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ABSTRACT Density peaks clustering (DPC) is a density-based clustering algorithm with excellent clus-
tering performance including accuracy, automatically detecting the number of clusters, and identifying
center points. However, the local density of DPC strongly depends on the cutoff distance which must be
prespecified; in addition, the strategy assigns each remaining point to the same cluster as its nearest neighbor
of higher density in descending order of local density, which is likely to cause cluster label error propagation.
To overcome these limitations, we propose an improved DPC by introducing weighted local density
sequence and two-stage assignment strategies, called DPCSA. Many previous improved DPC algorithms
neglect additional complexity, whereas DPCSA incorporates the nearest neighbor dynamic table to enhance
clustering efficiency. The experimental results for 12 artificial and 11 real-world datasets, including Olivetti
face, verify that the DPCSA clustering performance is significantly superior to DPC and DPC via heat
diffusion (HDDPC), and slightly superior to fuzzy weighted k-nearest neighbors density peak clustering
(FKNNDPC). In addition, the DPCSA is more computationally efficient than FKNNDPC and HDDPC, but
less than DPC. The source code of DPCSA is available at https://github.com/Yu123456/DPCSA.

INDEX TERMS Cluster analysis, density peaks, K-nearest neighbors, local density, nearest neighbor
dynamic table.

I. INTRODUCTION
Cluster analysis is the process of dividing a set of points
into non-overlapping subsets. Each subset is a cluster, such
that points in the same cluster are similar to one another
(intra-similarity) and dissimilar to points in other clusters
(inter-dissimilarity) [1]. Clustering algorithms are generally
categorized into five groups: hierarchical [2], [3], partitional-
based [4]–[6], density-based [7], grid-based [8], and model-
based [9] algorithms. Various clustering ensemble algorithms
have also been proposed [10]. Clustering is widely used in
research and engineering applications.

The associate editor coordinating the review of this manuscript and
approving it for publication was Bo Jin.

Density-based clustering algorithms are an important sub-
class of cluster analysis algorithms, and are very popular
since they can define clusters with arbitrary shape and handle
outliers well. This class of algorithms include DBSCAN [7],
DBCURE-MR [11], fast DBSCAN [12], ST-DBSCAN [13],
OPTICS [14], DENCLUE [15], etc. Rodriguez and Laio
recently proposed a clustering by fast search and finding
density peaks (DPC) [16], based on the assumptions that
cluster center points are surrounded by neighbors with lower
local density and they are relatively distant from points with
higher local density. However, local density and distance for
each point are defined relative to the prespecified parameter
cutoff distance dc. Center points must be determined manu-
ally using decision graph with significant separation between
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center and non-center points. One particular DPC advantage
is that the number of clusters need not be explicitly specified.
Many previous studies with different datasets have shown
that DPC has achieved a excellent clustering performance
and been widely adopted in many fields. For example, ini-
tial social circle clustering considering user distance [17],
dividing cluster configurations based on measured sample
mutual distance [18], [19], clustering cells using Student’s
t distributed stochastic neighbor embedded two-dimensional
(2D) representation [20], and sub-image clustering and cap-
turing local information in the label formation phase [21].

However, DPC has twomain and significant shortcomings.
1) Cutoff distance must be prespecified based on users’

experience and prior knowledge of the dataset. For
benchmark datasets (e.g. datasets from the UCI repos-
itory), users can optimize dc by repeating experiments
using the known actual class labels. However, generally
real class labels are unknown in the application to real
problems.

2) The DPC assignment strategy assigns remaining points
(i.e., non-center points) in descending order of local
density to the same cluster as its nearest neighbor of
higher density. This is highly likely to cause cluster
label error propagation. Once a point is assigned to
an incorrect cluster, other lower local density nearest
neighbor points will also be assigned to the incorrect
cluster. This shortcoming has been highlighted and dis-
cussed in detail for the Spiral dataset (Reference [22],
Fig. 1(c)) even for well-designed cutoff distance dc = 1
using exponential kernel.

In this paper, our main motivations are to avoid using pre-
specified parameter(s), reduce assignment error propagation,
and improve clustering efficiency. Therefore, we propose
DPC based on weighted local density sequence and nearest
neighbor assignment (DPCSA). The main innovations and
contributions can be summarized as follows.

1) Local density is divided into two terms, the fixed
k-nearest neighbors (KNN) term (k = 5) and
the weighted sequence term, to avoid requiring a
prespecified parameter.

2) The assignment strategy is split into two stages using a
boundary condition to reduce assignment error propa-
gation. All points that satisfy the boundary condition
are assigned in the first stage. Remaining points are
assigned in the second stage based on a nearest neigh-
bor assignment strategy that disrupts the local density
descending assignment order.

3) We propose nearest neighbor dynamic table (NNDT) to
enhance clustering efficiency, i.e., to speed up the sec-
ond stage assignment strategy. This aspect has been
largely ignored in previous improved DPC algorithms.

4) Experimental results, including 12 artificial datasets,
11 real-world datasets, and Olivetti face dataset, verify
that DPSCA clustering performance and computation-
ally efficient are improved than some state-of-the-art
algorithms.

The remainder of this paper is organized as follows.
Section II describes the research progress related to DPC
considered in the literature. Section III briefly introduces
DPC. Section IV describes the proposed DPCSA algorithm in
detail, and Section V considers time complexity. Section VI
provides detailed experiment setup and discusses artificial,
real-world, and Olivetti face datasets. Computational time
is compared and discussed between the various algorithms.
Finally, Section VII summarizes and concludes the paper.

II. RELATED WORKS
Scholars have shown great interest in DPC and many
improved algorithms have been proposed to address its
defects.

