreases, and then the
continuity of the write-back requests increases. When Wf
decreases, it indicates a decreasing pressure of the FTL
garbage collection, so Th increases to avoid unnecessary page
padding.

D. HYBRID MANAGEMENT GRANULARITY
To realize hybrid management granularity, AALRU sets a
cache block record table in the buffer. The cache block record
table records the position pointer of different data pages of the
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FIGURE 6. Structure of cache block record table.

same logical block in the buffer and is used to assist in imple-
menting dirty page clustered writeback and the recognizing
hot and cold data pages.

As shown in Figure 6, an entry in the cache block record
table consists of the logical block number BlkNum, the num-
ber of data pages BlkSize, the clean pages position pointer
list C-index-list and the dirty pages position pointer list
D-index-list. The pointers in C-index-list and D-index-list
point to data page positions in RB and WB, respectively.
Through the cache block record table, AALRU can realize the
precise operation of each page like the page-level BMA, and
realize the clustered management like the block-level BMA.
More importantly, with the cache block record table, AALRU
can effectively solve the problem of hot and cold data page
entanglement in the same block when clustered writeback.

When the data page of the buffer is updated, the cache
block record table must update accordingly. The cache block
record table’s updating operations include migration updat-
ing, replacement updating, and load updating. 1) In migration
updating, when the data page is hit in the buffer, the position
pointer in the corresponding entry needs to be moved to
the MRU position. 2) In replacement updating, when the
data page is replaced, the corresponding position pointer is
deleted. 3) In load updating, when the new data page is loaded
into the buffer, a new position pointer is allocated and inserted
into the MRU position of pointer list.

The following example describes the overhead of the cache
block record table. Assuming that the read-write buffer is
8MB, the data page is 2 KB, the data block is 128 KB, and the
upper file system is 32 bits, the overhead of the cache block
record table is as follows: the BlkNum is 32 bits, and the Blk-
Size is 5 bits. The 8 MB buffer can store 4,096 pages, and the
corresponding position pointer requires 12 bits. Additionally,
1 bit is required to indicate whether the page is dirty or clean.
Therefore, the worst situation is that all data pages in the

buffer belong to different blocks, and the overhead of the
cache block record table is (32 + 5 + 12 + 1) ∗ 4096 =
204, 800 bits (25 KB), which is 0.3% compared with the
8 MB buffer. The best situation is that all data pages in the
buffer are organized in complete blocks, and the overhead is
(32+ 5+ 12 ∗ 64+ 1 ∗ 64) ∗ 64 = 55616 bits (about 7KB),
which is 0.08% compared to the 8 MB buffer.

E. SPECIFIC PROCEDURE OF AALRU
Algorithm 1 and 2 show howAALRUworks and theymanage
the data in the buffer and output nothing. Algorithm 1 shows
AALRU processing an access request. The inputs are the
request logical page address, the request size, and the request
type. The pseudo-code of Algorithm 1 is briefly explained
as follows: Lines 2-7 show the processing flow of the hit
request, that is, the read request hit in the RB is moved to
the MRU position of the RB queue. The write request hit
in the RB or read/write request hit in the WB is moved to
the MRU position of the WB queue. When a request is hit,
AALRU also updates RRH, RWH, WRH, and WWH for sub-
sequent threshold τ updating calculations. Line 10-18 show
the processing flow of the missed request. If the buffer is full,
AALRU calls Algorithm 2 to evict the data page, and then
loads the request data page to the corresponding buffer MRU
position according to the request type. Line 19 responds to the
request by returning the data to the host or writing the data to
the buffer. Lines 20-22 periodically update the thresholds τ
and Th according to Equ. (3) and Equ. (6).

Algorithm 2 shows how to evict the data pages when the
buffer is full. When RL> τ , the page in the LRU position of
the RB queue is selected for eviction; otherwise, the page in
LRU position of the WB queue is selected as the candidate
victim page, and the victim logical block number of the
clustered writeback is determined according to the logical
page number of the candidate victim page. Then, the data
pages, belonging to the victim logical block, are selected
to form a writeback block. If ND >Th, AALRU writes the
victim block back with page padding; otherwise, it writes
the victim block back without page padding. Lastly, AALRU
deletes all pages of the selected victim block in the WB.

IV. PERFORMANCE ANALYSIS
A. EXPERIMENTAL SETTINGS
To evaluate the performance of AALRU, we have added the
buffer management module into FlashSim [33]. In the exper-
iment, the buffer size is fixed at 8 MB and the storage space is
4 GB. The underlying FTL is DFTL or FAST, which represent
the page-level and the hybrid FTL, respectively. Table 3 lists
the key parameters of the underlying flash memory.

Four workloads are used in the experiment, including the
enterprise-level workloads Fin1 and Fin2, and workloads
synthesized with DiskSim [34], T1 and T2. Table 4 presents
the characteristics of the four workloads.

