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ABSTRACT Accurate forecast of the hourly spot price of electricity plays a vital role in energy trading
decisions. However, due to the complex nature of the power system, coupled with the involvement of
multi-variable, the spot prices are volatile and often difficult to forecast. Traditional statistical models
have limitations in improving forecasting accuracies and reliably quantifying the spot electricity price
under uncertain market conditions. This paper presents a hybrid model that combines the results from
multiple linear regression (MLR) model with an auto-regressive integrated moving average (ARIMA) and
Holt–Winters models for better forecasts. The proposed method is tested for the Iberian electricity market
data set by forecasting the hourly day-ahead spot price with dataset duration of 7, 14, 30, 90, and 180 days.
The results indicate that the hybrid model outperforms the benchmark models and offers promising results
under most of the testing scenarios.

INDEX TERMS ARIMA, energy price, forecasting, Holt-Winters, hybrid model and regression.

I. INTRODUCTION
The energy trading has seen a rapid growth as result of
deregulation and competitive energy markets in the recent
years. The electricity price changes hour by hour and these
changes typically reflect the variations in the availability of
generation resources, fuel costs and demand. This volatility
increases as the integration of intermittent sources of electric
power generation (e.g., wind and solar) continues to rise.
Furthermore, participants in the electricity spot market must
submit price bids the day before buying or selling electricity
(day-ahead), which means that buyers and sellers must make
significant decisions regarding prices well in advance. There-
fore, the producers of electric power require reliable forecast-
ing methods to offer competitive bids to the buyers of electric
power, while the consumers require reliable forecasting tools
to acquire lowest possible price of electricity. Thus, the accu-
rate forecasting methods are crucial for economic decision
making and implementation of incentive based ‘‘time-of-use
pricing’’ scheme for consumers. Moreover, the power grid is
a highly complex system, governed by many variables, such
as generation and transmission constraints, environmental
variables, and seasonal demand variations. Thus, there is a
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need for an accurate forecasting model that accommodates
these influential variables.

This paper presents a method for predicting ‘‘day-ahead’’
spot electricity prices for the Iberian electricitymarket, result-
ing in forecasted prices for each hour of the following day.
The dataset available to the authors contains the hourly spot
price for 3 and 6 months period ranging from approximately
February to July of 2015. In addition, several other variables
such as lagged values of price and demand, power production
rates from coal and hydroelectric plants, and environmental
variables such as temperature, wind speed, and irradiance
are available in this dataset. The spot price for the last day
available in the dataset (i.e., July 31, 2015) is forecasted using
a novel hybrid method that combines typical forecasting
methods such as Auto-Regressive Integrated Moving Aver-
age (ARIMA) and the Holt-Winters method with a multiple
linear regression (MLR) model. In this model, the ‘‘predictor
variables’’ such as hourly energy production and environmen-
tal variables are combined with forecasted variables using a
weighted average.

II. LITERATURE REVIEW
The accurate forecast of short-term price is challenging
for the electricity markets due to the complex nature of
power system. Furthermore, the data series of electricity
prices is typically non-stationary and highly volatile [1],
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making fundamental forecasting methods such as the lin-
ear regression (LR), moving averages (MA), or exponen-
tial smoothing (ES) presented in [2] unsuitable for robust
price forecasting. On the other hand, Auto-Regressive Inte-
gratedMovingAverage (ARIMA) is amore sophisticated and
widely used forecasting method that combines predictions
based on past values of the target variable (Auto-Regressive)
with a moving average of the target value [2], and it is
often used as a benchmark for comparing newer candidate
models [1].