The first aspect is improving the local density. Du et al. [23]
proposed DPC-KNN and DPC-KNN-PCA where the
improved local density is calculated by mean KNN distance,
where k is computed as the percentage, p, of the total
number of points. Liu et al. [24] used KNN to compute
local density and proposed adaptive density peak clustering
ADPC-KNN. Xie et al. [22] proposed FKNNDPC, which
improves local density based on KNN. In contrast to DPC-
KNN, the improved local density is calculated by the distance
sum to KNN. Geng et al. [25] proposed RECOME using a
density measure based on relative KNN kernel density with a
parameter. Du et al. [26] proposed FNDP using fuzzy neigh-
borhood relationships to define local density. Liu et al. [27]
proposed shared-nearest-neighbor-based clustering by fast
search and find of density peaks (SNNDPC) algorithm, which
gives some new definitions, such as SNN similarity, local
density and distance from the nearest larger density point.
Seyedi et al. [28] proposed DPC-DLP which employs the
idea of KNN to compute the global cutoff parameter and
the local density of each point. Tao et al. [29] introduced
the data field theory to adaptively select the dc to compute
local density and proposed F-DPC. Zhang et al. [30] proposed
the developed density peak clustering algorithm with support
vector data description (SVDD), and the cutoff distance
was optimized by adjusted silhouette coefficient. Similar
to requiring prespecified dc, DPC-KNN, DPC-KNN-PCA,
FKNNDPC, SNNDPC and DPC-DLP also require prespec-
ifying the number of nearest neighbors. Therefore, these
improved algorithms just transfer the prespecified parameter
rather than overcoming the problem. Mehmood et al. [31]
presented a non-parametric algorithm for DPC via heat dif-
fusion (HDDPC) using kernel density estimation (KDE).
Zhou et al. [32] also used KDE to optimize local density
and proposed density peaks clustering by identifying the
veins (IVDPC). However, KDE inherent defects seriously
affect HDDPC clustering performance. KDE is acceptably
accurate in one-dimensional (1D) or 2D data, but becomes
highly inaccurate for higher dimensional or sparse data.
Hence HDDPC tends to achieve poor clustering performance
for most real-world high dimensional datasets. KDE is also
somewhat time consuming, causing extremely low HDDPC
clustering efficiency, and the authors do not provide any
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suggestions to accelerate HDDPC clustering process.
Another non-parameterized algorithm is to use fixed
parameter values. Strictly speaking, this cannot be called
non-parameter algorithm, but for users, there is no need
to predefine parameters in practical applications, which
is approximately equivalent to a non-parameter algorithm.
Adaptive clustering algorithm based on KNN (fixed k = 5)
and density (ACND) has been proposed [33]. The fixed num-
ber addresses nearest neighbor interference susceptibility
from accidental meeting of two or three outliers, i.e., 2NN,
3NN, or 4NN may be close to normal data points, and it is
not easy to distinguish them.

The second aspect is to improve the assignment strat-
egy. Liu et al. [27] introduced two concepts, inevitably sub-
ordinate and possibly subordinate, to assign the label of
those non-center points. Lu et al. [34] proposed a simple
density-based framework (DCF) and two steps assignment
rule for core and non-core points. The first step is based
on a minimum spanning tree and the second on an ordering
mechanism. Chen et al. [35] proposed CLUB (CLUstering
based on Backbone) with assignment strategy carried out
in three steps. Seyedi et al. [28] used a graph-based label
propagation to assign labels to remaining points in DPC-DLP.
Xie et al. [22] proposed fuzzy weighted KNN assignment
strategy (FKNNDPC, strategy 2) claimed to reduce cluster
label error propagation. However, it is not effective on all
datasets (e.g. Fig. 5(b) in this paper, using strategy 2, the red
point in cluster 3 is assigned to cluster 2 by mistake). The key
aspect of Strategy 2 is to learn the probability, pci , that point xi
belongs to cluster c, and then assign xi to cwith the largest pci .
This step is time consuming and reduces clustering efficiency.
Another potential risk for FKNNDPC strategy 1 is that some
clusters only have the center point itself (i.e., isolated cluster)
on dense data (e.g., Fig. 2(b) on the S4 dataset in this paper).

The other aspects, such as selection of the cluster centers,
application of DPC and new similarity or distance measure
and so on, are also improved. Ding et al. [36] proposed an
entropy-based density peaks clustering algorithm for mixed
type data employing fuzzy neighborhood (DP-MD-FN). The
new similarity measure of DP-MD-FN avoids feature trans-
formation and parameter adjustment between numerical and
categorical attributes. Xu et al. [37] proposed two pre-
screening strategies, grid-division and circle-division, to fast
find cluster centers for large-scale dataset. Another density
peaks clustering algorithm based on grid (DPCG) also pro-
posed by Xu et al. [38], which improves the efficiency using
CLIQUE clustering algorithm to calculate the local density.
Du et al. [39] focused on the distance measurement and
proposed density peaks clustering using geodesic distance
(DPC-GD). Bai et al. [40] used concept approximation to
propose an acceleration algorithm (CFSFDP+A) involving
fewer distance calculations. Jiang et al. [41] developed a DPC
enhanced algorithm, called GDPC, with an alternative deci-
sion graph-based on gravitation theory and nearby distance
to identify centers and anomalies accurately. Moreover, they
tried to overcome some weakness, such as varying densities

and irregular shapes, and proposedDPC-LG algorithm [42] to
improve GDPC based on logistic distribution and gravitation.
Sun et al. [43] proposed a graph-based density peak clustering
algorithm which is applied into patient hospital admission
graph cluster analysis.

III. DENSITY PEAKS CLUSTERING ALGORITHM
Assume that point xi ∈ Rm, i = 1, . . . , n belongs to dataset
X with m attributes. Let dij represent the Euclidean distance
between xi and xj,

dij =
∥∥xi − xj∥∥2 . (1)

DPC computes local density ρi and distance δi from points
with higher local density. Local density can be defined by
counting the number of points in its neighborhood,

ρi =

n∑
j=1

χ
(
dij − dc

)
. (2)

where χ (d) = 1 if d < 0 and χ (d) = 0 otherwise, and dc is
the prespecified cutoff distance; or as the Gaussian kernel
local density,

ρi =

n∑
j=1

exp

(
−
d2ij
d2c

)
. (3)

Thus, δi is measured by computing the minimum distance
between xi and any other points with higher local density,

δi =

min
j

(
dij
)
, ∃j s.t. ρj > ρi

max
j

(
dij
)
, otherwise

(4)

These points are referred to as decision graph, plotting δi as
a function of ρi in 2D space. Center points are significantly
separated from non-center points and can be selected from
the decision graph by choosing only points with high ρ and
relatively large δ. The number of clusters is also determined to
correspond the number of center points. Subsequently, each
remaining point is assigned to the same cluster as its nearest
neighbor point with higher local density.

IV. DPCSA CLUSTERING ALGORITHM
This section discusses local density improvement to avoid
requiring a prespecified parameter, splitting the assignment
strategy into two stages using a boundary condition to reduce
assignment error propagation, and NNDT to improve clus-
tering efficiency. Finally, the algorithm flow and complexity
analysis are also provided.

