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ABSTRACT In this paper, we deal with channel estimation (CE) for high-mobility orthogonal frequency
division multiplexing (OFDM) systems. To make the numerous (unknown) estimation for the high-mobility
OFDM systems practicable, the channels are assumed to be time- and frequency-selective−or doubly
selective (DS) and approximated by a basis expansion model (BEM). As the DS channel requires the
distributed acquisition of multiple correlated signals in the delay-Doppler channel domain, we proceed to
estimate jointly sparse BEM coefficient vectors over a DS channel as against numerous channel coefficients.
On account of channel time-variation, the resulting channel matrix in the frequency domain exhibits (approx-
imately banded) pseudo-circular structure, which gives rise to a diagonally dominant yet full matrix rather
than a diagonal matrix and thus induces inter-channel interference (ICI). On the premise of this observation,
we propose a new pilot design scheme that identifies the optimal pilot placement and values for each pilot
cluster to combat ICI. Furthermore, to obtain a channel estimator consistent with the jointly sparse delay-
Doppler [i.e., two dimensional (2D)] channel model, an algorithm namely, distributed compressed sensing
(DCS)-based stage determined matching pursuit (DCS-SdMP), is proposed. Our claims are supported by
simulation results, which are obtained considering Jakes’ channels with fairly high Doppler spreads, which
show the superiority of the proposed schemes over other different methods of CE.

INDEX TERMS Channel estimation (CE), doubly selective (DS) channel, orthogonal frequency division
multiplexing (OFDM), distributed compressed sensing (DCS), basis expansion model (BEM), pilot design,
wireless communication.

I. INTRODUCTION
Orthogonal frequency division multiplexing (OFDM) has
emerged as an effective multicarrier transmission tech-
nique for wireless communications systems over frequency-
selective fading channels [1]–[3]. Conventionally [4], OFDM
has been used in several wireless communication system
applications and adopted by various standards where chan-
nels are assumed to experience static (or- quasi-static) fading
while effectively ignoring time selectivity. However, future
high-mobility OFDM system communications [5], [6], such
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as express railroad trains [3], [7], digital video broadcasting
(DVB), underwater acoustic (UWA) communication [8] and
millimeter-wave (mmWave) communications [9] for fifth-
generation (5G) wireless networks manage a fading operat-
ing environment of time- and frequency-selective−or doubly
selective (DS)− fading. The effect of DS fading is due to
high Doppler frequency spread (DFS) (i.e., frequency dis-
persion −time selectivity) and multipath effects (i.e., time
dispersion−frequency selectivity) in wireless links [10]. For
an OFDM system operating over DS channels, the resulting
time-variation of channel impulse response (CIR) induces a
large number of channel coefficients to be estimated −due
to DFS [11], [12], compared to static or quasi-static channel

35072
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0002-1797-6558
https://orcid.org/0000-0002-8214-7414


A. N. Uwaechia, N. M. Mahyuddin: Spectrum-Efficient Distributed Compressed Sensing-Based Channel Estimation

scenarios. Therefore, the time-variation of the channel
during one OFDM symbol duration leads to a loss of
subcarrier orthogonality [13], [14], and results in power
leakage among subcarriers, referred to as inter-carrier inter-
ference (ICI). In practice, this requires much more pilots
for reliable CE than with an entirely frequency selec-
tive channel [5], [11], [13], [14]. Therefore, making the CE
task over DS channel extremely challenging for coherent
detection.

Several signal processing schemes have been pro-
posed to effectively mitigate ICI and lower the error
floor of the channel. Examples of such schemes include
precoding [15], time-domain equalization [16], and time-
frequency localization [17]. Recently, empirical investiga-
tions have demonstrated that high-mobility OFDM system
channels encountered in practice tend to exhibit a sparse
structure [5], especially at high signal space dimension
−particularly the delay-Doppler domain [11], [18], [19].
Therefore, the sparse channel can be characterized with
significantly fewer parameters than those required by the
Nyquist theorem and can effectively reduce the over-
head for CE. Consequently, to exploit the inherently
low-dimensionality of the sparse channels [5], [11], [12],
the application of compressed sensing (CS) in DS chan-
nels, were studied. Several basis expansion models (BEMs)
have been proposed for the channel time variations within
one OFDM symbol [20], to approximate and simplify the
time-varying channel parameters to be estimated. Besides
several other candidates basis functions, such as cosine
functions [21] and polynomials (i.e., Legendre and Cheby-
shev polynomials) [22], the set of complex exponentials
(Fourier) basis functions [23] is best suited to hardware
implementation since the estimation of the Fourier coeffi-
cients is a fast Fourier transform (FFT)-based. While the
theory and application of CS have been well-developed for
individual signals, several CS applications require distributed
acquisition of multiple correlated signals. Thus, the so-called
distributed compressed sensing (DCS), which contributes to
what is known as the joint sparsity of the signals ensem-
ble (i.e., sparse signal vectors sharing the same support).
Therefore, taking benefit from the complex-exponential basis
expansion model (CE-BEM) and the channel sparsity in the
delay-Doppler domain [18], [19], [24], we move forward to
estimate jointly sparse CE-BEM coefficient vectors over a
DS channel than those of the delay-Doppler channel tap
gains −‘‘numerous’’ channel coefficients. The reason is that
since the time-varying nature of the delay-Doppler channel is
well characterized in the CE-BEM by (known) Fourier basis
functions, the time-variations of the (unknown) BEM coef-
ficients are likely far slower than those of the delay-Doppler
channel tap gains, and hence more suitable to track [3], [19].
Consequently, we can use the DCS method to directly esti-
mate the two-dimensional (2D) channel coefficients (i.e.,
the delay-Doppler channel), where several jointly sparse
(unknown) BEM coefficient vectors become the estimation
goal.