Chinnathambi et al. [3] discuss several forecasting meth-
ods for Iberian electricity markets using multiple variables.
Here, they use a two-stage approach, where ARIMA method
is first deployed in stage 1, and the resulting residuals are
used as inputs to stage 2. In stage 2, authors use Locally
Weighted Scatterplot Smoothing (LOWESS), Support Vector
Machines (SVM), Random Forest (RF), Generalized Linear
Model (GLM) for further improving forecasts. de Marcos
et al. [1] claim that hybrid models combined with con-
ventional forecasting models produce better forecasts. Here,
the authors use an optimization model that outputs an esti-
mated price based on different parameters of the power sys-
tem such as supply, demand, and transmission constraints.
This estimated price is then fed to a Function Fitting Neu-
ral Network (FFNN) that forecasts hourly prices based on
the estimated price and predictor variables such as lagged
prices and expected wind and solar generation. The results
indicate that the hybrid model produces lower forecast error
in terms of mean absolute percentage error (MAPE) and
Mean Squared Error (MSE) as compared to ARIMA and
FFNN model without the estimated fundamental price from
the Cost-Production optimization model. Nowakowska and
Lis [4] use a similar hybrid optimization model based on
generation and demand in which they first seek to predict
the hour-ahead demand using an optimization model that
forecasts using the demand for the previous hour and histori-
cal data from the previous year. Previous demand forecasts
are then compared with the real demand values and used
along with the current price and ‘‘price elasticity’’ coefficient
to forecast the next price. Alshejari and Kodogiannis [5]
present the Asymmetric Gaussian Fuzzy Inference Neural
Network (AGFINN) that combines neural networks, fuzzy
logic, and clustering schemes in a hybrid model to produce
improved price forecasts. Saini et al. [6] propose a hybrid
method that combines linear regression with Support Vector
Machine (SVM). Several linear equations are generated using
linear regression with different combinations of the predictor
variables, and a set of predictor variables resulting in a linear
equation with the smallest MAPE is selected as the optimal
set of predictor variables. The results of the linear forecasts
are then used as the inputs to SVM.

There are also studies [7]–[10] focusing on different meth-
ods of using predictor variables as inputs to the forecasting
model. Portela et al. [7] present an Autoregressive Mov-
ing Average Hilbertian (ARMAHX) forecasting method that
offers improved capabilities of ARIMA to model seasonal

effects and accounts for the effect of predictor (‘‘explana-
tory’’) variables to produce lower MAPE values than that
of other benchmark methods. A Singular Spectrum Analy-
sis along with an Artificial Neural Network (ANN) is used
to develop a non-linear relationship between the electricity
price and the predictor (‘‘exogenous’’) variables, such as
temperature (t), and grid conditions [8]. In [9], the method of
SVR (Support Vector Regression) for developing nonlinear
regression relationships between predictor variables and the
electricity price is proposed. Mohamed and El-Hawary [10]
stress the importance of selecting the right predictor vari-
ables (‘‘input features’’) for electricity price forecasting, and
they propose different methods of predictor variable selection
including Attribute Evaluator methods such as ‘‘CFsSubsetE-
val’’ and ‘‘WrapperSubsetEval’’ and search methods such as
the ‘‘Best-First’’, ‘‘Greedy-StepWise’’, and other Exhaustive
methods.

The contribution of this paper is to expand the work of
Chinnathambi et al. [3] by strategically selecting the sig-
nificant predictor variables for the Iberian electricity market
data and using them as inputs to hybrid models that com-
bine multiple linear regression with ARIMA and the Holt-
Winters method. Chinnathambi et al. [3] do not perform
a detailed analysis of the predictor variables to determine
which predictor variables are truly significant to the model,
and instead they have used all 17 predictor variables. This
paper expands the work of Chinnathambi et al. [3] with the
following contributions:
• A multiple regression method in MATLAB is used to
perform an exhaustive search of multiple regression
models of all possible combinations of predictor vari-
ables and select the best model based on various mea-
sures of a predictor variable. Each predictor variable is
represented by one digit in a binary number which is
toggled to either include or remove the variable from the
model between iterations. This method is described in
more detail in the following section.

• A weighted averaging technique is developed for com-
bining ARIMA, and regression methods for better fore-
casts for data duration of 7, 14, 30, 90, and 180 days.