A. LOCAL DENSITY BASED ON FIXED K-NEAREST
NEIGHBORS AND WEIGHTED SEQUENCE
We employ KNN to improve local density and improve
clustering performance. For example, FKNNDPC [22] and
DPC-KNN [23] local densities can be expressed, respec-
tively, as

ρi =
∑
j∈kNN i

exp
(
−dij

)
. (5)
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and

ρi = exp

− 1
K

∑
j∈kNNi

d2ij

. (6)

Although there are differences between (3), (5), and (6), all
three local densities consider the sum of distances based on
the exponential kernel with a prespecified parameter, dc or k .
The difference lies in that dc in (3) controls the exponential
kernel bandwidth with the sum of all points, whereas k in
(5) and (6) controls the sum of KNN points with band-
width = 1. Both cases (dc or k) require prior knowledge and
user experience. For 2D or three-dimensional (3D) datasets,
users can obtain some prior knowledge from intuitive scatter
plots, particularly point distributions. However, this cannot be
achieved for higher dimension datasets.

Equations. (5) and (6) calculate local density based on
KNN with bandwidth = 1, and achieve moderate clustering
performance, i.e., the KNN points have an important impact
on local density. Local density from (3) is computed for
all points, including KNN points, with bandwidth = dc
and achieves reasonable clustering performance, i.e., points
beyond KNN also impact local density. KNN is fixed (k = 5)
for ACND, since 2NN, 3NN, or 4NN may be close to normal
data points as discussed above. Therefore, we combined these
advantages to propose an improved local density based on the
weighted sequence with constant bandwidth and fixed KNN,

ρi =

K∑
j=1

exp
(
−d ′ij

)
+

n−1∑
j=K+1

exp
(
−d ′ij

)
(j− K )2

(7)

where, d ′ij (j = 1, . . . , n − 1) is the increasing order of
dij (j = 1, . . . , n, j 6= i), and K = 5. The first term of (7)
maintains the KNN calculation from five nearest neighbor
points, inheriting concepts from (5) and (6). The second
term of (7) sums the weighted exponential kernel sequence,
which inherits and improves the concept of (3). This second
term is a supplement to the first term, and compensates for
clustering performance reduction due to the fixed k . Thus, (7)
incorporates advantages from (3), (5) and (6), and depends
only on dij and n; i.e., DPCSA does not require prespecified
parameters and inherits FKNNDPC, DPC-KNN, DPC, and
ACND advantages.

B. TWO-STAGE ASSIGNMENT STRATEGIES
1) BOUNDARY CONDITION
For DPC, non-center points are assigned in descending order
of local density to the same cluster as their nearest neighbor
point with higher local density. Aside from the center points,
two cases produce large δi.

1) Where xi is a peak surrounded by other points with
slightly higher local density, ρi, but insufficient to be
considered a center point. Under the DPC assignment
strategy, xi will affect subsequent points with local
densities < ρi.

2) Where xi is an outlier with low local density and far
from other points.

When these points are assigned incorrectly, the error may
propagate, i.e., more points are assigned incorrectly. We do
not want to assign these two cases’ points to minimize assign-
ment error. Therefore, we propose the boundary condition

δi <
1
n

n∑
l=1

δl . (8)

All points satisfying (8) are assigned a label in the first
stage and other points in the second stage.

2) FIRST STAGE ASSIGNMENT STRATEGY
The first stage assignment strategy assigns a cluster label
to xi with distance δi less than the average, as in (8). The
assignment method is the same as DPC, i.e., the point is
assigned in descending order of local density to the same
cluster as its nearest neighbor. If no nearest neighbor point
with higher density is assigned, the point is also not assigned.
All remaining unassigned points are assigned depending on
the second stage assignment strategy.

The proposed first stage strategy assigns points around the
center point that have relatively higher local density. Aside for
the center points, large δi implies there are no points around
it or that it is far from the point densely distribution region,
e.g. an outlier.

3) SECOND STAGE ASSIGNMENT STRATEGY
Assuming the first stage assignment strategy has been per-
formed, with n1 points assigned to S1, . . . , SK clusters, where
the ith cluster, Si, containsmi points,m1+· · ·+mK = n1, All
remaining n−n1 points comprise the set S0. The second stage
assignment strategy assigns xi ∈ S0 to cluster Sk according
to the minimum distance mini,j dij, xi ∈ S0, xj ∈ Sk , k =
1, . . . ,K .
Let

VAk = min
i,j

{
dij|xi ∈ S0, xj ∈ Sk

}
, k = 1, . . . ,K . (9)

and

VPk = argmin
i

{
dij|xi ∈ S0, xj ∈ Sk

}
, k = 1, . . . ,K . (10)

where VAk is the minimum distance between S0 and Sk ;
and VPk is the point number corresponding to the minimum
distance between S0 and Sk . Let VAl be the minimum value
of VA, i.e.,

VAl = min{VAk |k = 1, . . .K .} (11)

Thus, the VPl point corresponding to the minimum dis-
tanceVAl is assigned to cluster Sl , and then we remove it from
S0 and recalculate (10) to select the next unassigned point,
assign its cluster label, etc. until S0 becomes empty.
However, it is very time consuming to repeatedly calculate

(9) and (10) because each point xi ∈ S0 is assigned a cluster
label and we must update S0 and Sl for the xi is assigned to,
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and repeatedly calculate VA and VP. Clustering efficiency is
very important and, would help to determine popularity, just
as K-means is more popular than K-medoids [44], although
the latter is more robust and accurate. Therefore, we propose
the NNDT to improve clustering efficiency and hence allow
wider DPCSA use.

C. NEAREST NEIGHBOR DYNAMIC TABLE
After performing the first stage assignment strategy, the clus-
ter table, CT , can be constructed from the assigned points,

CTkl = i, xi ∈ Sk . (12)

where CTkl is the (k, l) element in the CT table and k repre-
sents the kth cluster. Hence the NNDT can be defined as

NNDTkl = argmin
j

{
dij|i = CTkl, xj ∈ S0

}
(13)

where NNDTkl is the (k, l) element in the NNDT table.
Tables CT and NNDT store the point number rather than the
point itself. For example, for xi, where i is its number in the
dataset, the tables store i rather than xi. Since each cluster
contains at least one center point, Sk , k = 1, . . . ,K is not
empty. Thus, CT and NNDT tables are not empty.

However, it is time consuming to use (13) to initialize and
maintain NNDT . Assume DPCSA assigns xp ∈ S0 to cluster
Sk when performing the second stage assignment strategy,
then CT and NNDT require updating. Maintaining CT is
convenient and only adds point number, p, to CT at the end
of the kth row. However, using (13) to directly update NNDT
is inefficient because S0 always changes. Running time can
be significantly reduced by constructing an ascending order
table, ST , whose element is point number and this point
belongs to S0,

STil = j

s.t.


dit ≤ dij ≤ diq,
t = STi,l−1,
q = STi,l+1,
xt , xj, xq ∈ S0.