The buffer hit ratio, the average response time of requests
and the block erase counts are selected to evaluate the
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Algorithm 1 Procedure of AALRU
Input: request logical page address Reqlpn, request size
Reqsize, request type Reqtype,
Output: NULL
Abbreviation description: read buffer (RB), read buffer
size RL, write buffer (WB), processing request number
SysCount, threshold updating period T , buffer ratio thresh-
old τ , page padding trigger threshold Th
1. WHILE Reqsize 6= 0 DO
2. IF Reqlpn hits in Buffer THEN
3. IF Reqtype is Read and Reqlpn in RB THEN
4. Move Reqlpn to the MRU position of RB
5. ELSE

/∗ RB write hit and WB read and write hit ∗/
6. Move Reqlpn to the MRU position of WB
7. ENDIF

/∗ Count each buffer request hit information ∗/
8. Update Buffer Request Hit Static
9. ELSE
10. IF Buffer is full THEN

/∗ Call algorithm 2 to evict data page from
buffer ∗/

11. DeleteVictimPages(RL, τ , Th)
12. ENDIF
13. IF Reqtype is read THEN

/∗ Load the data page of read request to RB ∗/
14. Load Reqlpn to the MRU position of RB
15. ELSE

/∗ Load the data page of write request to WB ∗/
16. Load Reqlpn to the MRU position of WB
17. ENDIF
18. ENDIF
19. Service Request
20. IF mod(SysCount, T ) == 0 THEN
21. Update Th and τ /∗ Update threshold

periodically ∗/
22. ENDIF
23. SysCount++
24. Reqlpn ++
25. Reqsize−
26. ENDWHILE

TABLE 3. Experimental flash configuration.

performance, which can reflect the buffer’s ability to retain
hot data, SSD’s read-write performance, and SSD’s wear
degree (the SSD’s lifetime), respectively. The higher buffer

Algorithm 2 Evicting the Victim Pages of AALRU
Input: read buffer size RL, buffer ratio threshold τ , page
padding trigger threshold Th
Output: NULL
1. IF RL≥ τ THEN /∗ Select RB as the

victim buffer ∗/
2. Delete the LRU page in RB
3. ELSE /∗ Select WB as the victim buffer ∗/
4. Select the LRU page in WB as the victim page
5. Select the victim block according

to the victim page
6. IF ND > Th THEN /∗ Enable page padding∗/
7. Write the victim block back with page padding
8. ELSE /∗ Do not enable page padding∗/
9. Write the victim block

back without page padding
10. ENDIF
11. Delete all pages of the selected

victim block in WB
12. ENDIF

TABLE 4. Workload characteristics in the experiment.

hit ratio, the lower average response time and the lower block
erase counts are expected. Compared with other algorithms,
the performance improvement 1P is measured as follows:

P =

∣∣Pproposed − Pcompared ∣∣
Pcompared

× 100% (7)

The selected comparison algorithms include two classic page-
level BMAs (CFLRU and ADLRU) and two classic block-
level BMAs (BPLRU and FAB). Additionally, according
to [14], the priority replacement window ratio of CFLRU is
set to 0.4; according to [15], the minimum cold region lower
limit ratio of ADLRU is 0.2. Moreover, in this paper the
write amplification factor of AALRU for unconditional page
padding is set to 5. The statistical period T is 8192 access
requests.

B. EXPERIMENTAL RESULTS
1) COMPARISON OF BUFFER HIT RATIO
Since the data evicting scheme of the compared BMAs is
independent of the underlying FTL, their buffer hit ratios
are the same under DFTL and FAST. AALRU considers
the FTL’s write amplification, which can make it different
buffer hit ratios under DFTL and FAST in theory. However,
the actual results show that AALRU’s buffer hit ratio has
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FIGURE 7. Comparison of buffer hit ratio and write hit ratio under FAST
and different workloads. (a) Total buffer hit ratio comparison. (b) Write hit
ratio comparison.

a small difference under DFTL and FAST, so Figure 7 only
shows the AALRU’s buffer hit ratio under FAST. The buffer
hit ratio presented in Figure 7 is normalized using AALRU’s
results, where Figure 7(a) gives the total hit ratio, and
Figure 7(b) gives the write hit ratio.

As illustrated in Figure 7, AALRU’s total buffer hit ratio
and write hit ratio are the best because the granularity is page-
level when loading andmigrating data pages and the granular-
ity is block-level when writing back data pages. Specifically,
AALRU has 96.9%, 144.2%, 3.0%, and 30.9% buffer hit ratio
improvement over BPLRU, FAB, CFLRU, and ADLRU on
average, respectively. Therefore, AALRU’s ability to retain
hot data is better than those of the compared BMAs. The
buffer hit ratio of the traditional block-level BMAs is lower
than that of page-level BMAs. The explanations are that the
block-level BMA uses a block as the management unit and
cannot distinguish between the hot and cold status of data
pages in the same block, which makes the cold data pages
in the hot block occupy valuable buffer space and therefore
results in the reduction of the total buffer hit ratio and the
write hit ratio.