III. STATIONARITY CHECK
Stationarizing a time series data is an essential step to obtain
the statistical parameters such as mean, variance and correla-
tion along with other variables, if the original series is non-
stationary. If the data series is steadily growing over time, then
the mean and variance will also increase with the size of the
sample. This may result in underestimated values of mean
and variance for the future periods. Hence, the stationarity
check was performed for all data series using ‘R’ software.
The stationary test such as Augmented-Dickey-Fuller Unit
Root Test was performed for different dataset durations such
as 7, 14, 30, 90, and 180 days. Table 1 shows the p-values
for the unit root test (URT). Generally, a p-value of less than
0.05 indicates that the data is stationary, and greater than
0.05 requires differencing operations on the data. Hence, this
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TABLE 1. Stationarity test results for different datasets.

unit root test was performed using a function named ‘‘ur.df
()’’ under the library ‘‘urca’’.

Stationarity check involves a two-step process. In step 1,
the original data series is transformed into a time series
object using ‘ts’ function in R software. Step 2 requires
performing a unit root test (URT) for the time series data
or the non-differenced data to check the stationarity. The
URT results show that the original data set is non-stationary,
as p-values for various durations (except 180 days) are
greater than 0.05. Therefore, the first differencing for the
non-stationary data series is performed to make it stationary
and the resultant data is tested for stationarity. The results
indicate that the data series becomes stationary after the first
differencing and this is evident from lower p-values (p<0.05).
Therefore, the stationarized first-differenced data set is used
for the remainder of the paper except 180 days of data, where
the non-differenced dataset is used.

IV. SELECTION OF PREDICTOR VARIABLES
The 3-month and 6-month datasets from the Iberian electric-
ity market are used for this study and these datasets con-
tain the hourly electricity price along with the hourly value
of 17 other ‘‘predictor’’ variables that may or may not be
significantly related to the price. In order to construct a model
that can forecast hourly prices of electricity, it is important to
identify the significant variables and discard the insignificant
variables. The methods used to select the significant predictor
variables are described in the following sections.

A. MULTIPLE LINEAR LEAST SQUARES REGRESSION
Multiple linear regression is a widely used method that fits a
data set to amodel in which the forecasted variable yi depends
linearly on a number of predictor variables x1,i, x2,i . . . xk,i.
This multiple linear regression model can be expressed as,

yi = β0 + β1x1,i + β2x2,i + . . . βkxk,i + ei (1)

Here k is the number of predictor variables, β1, β2 . . . βk
are the regression coefficients and ei is an error term which
represents the difference between the forecasted value (ŷi)
and the measured value (yi) [11]. Therefore, the values of βj
(and the overall model) can be optimized by minimizing the
sum of the square of the error (SSE) term ei.
Equation (1) can be expressed in matrix form as:

Y = Xβ + E (2)

Here Y is anN x 1 matrix of the pastN measured values of yi,
β is a (k + 1) x 1 matrix of the β values, E is an N x 1 matrix
of the ei values, and X is given by equation (3).

X =

 1 x1,1 . . . x1,k
. . . . . . . . . . . .

1 xN ,1 . . . xN ,k

 (3)

The SSE can be minimized and the optimum values of βj
can be selected by the equation:

β̂ = (XTX )
−1
XTY (4)

Here β̂ contains the optimized values of the linear coeffi-
cients [11].

If there is little or no relationship between the dependent
and a predictor variable xj, the value of βj should be very close
to 0. Therefore, a hypothesis test is performed with the null
hypothesis that βj = 0. Therefore, with a 95% confidence
interval, if a value of βj has a p-value greater than 0.05,
the corresponding predictor variable xj does not significantly
contribute to the model. Thus, a predictor variable xj can be
removed from the data and a newmodel can be generatedwith
updated values of β̂ and the error term (SSE’). If the value of
SSE’ determined using hypothesis tests and p-values are not
significantly larger than the SSE of the original model, then
xj does not add significantly to the model and it can be elimi-
nated [11]. This process is repeated for all predictor variables,
removing them one by one as seen unfit and testing if the
SSE increases significantly. This procedure is implemented
using the matrix and statistical functions of Microsoft Excel
using the 3-month data, and it is observed that the predictor
variables 5, 7, 8, 9, 10, and 16 are insignificant.