(14)

where STil is the (i, l) element in the ST table, and i represents
the ith point in dataset. STil = j means that dij is the lth
smallest element in the distance sequences between xi and
points in S0. Once the table ST is constructed, there is no
further updating and maintaining. Let cluster label variable
Li = 0 represent that xi has not been assigned a cluster label,
and other cases represent its cluster label. Thus, NNDT can
be initialized efficiently using ST ,

NNDTkl =

{
STi1, i = CTkl and Li 6= 0
STi2, i = CTkl and Li = 0

(15)

where index k represents the kth cluster and index i represents
the point number of xi.

It is also efficient to maintain NNDT using ST . Assuming
current DPCSA state isCTkl = i andNNDTkl = STiq, the next
step would assign xp ∈ S0 into Sk , i.e., xp would be clustered

into Sk . xp should be added to bothCT andNNDT with values
p and STpl , respectively (l is the first element of the pth row
in ST that satisfies Ll = 0), and then remove xp from S0 and
set Lp as the true cluster label k and update NNDT ,

NNDTkl =

{
STiq, NNDTkl 6= p,
STit , otherwise.

(16)

where the index, t , gradually increases from q until the first
unassigned cluster label point STit , i.e., if s = STit , then xs
is the first point after xq of the ith row in ST that satisfies
Ls = 0. For the case NNDTkl 6= p in (16), NNDTkl keeps its
original value. Meanwhile, without an extra operations, VA
and VP can be updated in sync with NNDT . The next one to
be assigned can then be chosen.

We provide an example to explain the above process. Fig-
ures 1 (a) and (b) show an example dataset and distance
matrix, respectively. Figure 1 (c) shows that x2, x3 have been
assigned to S1 and x4, x5 to S2. In the next step, point 1,
i.e., x1, is selected and clustered into S1, then tables CT and
NNDT are updated (arrows).

D. ALGORITHM FLOW
Algorithm 1 shows DPCSA primary flow. Step 2 calculates
the improved local density, steps 5-9 are the first stage assign-
ment strategy, and steps 12-17 are the second stage assign-
ment strategy, which includes NNDT updating (step 16). The
flow diagram of DPCSA is given in Fig. 2.

V. COMPLEXITY ANALYSIS
All four algorithms: DPC, HDDPC, FKNNDPC, and DPCSA
can be divided into four main parts: (a) calculate distance
matrix, (b) calculate ρi, (c) calculate δi, (d) assign cluster
label. These algorithms use the same method to calculate the
distance matrix and δi with time complexity = O(n2). Thus,
time complexity differences depend on the remaining two
parts.

HDDPC estimates the kernel density function before com-
puting local density, which is time consuming; whereas FKN-
NDPC searches KNN points of xi, with time complexity to
calculate local density for all points = O(Kn2). FKNNDPC
assignment process involves three strategies, and the strategy
2 fuzzy KNN assignment method is rather complicated. Time
complexity of the whole assignment process = O(n3) [22],
mainly due to updating the recognition matrix and calculating

pci =
∑

j∈kNNi,yj==c

γij ∗ wij (17)

where

γij = wij/
∑
l∈kNNj

wij

DPCSA improves local density and employs a two-stage
assignment strategy based on the boundary condition.
NNDT also speeds up clustering. Since incremental sort-
ing time complexity O(n log n), time complexity for the
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FIGURE 1. Proposed CT and NNDT tables example dataset. Point 1 (blue, (d)), i.e.,x1, was clustered into S1. Thus, NNDT must update its
value with the nearest neighbor point corresponding to point 1 (blue arrow). Use ST to update NNDT (red arrow indicates update
direction);(d) and (f) are the updated tables. (a) Dataset. (b) Distance matrix. (c) CT. (d) Updated CT. (e) NNDT. (f) Updated NNDT. (g) ST.

FIGURE 2. DPCSA flow diagram.

improved local density based on weighted sequence with
constant bandwidth and fixed KNN = O(n2 log n), some-
what larger than the other algorithm corresponding terms
that have time complexity = O(n2). Time complex-
ity for the first stage assignment strategy = O(n), sim-
ilar to DPC. Although each remaining point is assigned

a cluster label for the second stage assignment strat-
egy, which requires finding the nearest neighbor between
assigned and unassigned cluster label points, NNDT
improves running efficiency with overall time complex-
ity = O(n2 log n). Experimental results (see Section VI-F)
confirm that DPCSA is more efficient than FKNNDPC and
HDDPC, but less than DPC.

VI. EXPERIMENTAL SETUP AND ANALYSIS
This section discusses DPSCA testing and verification for
clustering performance and efficiency compared with the
well-known DPC [16], FKNNDPC [22], and HDDPC [31]
algorithms, using artificial and real-word datasets. The
Olivetti Face dataset is also employed to test algorithm clus-
tering performance. Runtime comparisons are included and
we discuss order sensitivity and the fixed number of DPCSA.
We ensure fair comparison coding all algorithms inMATLAB
on a PC with IntelR© CoreTM 3.5 GHz i3 CPU with 12 GB
RAM. We implement FKNNDPC algorithm referring to [22]
and ensure the consistent programming style of FKNNDPC
and DPCSA. The source code of HDDPC is provided by the
original authors.

A. DATASETS AND PREPROCESSING
Ten real-world datasets were acquired from the UCI repos-
itory [45] and the Olivetti face real-world dataset from
previous literature [46]. Twelve classic artificial datasets
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Algorithm 1 DPCSA
Input: Dataset X
Output: Clusters S1, . . . , SK
1: Normalize the data and calculate the distance matrix

between each pair of points.
2: Calculate local density ρi and distance δi for each xi using

(7) and (4), respectively.
3: Generate the decision graph with significant separation

between center and non-center points, then find the clus-
ter center points and determine the number of clusters.

4: Initial class label Li = 0 and assign the center points class
label.

5: for i = 1 to n do
6: if δi satisfies (8) then
7: Assign Li its nearest neighbor point’s label.
8: end if
9: end for

10: Construct CT and ST using (12) and (14), respectively.
11: Initialize NNDT using (15) and form VA,VP simultane-

ously.
12: while S0 is not empty do
13: Choose point p stored in VPl with minimum distance

in VA using (11).
14: Assign xp to Sl , i.e., set Lp = l, and S0← S0 − {xp}.
15: Add point p to CT and NNDT .
16: Update NNDT using (16) and maintain VA,VP,

simultaneously.
17: end while

(Aggregation, D31, Dim-sets, Flame, Path-based, S sets, and
SD) were acquired from various literatures [16], [47]–[51].