2) COMPARISON OF BLOCK ERASE COUNTS
Figure 8 shows the block erase counts results of different
BMAs, which are normalized using the worst experimental
results for each workload. The small block erase counts
in Figure 8 indicates that the light wear degree of SSD.

The experimental results in Figure 8 show that under dif-
ferent FTLs and workload conditions, the block erase counts

FIGURE 8. Comparison of the block erase counts under different
workloads. (a) Under FAST. (b) Under DFTL.

performances of FAB and BPLRU vary greatly, and those
of ADLRU and CFLRU vary little. The most obvious fluc-
tuation among these BMAs is that of BPLRU, which has
the least or the second-least block erase counts under FAST,
and the most block erase counts under DFTL. The explana-
tion for BPLRU’s block erase counts fluctuation is its fixed
page padding scheme, which only works well under FAST.
In contrast, AALRU’s adaptive page padding scheme works
well under FAST and DFTL. Therefore, AALRU’s block
erase counts performance remains stable under different test
conditions. Specifically, AALRU reduces the REC by 21.3%,
27.5%, 17.7%, and 23.5% over BPLRU, FAB, CFLRU, and
ADLRU respectively, which indicates that AALRU has the
best ability to reduce SSD’s wear.

Figure 9 shows the comparison of the number of writes
caused by garbage collection in various BMAs. The experi-
mental results in the figure are normalized by the worst case,
and a fewer number of writes is expected. The results in
Figure 9 show that BPLRU has the lowest garbage collection
overhead. The only exception occurs when the workload
is T1 in Figure 9(b), and its garbage collection overhead
is the worst. The experimental results show that the actual
number of dirty pages in the victim block selected by
BPLRU is very small under workload T1, causing a large
amount of unnecessary page padding overheads. Further-
more, these large page padding overheads can result in a
large number of translation page updating in DFTL, which
makes BPLRU’s garbage collection performanceworse under
DFTL and workload T1. Under all test conditions, AALRU
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FIGURE 9. Comparison of the number of writes caused by garbage
collection under different workloads. (a) Under FAST. (b) Under DFTL.

FIGURE 10. Comparison of the average response time under different
workloads. (a) Under FAST. (b) Under DFTL.

has a stable garbage collection overhead, which is the
least or second-least. The low overhead of AALRU’s garbage
collection is mainly due to its clustered writeback and

adaptive page padding scheme. In the case of the clustered
writeback, the FTL status is sensed by the write amplification
factor, and the page padding trigger threshold is adaptively
adjusted, which substantially reduces the garbage collection
overhead. The comparisons of the block erase counts in Fig-
ure 8 and the average response time in Figure 10 show that
while AALRU reduces garbage collection overhead, its page
padding scheme does not increase excessive data page reads
and writes and cause other performance degradation.

3) COMPARISON OF AVERAGE RESPONSE TIME
Figure 10 shows the average response time results of dif-
ferent BMAs, which are normalized by the worst case for
each workload. A smaller average response time is expected,
which means that the read-write time performance is better.
Figure10 illustrated that the BPLRU’s average response time
is the best under FAST, but is far worse than those of other
algorithms under DFTL, indicating BPLRU’s unstable per-
formance. The buffer hit ratio of ADLRU, CFLRU, FAB,
and AALRU is relatively stable under all test conditions.
Additionally, AALRU’s average response time is optimal
or near-optimal under all conditions. AALRU reduces the
average response time by 12.4%, 24.7%, 14.1%, and 21.6%
on average over BPLRU, FAB, CFLRU, andADLRU, respec-
tively, indicating that AALRU can improve the read-write
time performance of SSD.

V. CONCLUSION
Based on the cross-layer aware method, in this paper, we
have proposed an advanced adaptive SSD buffer management
algorithm, AALRU, to solve the problem of poor adaptability
of existing BMAs. AALRU can adaptively adjust the buffer
structure, parameters, and write-back strategy by sensing
the read-write characteristics of the upper workloads and
the garbage collection overhead of the underlying FTL to
achieve the goal of optimizing buffer performance. Specif-
ically, AALRU first abandons the previous BMAs’ fixed
buffer structures and parameters, considers the actual work-
load characteristics and flash read-write delays, and adap-
tively adjusts the read-write buffer ratio to respond to read and
write requests in time. Second, AALRU manages the buffer
in page units when loading or migrating data and in logical
block units when clustered writeback, which balances the
write continuity and buffer hit ratio. Finally, AALRU senses
the garbage collection overhead of the underlying FTL in real
time by means of the writing amplification factor and adap-
tively adjusts the page padding trigger threshold, achieving
the optimal adaptation of write-back request continuity and
FTL status, thereby reducing garbage collection overhead.
Compared with the other BMAs, under different FTLs and
various types of workloads, the experimental results show
that AALRU has stable adaptability and optimal or near-
optimal performance.
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