B. MEASURES OF PREDICTIVE VALUE IN MATLAB
Some statisticians warn against the use of selecting variables
based on hypothesis tests and p-values, as these methods
solely prove statistical significance, which is not neces-
sarily an accurate measure of predictive value [2]. Rather,
it is recommended to test all possible models and compare
them based on measures of predictive value, such as the
adjusted R2, corrected Akaike’s Information Criterion (AICc)
or Bayesian Information Criterion (BIC).

The coefficient of determination (R2) is a common statistic
used to measure the correlation between variables and it is
given by:

R2 =

∑
(ŷi − ȳ)

2∑
(yi − ȳ)2

(5)

Here ŷi is the forecasted target variable, yi is the measured
target variable, and ȳ is the mean target variable [2]. However,
R2 is not necessarily a useful tool for measuring the accuracy
of a model (only correlation). Therefore, the value of R2 can
be adjusted as shown below:

R2adj = 1− (1− R2)
N − 1

N − k − 1
(6)
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The adjusted R2 overcomes the limitations of the conven-
tional R2.
A second measure of predictive value is Akaike’s Informa-

tion Criterion, corrected (AICc), which is given by:

AICc = Nlog
(
SSE
N

)
+ 2 (k + 2)+

2(k + 2)(k + 3)
N − k − 3

(7)

A third measure of predictive value is the Schwarz
Bayesian Information Criterion (BIC), which is given by:

BIC = Nlog
(
SSE
N

)
+ (k + 2) log(N ) (8)

Thus, the best model for a given data set is typically the
one with the largest value of R2, lowest values of AICc and
BIC [2].

To select the best model for a given data, the values of
adjusted R2, AICc, and BIC must be calculated for all pos-
sible models [2] as shown in Table 2.

TABLE 2. Predictive values for all possible regression models.

A data set with k predictor variables has 2k-1 possible
models, but it can become unwieldy for data set with a
large number of predictor variables [2]. Therefore, a novel
MATLAB program is developed to compute the Adjusted R2,
AICc, and BIC for the 217 − 1 = 131, 071 possible models.
The program performs multiple regression on the data set

in order to compute the predictive values which are then
stored after each regression. This cycle is looped, and the
loop index variable (w) is converted to a binary number
during each iteration. For example, in the first iteration,
w = 1, and this index is converted to the binary number
00000000000000001. Each digit of the binary number is
then used to ‘‘turn on’’ or ‘‘turn off’’ a predictor variable.
Therefore, for the first iteration where w = 1, the only
predictor variable included in the data set is the 17th variable
that corresponds to the first binary digit on the extreme right
of the binary number and it is represented by ‘‘1’’ and all other
variables are marked ‘‘0’’, resulting in 00000000000000001.
This regression process is looped 131,071 times to obtain
the regression models from every possible combination of
predictor variables.

The results of the MATLAB program are shown in Fig. 1,
which plots the values of adjusted R2, AICc, and BIC versus
the iteration number. The maximum adjusted R2 and min-
imum AICc and BIC occur at 129,021th iteration and the
corresponding values are 0.6159, 18028, and 18055 respec-
tively. This optimized model contains all the variables except
variables 6 and 16.

FIGURE 1. Measures of predictive value returned by MATLAB function.
The optimal model occurs at run when the adjusted R2 (gray) is
maximized and the AICc and BIC (blue, orange) are minimized at iteration
129,021 when variables 6 and 16 are removed.

The residuals of this optimized model appear to be nor-
mally distributed with a mean of zero, indicating a good
fit. However, the autocorrelation function of the residuals
shows large spikes at the first several lags, indicating that an
autocorrelation forecasting model such as ARIMA may be
well-suited to this data.