Tables 1 and 2 summarize the acquired datasets. Some
artificial dataset point distributions had intentional shapes
to challenge detecting the correct number of clusters,
i.e., Flame, Path-based, and Spiral. All real-world and arti-
ficial datasets were commonly regarded as benchmarks to
test various clustering algorithm performance and efficiency.
Data size, number of attributes, and number of clusters varied
for each dataset. Generally, artificial dataset higher class
numbers compensated for inherent weaknesses in the real-
world dataset lower class numbers. In contrast, real-world
dataset higher attribute numbers compensate for weakness
inherent in artificial dataset lower attribute numbers.

To avoid numerical range influence from the attribute
values, each attribute was normalized before calculating
distance,

zij =
xij −min

t

(
xtj
)

max
t

(
xtj
)
−min

t

(
xtj
) , j = 1, . . . ,m. i = 1, . . . , n.

(18)

where zij represents the normalized value of attribute j for xi,
and t, l is point number.

TABLE 1. Artificial datasets.

TABLE 2. Real-world datasets.

We applied min-max normalization for DPCSA, FKN-
NDPC, and DPC [22], whereas HDDPC used the original
attribute value [31].

B. CLUSTERING EVALUATION
An appropriate and uniform evaluation index is both required
and meaningful to compare the different clustering algo-
rithms. Therefore, we select three popular clustering evalu-
ation indexes [52], [53]: clustering accuracy (ACC) in (19),
adjusted mutual information (AMI) in (20) and adjusted rand
index (ARI) in (21). Larger evaluation index values indicate
improved clustering performance, and all index upper bounds
= 1, representing perfectly correct clustering. Actual run
times are also recorded to support time complexity analysis
from Section V.

ACC =

∑n
i=1 δ (si,map(ri))

n
(19)

AMI =
I (U,V )− E{I (M)|a, b}

√
H (U)H (V )− E{I (M)|a, b}

(20)

ARI =
RI − E[RI ]

max(RI )− E[RI ]
(21)

DPC and FKNNDPC require prespecified parameter that
can significantly influence clustering performance. DPC
requires the cutoff distance, dc, to calculate the local density.
Users can choose dc relatively freely so the average number
of neighbors is approximately 1∼2% of the total number of
points in the dataset [16], and dc, can also be adjusted using
repeated experiments. The prespecified KNN parameter, k ,
for FKNNDPC is required to calculate local density, and
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assign point cluster labels in strategies 1 and 2. We use
the generic symbol Par as the prespecified parameter when
setting dc for DPC and k for FKNNDPC.
All four clustering algorithms assign the remaining

(non-center) points cluster label starting from the center
point. If the algorithm finds incorrect center points or more
than two center points within a single same cluster, this error
may propagate, i.e., more points will be assigned incorrectly.
Therefore, it is important that the algorithm finds the correct
number of clusters and center points in different clusters.
If two center points belong to the same cluster, the cluster
would split and the true cluster(s) would disappear with
no center point(s) found. In the evaluation, F refers to the
number of cluster center points found and P to the number of
clusters the cluster center points occupy.

In our experiments, Par ( i.e., dc or k) arise from the
recommended optimal value used in FKNNDPC [22].

C. EXPERIMENTAL RESULTS ON ARTIFICIAL DATASETS
This section first shows DPCSA, FKNNDPC, HDDPC,
and DPC clustering performance on eight artificial datasets
with intuitive clustering scatter diagrams except for dim512,
dim1024, S1, and S3 datasets. Small circles in the scatter dia-
gram represent non-center points and large squares represent
center points. All points in a given cluster have the same color.
Since the SD dataset has no real class labels, ACC, AMI, and
ARI are only calculated for the remaining 11 datasets.

The S4 dataset consists of 15 clusters with noise and
heavy overlapping, which poses significant challenges to any
clustering algorithm to detect the true number of clusters
and correctly identify the center points. Figures 3 (a)-(d)
show that all four clustering algorithms can recognize the true
number of clusters, which is also confirmed by F = 15 (the
algorithm found all 15 center points) and P = 15 (the algo-
rithm found each center point in a distinct cluster) as shown
in Table 3. However, finding the correct center points does
not guarantee clustering accuracy. The different assignment
strategies caused clustering results to differ significantly.
Figure 3 (b) shows only the center point itself in cluster C11.
We identified this failure for the FKNNDPC process was due
to strategy 1. The center point of cluster C5 was selected
before the center point of C11, and assigned its cluster label.
Point proximity and heavy overlapping between C5 and C11
meant that points that should belong to C11 were assigned to
C5, because they satisfied assignment strategy 1 conditions
when the C5 center point was selected. This potential risk
limits widespread FKNNDPC use. However, this error did
not occur in the other algorithms (see Figs. 3 (a), (c), and (d)).
All ACC, AMI, and ARI index values for DPCSA, HDDPC,
and DPC were superior to FKNNDPC (Table 3). The clus-
tering scatter diagram and evaluation indexes confirm that
FKNNDPC clustering performance was significantly poorer
than the other clustering algorithms. The DPCSAACC, AMI,
and ARI indexes are slightly lower than for DPC, but higher
than for HDDPC.

FIGURE 3. S4 clustering outcomes. (a) DPCSA. (b) FKNNDPC. (c) HDDPC.
(d) DPC.

FIGURE 4. Path-based clustering. (a) DPCSA. (b) FKNNDPC. (c) HDDPC.
(d) DPC.

The Path-based dataset points form a distributed face
shape. The special aspect is that the points of one cluster
surround the points of the remaining two clusters, hence
many clustering algorithms fail, including DPC and HDDPC.
Figures 4 (a)-(d) show that DPCSA, FKNNDPC, HDDPC,
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and DPC all detect three clusters and identify corresponding
center points correctly, but split cluster C1 (face outline).
HDDPC and DPC split C1 into three clusters, and DPCSA
and FKNNDPC split it into two. Thus, DPCSA and FKN-
NDPC outperform HDDPC and DPC. Since C1 (Fig. 4 (b),
green points) contains more points than in Fig. 4 (a), FKN-
NDPC clustering outperforms DPCSA.