C. STEPWISE AND SUBSET REGRESSION IN R
The Stepwise and Subset regression can be employed in
situations where it is undesirable or impossible to test every
possible model for determining the significant predictor vari-
ables. The Subset regression allows only a certain number of
variables to be evaluated as significant (a subset of the orig-
inal set of variables), while the Stepwise regression removes
one predictor variable at a time and keeps the newmodel if the
predictive measures are improved [2]. The process is repeated
until the model cannot be further improved.

Both Subset and Stepwise regression were performed on
the 6-month data set using R software. The largest subset
available in R allows 8 variables, and the best model (judged
by adjusted R2) consisting of a subset of 8 predictor variables
including the variables 1, 2, 3, 4, 9, 11, 15, and 17. The
Stepwise regression performed in R returned an optimized
model which is identical to the MATLAB based model that
includes all variables except 6 and 16.

The results of four different predictor selection tests are
presented in Table 3. If a test indicates that a given pre-
dictor variable should be included in the model, then that
particular predictor variable is assigned a value of ‘‘1’’ in the
column corresponding to the test or else ‘‘−1’’ is assigned
for removal of a predictor variable. If the test did not address
the predictor, the space is left blank. The last column adds
the corresponding row values and gives the total for each
predictor variable, with the largest and smallest sums corre-
sponding to the most and least significant predictor variables,
respectively. Based on these results, it is observed that hourly
price demand, wind generation (wg), temperature (t), and
wind speed (ws) (variables 1-4, 11, 15, and 17) are the most
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TABLE 3. Results of predictor variable selection tests.

significant predictor variables, while the lagged hydroelectric
generation and irradiance (variables 6 and 16) are the least
significant predictor variables.

Thus, a multiple regression equation is generated by using
all predictor variables except the lagged hydroelectric genera-
tion and solar irradiance in equation (1). The resulting values
of regression coefficients (βi) from equation (1) are shown
in Table 4. The regression equation therefore gives the hourly
electricity price and it is the sum of product of each predictor
variable xi and its corresponding regression coefficient βi
from Table 4.

The results indicate that the price has a negative co-relation
with variables 3, 5, 7, 10, 11, 13, and 17 and it is clear that

TABLE 4. Regression coefficients.

FIGURE 2. Forecast for July 31, based solely on multiple regression using
all variables except variables 6 and 16.

the increase in these predictor variables tends to decrease
the price and vice versa. Furthermore, the magnitude of each
coefficient may not be indicative of the significance of the
predictor variable because the variables have different units
and scales. Equation (1) without the insignificant predic-
tor variables was used to forecast the electricity price for
July 31 and compared with actual data points for that day. The
resulting forecast is shown in Fig. 2 and the Mean Average
Percent Error (MAPE) is 8.17%.

V. TIME SERIES DECOMPOSITION
Time series data, such as historical prices of electricity, can
typically be decomposed into three components: seasonal,
cyclic/trend, and remainder (error). The seasonal component
of a time series is the component that fluctuates regularly
with known duration and amplitude, while the cyclic/trend
component may cause the overall series to rise or fall without
any definite period or amplitude. The remainder component
is the error that remains when the seasonal and cyclic/trend
components have been removed from the data. The time
series decomposition for the first 48 days of the data is
shown in Fig. 3, where the x-axis represents the day number
(Jan 1 = 1, Jan 2 = 2, etc.).
The decomposition shown in Fig. 3 clearly shows a sea-

sonal (daily) component having a period of 24 hours. This
is expected, since energy usage has a similar trend from day
to day. The data is made stationary using unit root test for
forecasting as outlined in section III.

VI. FORECASTING METHODS
In this study, hybrid models of ARIMA with multiple regres-
sion and Holt-Winters with regression are used to predict the
day-ahead electricity price. These methods are implemented
using R software.