We analyzed DPCSA and FKNNDPC clustering process
to identify the underlying reason. Figure 4 (b) shows that C2
points (blue points) with proximity toC1 (green points) high-
est membership depended on their own K (K = 8) nearest
neighbors in assignment strategy 2 belonging to cluster C2.
Therefore, they were divided into cluster C2 erroneously.
Figure 4 (a) (DPCSA) shows that since the distance of the
nearest pair of points betweenC1 (green points) andC2 (blue
points) is greater than each point with its nearest neighbor
in C2. Thus, the nearest neighbor assignment strategy splits
these face outline points into two clusters (C1 and C2). This
excess distance in the Path-based dataset point distribution
causes clustering failure. If this distance was reduced, clus-
tering performance would be significantly improved.

We maintained the Path-based dataset distribution as much
as possible by moving only two points (points 105 and 108,
Fig. 5, large red circles) to new positions (Fig. 5, green
asterisks) rather than deleting or adding new points. Blue
arrows in Fig. 5 indicate the position and direction of move-
ment. We referred to the modified dataset as New Path-based.
Moving these data points mitigates the effects of the excess
distance.

FIGURE 5. Moving two points in the Path-based dataset.

Figures 6 (a)-(d) for the New Path-based dataset show that
all four algorithms detect three clusters and identify the corre-
sponding center points correctly, which is consistent with the
F = 3 and P = 3 (Table 3). Figures 4 (c) and 6 (c) are very
similar, as are Figs. 4 (d) and 6 (d), confirming that moving
the two points had almost no effect on HDDPC or DPC.
Thus, HDDPC and DPC do not capture local information
changes. Figures 4 (a) and 6 (a) (DPCSA), and 4 (b) and
6 (b) (FKNNDPC) exhibited the most significant differences
with moving the two points. Figures 6 (a) (DPCSA) and
6 (b) (FKNNDPC) completely separated the three clusters,

FIGURE 6. Clustering for the New Path-based dataset. (a) DPCSA.
(b) FKNNDPC. (c) HDDPC. (d) DPC.

achieving ACC = 0.9933 and 0.9900, respectively (Table 3).
The only difference between these two algorithms was point
204, which FKNNDPC wrongly assigned to C1.

FIGURE 7. Clustering phase diagram before assigning point 204
(+ symbol). Black represents unassigned points, green is C1, blue is C2,
and red is C3. The × symbol is (a) single nearest neighbor and (b)
K (K = 8) nearest neighbors for point 204.

Figure 7 shows clustering process before assigning
point 204. FKNNDPC identified point 204 as an outlier that
would be assigned a cluster label in strategy 2. Its member-
ship p1204 = 0.43664, p2204 = 0, p3204 = 0.34256 was calcu-
lated based on K (K = 8) nearest neighbors (Fig. 7 (b), ×
symbol). None of the cross points belong to C2, so member-
ship p2204 = 0. The ‘‘+’’ point has no contribution to calculat-
ing point 204 membership, because it is an unassigned cluster
label. Thus, from the principle of maximum membership,
point 204 would be assigned to C1, i.e., an error assignment.
The DPCSA nearest neighbor to point 204 was the red cross

VOLUME 7, 2019 34309



D. Yu et al.: DPCSA

point, which belongs to C3 (Fig. 7 (a)). Thus, the near-
est neighbor assignment strategy would assign point 204 to
C3, which is the correct result. Therefore, DPCSA outper-
forms FKNNDPC, particularly for this dataset with a shaped
distribution.

FIGURE 8. Clustering for the Spiral dataset. (a) DPCSA. (b) FKNNDPC.
(c) HDDPC. (d) DPC.

Figure 8 shows that all four algorithms detect the three
true clusters and correctly identify the center points for the
Spiral dataset. The center points were completely identical,
and therewas no point cluster label assignment error. Thus, all
algorithms obtained ACC = 1 and AMI = 1. Figure 8 shows
completely correct clustering on the Flame dataset, except for
FKNNDPC, which only assigns two erroneous point cluster
labels (Fig. 9 (b)).

Figure 10 shows that all algorithms detect the Aggregation
dataset seven true clusters and correctly identify seven center
points. HDDPC was closest to the completely correct result
with ACC = 0.9987, AMI = 0.9955, and ARI = 0.9978,
followed by FKNNDPC and DPC with the same clustering
accuracy ACC = 0.9975. Although DPCSA achieved the
poorest result for this case, clustering accuracy, ACC =
0.9505, was still very high. Some of the points belonging to
C4 were assigned to C5. The reason for the relatively low
clustering accuracy is that unassigned points from strategy
1 are densely distributed and strategy 2 assigns to their nearest
neighbor point’s cluster label.

The SD dataset points were drawn from a probability dis-
tribution with non-spherical and strongly overlapping peaks.
Figure 11 shows that all four algorithms detect the true
five clusters and identify five center points correctly, even
those points corresponding to different densities and non-
spherical peaks. C5 points clustered by HDDPC and DPC

FIGURE 9. Clustering for the Flame dataset. (a) DPCSA. (b) FKNNDPC.
(c) HDDPC. (d) DPC.

FIGURE 10. Clustering for the Aggregation dataset. (a) DPCSA.
(b) FKNNDPC. (c) HDDPC. (d) DPC.

(Figs. 11 (c) and (d), black points) were distributed in a rect-
angular region that tend towards a circular region, similar to
DPCSA clustering (Fig. 11 (a)). Therefore, DPCSA achieved
better clustering performance than the other three algorithms
on the SD dataset.

In contrast to the 2D datasets (two attributes) ana-
lyzed above, there is no corresponding intuitive or conve-
nient plot for high dimensionality datasets (Dim512 and
Dim1024 datasets). Table 3 shows the accuracy indices were
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TABLE 3. ACC, AMI, and ARI indices for artificial datasets.

FIGURE 11. Clustering for the SD dataset. (a) DPCSA. (b) FKNNDPC.
(c) HDDPC. (d) DPC.

all 1, hence the clustering results were completely correct for
these datasets. The same clustering outcomes DPC, HDDPC,
and DPCSA occurred for the Flame and Spiral datasets, with
FKNNDPC being only slightly inferior (ACC = 0.9917) on
the Flame dataset.

Table 3 shows evaluation index values for all datasets,
where the best clustering performance are shown in bold.

The symbol ‘‘-’’ in the sixth and eleventh columns (shown
as Par in the table header) mean there are no corresponding
value. Thus, HDDPC and DPCSA required no prespecified
parameter and successfully clustered the dataset without prior
knowledge.