A. ARIMA METHOD
ARIMA is a commonly used forecasting method that uses
three significant time-series components. These components
include AR (Auto-Regressive), I (Integrated), andMA (Mov-
ing Average) which are denoted as p, d, and q respectively.
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FIGURE 3. Times series decomposition of 48 days of the 3-month data
exhibiting trends and seasonality.

Each of these components is optimized to find the best-fit
forecast determined by the smallest residual values. ARIMA
is a valuable forecasting tool for data that incorporates trend
and seasonality [12].

The first step in ARIMA is the computation of the Inte-
grated (I) component in which the data is integrated. This
is accomplished by subtracting each data point from the
previous data point. The goal of this step is to create a trend-
less/stationary data set, which can be accomplished through
a single difference or multiple differences depending on the
characteristics of the dataset. Once the differenced data is
trendless, or as close to trendless as possible, the method
proceeds to the next step.

The second step involves the computation of Auto-
Regressive (AR) component which predicts future values of
the trendless dataset based on a weighted sum of past values
as shown in equation (9).

Yt= c+ ø1Yt−1+ø2Yt−2+ldots.øpYt−p + et (9)

Here, Yt is the price at time t , øt denotes the regression
coefficient, and et denotes the error term.
The final step of ARIMA is the computation of Moving

Average (MA). A moving average is similar to auto-
regression, but instead of using previous target values, it uses
previous error values to determine the current value as
shown in equation (10). The R software package uses an
auto-ARIMA function that optimizes the values to produce
the best fit forecast.

Yt = c+ et + θ1et−1 + θ2et−2 + . . . . .θpet−p (10)

B. HOLT-WINTERS METHOD
The Holt-Winters Method, also known as triple exponential
smoothing, uses the principle of exponential smoothing to
forecast the data points. Exponential smoothing is a technique
used for smoothing time series data that can also be used
for forecasting future values of the data. By assigning an
exponentially decreasing weight to previous values of data,
the future values are predicted with higher deference given

to the most recent values. A smoothing factor dictates the
amount of weight given to the previous values [13]. The equa-
tion for basic exponential smoothing is given in equation (11).

St = α∗x t + (1− α)∗St−1 (11)

Here St is the predicted value, α is the smoothing factor, and
xt is the value at time t . The smoothing factor ranges from
0 to 1 with smaller values giving more weight to previous
data.
The Holt-Winters method uses triple exponential smooth-

ing, allowing it to account for trend and seasonality. Triple
exponential smoothing is achieved through equation (12).

y = St + Bt + Ut (12)

Here:

Ut = γ (xt −−St−s)+ (1− α)(Ut−1 + Bt−1)

Bt = β(Ut −−Ut−1)+ (1−−β)Bt−1
St = α(yt −−Ut )+ (1− α)St−s

Here γ , β, and α are the smoothing factors for their respective
levels.

The R software automatically optimizes the value of γ , β,
and α using this method and Sum of Squared Error (SSE)
metric is used to understand the residual errors.

VII. HYBRID FORECASTING METHOD
To provide a forecasting model with higher accuracy,
hybrid approaches are explored that include combinations
of ARIMA, Holts-Winters and regression methods. These
hybrid methods are then tested using dataset of varying dura-
tions. The dataset includes the hourly electricity price for 7,
14, 30, 90, and 180 days.

The flowchart for the proposed hybrid model is shown
in the figure 4. Step-1 involves data collection phase that
collects the information on price, load, generation and
temperature for the Iberian electricity market. In step-2,
the important predictor variables are selected using differ-
ent variable selection methods as explained in section-IV.
Step-3 involves forecasting the initial price using ARIMA
for 7, 14, 30, 90 and 180 days. Finally, two hybrid models
are developed by combining (i) ARIMA with multiple lin-
ear regression and (ii) ARIMA with Holt-Winters and these
models are tested on Iberian electricity market dataset to
forecast the day-ahead electricity price. These hybrid models
are discussed in detailed in the following subsections.

A. ARIMA COMBINED WITH MULTIPLE REGRESSION
The ARIMA forecast is based on the previous price data (e.g.
D-1, D-6), so the addition of forecasting information based on
the multiple regression model should increase the accuracy of
the forecast.

The following steps were used to combine ARIMA with
multiple linear regression model:
Step 1: The dataset of previous price variables

(e.g., D-1 and D-6) is fed into the auto-ARIMA function
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FIGURE 4. Flowchart for the proposed hybrid Model.

of R software and a forecast for the following day (7/31) is
generated.
step 2: A multiple regression model is used to forecast for

the same day.

step 3: A new forecast is estimated by averaging the
hourly forecasts from steps 1 and 2. This equal allocation of
weights (50 % each) is termed as ‘‘ARIMA + Reg’’ method.
In ‘‘ARIMA+ RegW’’ method, the weights for ARIMA and
Regression are adjusted to 70 % and 30 % respectively.

The forecasters may notice that the error in one of the mod-
els is larger inmagnitude than that of the other model. In these
cases, the forecast having a larger magnitude of error can be
given less weight. This strategy will result in a more accurate
forecast while still incorporating the predictions from both
forecasting methods.

B. ARIMA COMBINED WITH HOLT-WINTERS
Generally, the residuals from the ARIMA forecast are trend-
less. However, auto-ARIMA finds the best-fit model, which
is not necessarily perfect. Therefore, the residuals having
noticeable trends can be detected and forecasted by the Holt-
Winters model. The incorporation of trends from the residuals
into the ARIMA forecast will result in higher accuracy. The
following steps were used to combine the ARIMA forecast
with Holt-Winters method:
step 1: The dataset of previous price is fed into the auto-

ARIMA function of R software and a forecast for the follow-
ing day (7/31) is produced.
step 2: The residuals produced by the auto-ARIMA func-

tion are extracted and converted to time series data.
step 3. The residuals are then fed into the Holt-Winters

function in the R software and a forecast for the following
day (7/31) is generated.
step 4: The forecasted residual values are added to the

ARIMA forecast to generate an optimized forecast.

VIII. RESULTS AND DISCUSSION
The day ahead electricity price was predicted using two
hybrid models discussed in the previous section and each
model was trained using dataset durations of 7, 14, 30, 90, and
180 days. A 24-hour forecast for July 31, 2015 was generated
including one data point for each hour of the day.

Mean Average Percentage Error (MAPE) was used as the
metric for determining accuracy of the forecast, which is
a common technique used in the forecasting field [1], [3].
MAPE is calculated using equation (13).

MAPE =
(
100
n

)
∗

n∑
t=1

(
At − Ft
At

)
(13)

Here At = actual price at time t , Ft = forecasted price
at time t , and n = number of data points being considered.
In this case, the MAPE is determined using all 24 hours of
the forecasted day. The MAPE values of different forecast
methods for dataset durations of 7, 14, 30, 90, and 180 days
are shown in Table 5.

The day-ahead electricity price forecasted for 7/31
(July 31, 2015) and the MAPE values of different forecasting
methods for 7, 14, 30, 90 and 180 days are shown in Fig. 5 to
Fig. 14. It is clear from Fig. 5 and Fig. 6 that ARIMA
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TABLE 5. MAPE values for different forecast methods.

FIGURE 5. 24 hour forecast for 7/31 (July 31, 2015) using different
forecast methods trained by the previous 7 days of data.

FIGURE 6. MAPE values for different forecasting models trained by the
previous 7 days of data.

combined with multiple regression forecasting is the most
accurate forecast when using seven days of data to train the
model. The weighted model that gives the regression forecast
a 30 % weight and the ARIMA forecast a 70 % weight has
the least error at 3.14 %. It is also worth noting that the
ARIMA combined with Holt-Winters forecast outperforms
the ARIMA forecast.