We selected prespecified parameters for DPC and
FKNNDPC by repeated experiments on artificial datasets
with real cluster labels. Using these parameters, DPC
achieved the best clustering performance for six of the
10 datasets and outperformed the other three algorithms (each
algorithm achieved best clustering performance for five of
the 10 datasets) with a weak advantage (only more than
one dataset). Although FKNNDPC claims to be robust to
the prespecified parameter, K , it selected five K values for
the 10 datasets. Thus, DPC is more robust than FKNNDPC
selecting two dc values for the 10 datasets. The F/P columns
(Table 3) show that all four algorithms find the correct
number of clusters and identify all cluster centers that lie
in different real clusters. FKNNDPC is also somewhat more
noise sensitive than DPCSA. For example, consider the S1,
S2, S3, and S4 datasets; S4 has more noise and overlap than
S1-S3. FKNNDPC clustering accuracy reduces from ACC =
0.9654 to 0.7600 for the S2 and S4 datasets, respectively;
whereas DPCSA accuracy reduces from ACC = 0.9580 to
0.7872, respectively.

D. EXPERIMENTAL RESULTS ON REAL-WORLD DATASETS
Prespecified DPC and FKNNDPC parameters were also
selected by repeated experiments and recommended val-
ues, as shown in Table 4 for 10 real-world datasets. Values
corresponding to best clustering performances were in
bold.
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From the ACC perspective, FKNNDPC achieved best
clustering performance, with highest ACC for six of the
10 datasets. DPCSA achieved highest value for three of the
10 datasets, and DPC and HDDPC only achieved highest
value for one, providing the poorest clustering performance.

Although DPCSA appears less competitive than FKN-
NDPC, DPCSA does not require the (optimized) prespecified
parameter. Since there is no general method to find the opti-
mal parameter selection, it can be a challenging problem, par-
ticularly for datasets without prior knowledge or true cluster
labels. Although FKNNDPC had generally better accuracy,
the difference to DPCSA was very small, e.g. the Iris dataset
ACC = 0.9733 and 0.9667 for FKNNDPC and DPCSA,
respectively, i.e., only 0.0066 difference. Ionosphere, Seeds,
Wdbc, and Wine datasets exhibit similar outcomes. Thus,
FKNNDPC and DPCSA clustering performance for the real-
world datasets were very good, whereas DPC and HDDPC
performance was poor.

For most datasets, FKNNDPC and DPCSA detected the
true number of clusters and identified the correct center
points. For example, Iris, Pima, Seeds, Wdbc, and Wine
datasets (Table 4, F/P columns). For the Ionosphere dataset,
FKNNDPC found three clusters for two true clusters with
two center points in the same cluster, whereas DPCSA found
the correct number of clusters and center points. The Libras
dataset was troublesome for all four algorithms, because the
number of points in each cluster was small. DPC detected
eight clusters with center points scattered over seven real
clusters. HDDPC detected six clusters with their center
points scattered over six real clusters. Although FKNNDPC
detected 12 more clusters than DPC, their center points were
scattered over only seven real clusters, the same as DPC.
DPCSA detected 14 clusters with center points scattered over
10 real clusters. Therefore, DPCSA was the best algorithms
to detect the largest number of real clusters.

E. EXPERIMENTAL RESULTS FOR THE
OLIVETTI FACE DATASET
Images (pixel matrix) are very special data types. Generally,
pixel matrices are stretched into a vector and image clustering
is converted into challenging high dimensional data cluster-
ing. The Olivetti face dataset is a widely used benchmark
for machine learning algorithms to identify the number of
subjects without previous training [46]. The pixel matrix is
92 × 112 and should be stretched into a 10,304 dimension
vector. This dataset contains 40 subjects (clusters) where
each subject has 10 different images. This dataset poses a
serious challenge toDPC because the ideal number of clusters
(of distinct subjects) is comparable to the number of elements
(of different images, 10 for each subject).

Redundant features can negatively affect the result,
particularly in high dimensional datasets, although the
effects can be reduced using principal component analysis
(PCA) [54]. Table 5 shows cumulative variance contribu-
tion rate corresponding to the number of principal com-
ponents. We extracted the first 110 principal components

TABLE 5. Cumulative variance contribution from principal component.

FIGURE 12. Decision graphs for the first 100 images in the Olivetti face
dataset. Red dashed lines represent center point separation. (a) DPCSA.
(b) FKNNDPC (Par = 4).

based on the principle of preserving 90% cumulative variance
contribution.

Image clustering requires computing the distance between
two images. We used the Euclidean distance between two
compressed images (110 dimension stretched vector). The
decision graph consisted of γi = ρi ∗ δi in decreasing
order for images replacing ρ and δ. The maximal value,
γ1, is significantly larger than the second largest, γ2, which
would compress the distribution of the remaining points in
the vertical axis. The user generally manually selects center
points in the decision graph inconveniently. Therefore, let
γ1 = γ2+0.01 and only the first 100 points are draw with no
more than 100 clusters for Olivetti face dataset.

TABLE 6. Selection scheme performance for the Olivetti face dataset.

Figure 12 shows DPCSA and FKNNDPC decision graphs,
where the four red dashed lines represent the likely center
point selection schemes. Table 6 shows the corresponding
performance metrics. The first red dashed line in Fig. 12 (a)
shows that DPCSA found 17 center points (F = 17) that
lie in 17 clusters (P = 17), whereas Fig. 12 (b) shows that
FKNNDPC found 15 correct center points (F/P = 15/15),
two clusters fewer than DPCSA. The second and third red
dashed lines in Fig. 12 (a) identify 28 and 30 true clusters,
respectively, which is close to the true number of clusters.
Therefore, the third red dashed line was selected as the opti-
mal DPCSA result with ACC = 0.5500. Since the third and
fourth red dashed lines for FKNNDPC (Fig. 12 (b)) detected
the same true clusters (P = 30) and fewer center points
(F = 40), the third red dashed line was also selected as the
optimal result with ACC = 0.5575.
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TABLE 4. ACC, AMI, and ARI indices for real-world datasets.

FIGURE 13. Clustering for the Olivetti face dataset. Images with the same color belong to the same cluster, center point is marked with a white square.
(a) DPCSA (44 center points). (b) FKNNDPC (Par = 4, 40 center points).

Clustered images correspond to the 44 center points found
by DPCSA (Fig. 13 (a)) and 40 center points found by
FKNNDPC (Fig. 13 (b)). Images from different clusters are
marked with different colors. The center point is marked with

a white square at the upper right corner of the image. For
convenience, a true class is described as a subject where S ji
represents the jth image of subject i, and Ci represents cluster
i clustered by algorithm. Figure. 13 (a) shows that image S101

VOLUME 7, 2019 34313



D. Yu et al.: DPCSA

FIGURE 14. Results of different datasets in random order. (a) ACC. (b) AMI. (c) ARI.

is assigned to C19 (center point S517 ) that differs from the rest
of the images S j1, (j = 1, . . . , 9). This error may be due to
the stretched vector, which loses some information from the
original image. Although FKNNDPC assigns image S101 to
C28 (center point S325) in Fig. 13 (b), this also includes images
S21 and S51 , which may be the FKNNDPC local density defi-
nitions modifying the S21 and S51 cluster labels and assigning
them to C28. This is not always effective, because the rest of
the images S j1, (j 6= 2, 5, 10) (Fig. 13 (b)) are assigned toC27.
This indicates that both DPCSA and FKNNDPC can assign
the same subject images to different clusters. By selecting
a well-designed parameter, FKNNDPC can recognize the
correct number of clusters similar to DPCSA which avoids
prespecified parameters. They achieved very similar cluster-
ing accuracy (ACC = 0.550 and 0.5575 for DPCSA and
FKNNDPC,respectively). Since it requires no prespecified
parameters achieves comparable or superior clustering per-
formance, the proposed DPCSA is a competitive algorithm.

F. RUNTIME COMPARISON
Section V discussedDPC, HDDPC, FKNNDPC, andDPCSA
algorithm the time complexity. This section compares real
runtime of these algorithms for different datasets, as shown
in Table 7.

TABLE 7. Algorithm runtimes (unit: s).

HDDPC was the least efficient algorithm with run-
times an order of magnitude greater than the other three
algorithms and increasing exponentially as the number of
points increases. For example, runtime for the Iris dataset
with 150 points = 0.8105 s, but for the S1 dataset with
5,000 points = 3559.489s. There was less than one order
of magnitude difference across the other three algorithm
runtimes. However, the differences were significant between
DPC, FKNNDPC, and DPCSA. DPC was the fastest, then
DPCSA, approximately twice or longer than DPC, and
FKNNDPC runtime was approximately twice or longer than
DPCSA. FKNNDPC slow speed was mainly due to searching
the fuzzy KNN for each point and assignment strategy 2
while computing point membership for each cluster, whereas
DPCSA only searched nearest neighbor point and assigned
cluster labels, and took advantage of NNDT to further reduce
runtime. These runtimes were consistent with the additional
computation of the improved algorithms. Thus, DPCSA
is more efficient than FKNNDPC and HDDPC, but less
than DPC.

G. ORDER SENSITIVITY
The order sensitivity is a measure of algorithm sensitivity to
the order of points in dataset. The strong randomness result
of the algorithm must be order sensitivity. Therefore, order
sensitivity can test the stability of algorithm and avoids the
erroneous evaluation of algorithm performance caused by the
random result.

We usedDPCSA to cluster D31, Flame, Path-based, S2 and
Iris five datasets again, and randomized the order of points in
them. For each dataset, we repeated clustering 10 times and
computedACC,AMI andARI values to discuss the order sen-
sitivity of DPCSA. If there are significant differences among
the results of repeated experiments, we believe that DPCSA
is order sensitivity; otherwise, it is not order sensitivity.
Figure 14 shows that the ACC, AMI andARI values are stable
for the same dataset without any abrupt change or severe fluc-
tuations. In the figure, each line represents a single dataset,
and each point on the line is one experiment. In this regard,
it is clear that DPCSA is not order sensitivity and the cluster-
ing result of DPCSA is not randomness.
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FIGURE 15. Clustering evaluation for different k values on the Aggregation, Flame, Iris, S2 datasets. (a) ACC. (b) AMI. (c) ARI.

H. DISCUSSION REGARDING FIXED KNN PARAMETER
This paper addressed the prespecified parameter limitation by
improving local density, based on both fixed KNN (k = 5)
and weighted local density sequence. The parameter requir-
ing pre-specification was converted to a constant while pre-
serving or even improving clustering performance, which is
convenient the user to directly cluster real-world datasets
without real class labels.

We selected k = 5 after careful consideration. On one
hand, nearest neighbor is susceptible to interference from
accidental meeting of two or three outliers, hence 2NN,
3NN, or 4NN may be close to normal data points, and not
easily distinguished. On the other hand, we investigatedDPC-
KNN and FKNNDPC for many datasets, finally settling on
k = 5, except for the Olivetti face dataset, where k = 4 since
each cluster had only 10 images. Thus, k remains an empirical
parameter and may not be optimal. Therefore, we used the
Aggregation, Flame, Iris, S2 datasets and investigated the
effects of different k on ACC, AMI, ARI, as shown in Fig. 15.
Clustering performance was robust and ACC, AMI, ARI
were maximized for k = 2-19 on the Iris dataset. Except
for Aggregation, Flame and S2 had similar conclusion. The
best clustering performance of Aggregation corresponded to
k = 19, 20, 25, and the k = 5 selected in this paper was
less than them. Considering both clustering performance and
avoiding predefined parameter, we regard the fixed k = 5
value as the first term of the improved local density. Hence,
considering all the aspects we fixed k = 5.

VII. CONCLUSION
This paper proposes a modified DPC algorithm incorporat-
ing weighted local density sequence and nearest neighbor
assignment (DPCSA) to improve DPC from three aspects:
(a) local density is improved to avoid user prespecified
parameter based on both weighted local density sequence
and fixed KNN, (b) assignment strategy is split into two
stages using a boundary condition to reduce assignment error
propagation, (c) nearest neighbor dynamic table (NNDT ) is
proposed to improve clustering efficiency.

We compare the proposed DPCSA clustering perfor-
mance with DPC, HDDPC and FKNNDPC algorithms using
ACC, AMI, ARI and efficiency on artificial and real-world
datasets, and the well-known Olivetti face dataset. All exper-
iments verify that DPCSA clustering without requiring

a prespecified parameter is significantly better than DPC
and HDDPC, and slightly better than FKNNDPC. DCPSA
is more efficient than FKNNDPC and HDDPC, and less than
DPC.

Overall, DPCSA is a highly accurate and efficient cluster-
ing algorithm that does not require user prespecified param-
eter. Thus, it is suitable for a wide range of research and
practical applications.

For future work, we want to solve the following problems.
First, DPCSA with a fixed k value cannot be called non-
parameter. We will continue to explore the non-parameters
algorithm. Second, although DPCSA improves the cluster-
ing efficiency in assignment strategies, the high complexity
of local density leads to the lower efficiency of DPCSA
than DPC. We will continue to reduce the computational
complexity of local density. Third, DPCSA clustering per-
formance cannot exceed all other algorithms, so we will
continue to study more reasonable definitions of local density
and distance. Forth, we try to extend DPCSA to cluster big
datasets.
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