It is noted from Fig. 7 and Fig. 8 that the error increases
when 14 days of data are used to train the model. It can be
seen that the most accurate model is ARIMA combined with
Holt-Winters, and the least accurate is the regression model.
Thus, the ARIMAmodels combined with multiple regression
forecast are less accurate than ARIMA alone and this may
be due to the large error caused by regression model with a
14-day dataset. Fig. 9 and Fig. 10 show results similar to that
of forecast models for 14 days (Fig. 7 and Fig. 8), but with
slightly less error. Again, the increased error magnitude of

FIGURE 7. 24 hour forecast for 7/31 using different forecast methods
trained by the previous 14 days of data.

FIGURE 8. MAPE values for different forecasting models trained by the
previous 14 days of data.

FIGURE 9. 24 hour forecast for 7/31 using different forecast methods
trained by the previous 30 days of data.

ARIMA + regression models is attributed to larger error of
stand-alone regression model.

Fig. 11 and Fig. 12 show that the error decreases when
the training data is increased to 90 days. Though the error
in regression method remains high, the ARIMA + regres-
sion models have the lowest error values. This indicates
that the magnitude of error in the individual regression and
ARIMA models generally has contradictory signs as seen
from Fig. 11.

It can be seen from Fig. 13 and Fig. 14 that there is
an overall decrease in error for 180 days of data and it is
evident that the hybrid models have performed better than the
stand-alone method regression model. Thus, it is clear from
the results that the accuracy of the ARIMA forecast decreases
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FIGURE 10. MAPE values for different forecasting models trained by the
previous 30 days of data.

FIGURE 11. 24 hour forecast for 7/31 using different forecast methods
trained by the previous 90 days of data.

FIGURE 12. MAPE values for different forecasting models trained by the
previous 90 days of data.

with an increase in the size of the training data. However,
the hybrid models such as ARIMA+Holt, ARIMA+ RegW
models are performing better for 180 days as compared to the
previous training datasets. This gives a clue to the forecaster
that the models need to be trained with sufficient amount of
data in order to produce good results while the most relevant
data for the next day forecast is the most recent data. Future
forecastingmodels can further build on this method by adding
data from the same 7-day period of the previous years. This
may be useful in maintaining the consistency of accuracy by
including more ‘‘training’’ data.

The hybrid models presented in this study have yielded
lower values of MAPE in comparison to other hybrid models
(ARIMA-GLM, ARIMA-SVM and ARIMA-RF) proposed
in [3] for the same Iberian electricity market for the duration

FIGURE 13. 24 hour forecast for 7/31 using different forecast methods
trained by the previous 180 days of data.

FIGURE 14. MAPE values for different forecasting models trained by the
previous 180 days of data.

of 7, 14, and 30 days. The results also confirm that the hybrid
combination of ARIMA with Holt-winters proposed in this
study outperforms other hybrid models discussed in [3].

IX. CONCLUSION
Ahybrid forecastingmethod that investigates the possibilities
of combining the regression with Holt-Winters and ARIMA
models is explored. Several variable selection methods are
deployed to identify the predictor variables (e.g., hourly price,
demand, wind generation, temperature, and wind speed) that
significantly affect the hourly spot price of electricity.

The multiple regression model of predictor variables
appears to be accurately determining the shape of the actual
day-ahead electricity price, but it overfits themagnitude of the
price. The ARIMA method is good at maintaining the mag-
nitude within range; however, it could not capture the shape
very well. A combination of these two methods provide a
forecast having a proper magnitude and similar shape on a
price versus hour plot, which resulted in a more accurate
forecast. The varying weighted approach with regression and
ARIMA model also yielded lower MAPE values, with 70 %
weight assigned to ARIMA, and 30 % to regression based
model. The combination of ARIMA with Holt-Winters out-
performed other methods in most scenarios as well as other
hybrid methods presented in the literature. It also strengthens
the fact that the proposed hybrid model is a promising model
to improve the accuracies of the short-term price forecasting
model.
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