Furthermore, we focus on the pilot pattern design in sparse
CE over DS channels. In [3] and [7], pilot selection schemes
have been proposed that considers the design of pilot sym-
bols and their placement for the high-mobility OFDM sys-
tems over the DS channels. However, these methods do not
exploit the inherent sparsity of the channel that is related
to the fact that DS channels tend to be dominated by a
relatively small number of clusters of significant propagation
paths [24], [25].

The recently explored CS technique to decrease the trans-
mission overhead of pilot subcarriers, exploits the inherent
sparsity of thewireless fading channel [1], [2], [5], [11], [12],
whose merit is that can increase spectrum efficiency through
reducing the number of pilot symbols that have to be trans-
mitted. In [5], the original DS channel is first approximated
using CE-BEM, where the channel becomes transformed into
2D channel model, subsequently, a DCS-based simultaneous
orthogonal matching pursuit (DCS-SOMP) algorithm is pro-
posed to estimate the several jointly sparse (unknown) BEM
coefficient vectors. However, rather than jointly optimized for
pattern and power of pilots as a solution, the proposed tech-
nique in [5] optimized for pilot placements while assuming
equal power allocation of pilot symbols. This may not lead
to a reliable estimate of the jointly sparse unknown) BEM
coefficient vectors over a DS channel. In [12], a technique
that assumes equal power allocation assignment of pilot
symbols and uses the discrete stochastic optimization (DSO)
to obtain the optimal pilot placement is proposed, which then
applied a structured DCS namely, block-based simultaneous
orthogonal matching pursuit (BSOMP) algorithm for the joint
recovery of coefficient vectors. In [11], an equal-power pilot
design that optimizes pilot placements for DCS estimation
scheme based on structured CS (SCS) for the time-frequency
training OFDM systems, is proposed. Moreover, in [11] an
adaptive support-aware block orthogonal matching pursuit
(ASA-BOMP) greedy based algorithm, is also proposed
for DS channel estimation −to recover the jointly sparse
BEM coefficient vectors. In other words, Cheng et al. [5],
Ma et al., Qin et al. [12] considered the problem of sparse
CE for OFDM systems over a DS channel while exploiting
the joint sparsity property of the CE-BEM coefficient vectors
and proposed the design of the pilot pattern by assuming
equal power allocation of pilot symbols which may not be
optimal.

While CS estimation of OFDM systems is well-
explored [1], [2], [5], [11], [12], fewer works have addressed
the design of pilot symbols and their placements for the
high-mobility OFDM systems in the presence of DS fading.
In [14], a joint pilot symbol and pilot design pattern is pro-
posed for the high-mobility OFDM systems over DS channel
to improve CE accuracy. The scheme assumes that there is
two pilot symbol power corresponding to the placement set
and employs the modified discrete stochastic approximation
to optimize the pilot placement via maintaining an occupation
probability vector, where the algorithm converges to the state
which has the largest occupation probability. However, this
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assumption may not necessarily lead to an optimal pilot
design.

In this paper, we study the clustered pilot design problem
for sparse CE ofOFDMsystems over aDS channel, where the
resulting frequency domain channel matrix is approximately
banded and exhibits a pseudo-circular structure, which gives
rise to a diagonally dominant yet full matrix rather than a
diagonal matrix and thus ICI. On the premise of this observa-
tion, we propose a new pilot design scheme that identifies the
optimal pilot placement and values for each pilot cluster to
combat ICI. The work will show that by taking the frequency
domain channel matrix ICI into account in the proposed
clustered pilot design, can reduce the rapid degradation of
the pilot power from the diagonal to the margin, and thus
mitigates ICI. Specifically, under the pilot power constraint,
the proposed approach decomposes the problem of jointly
optimizing the pilot sequences over both the pilot placement
and values allocable to the pilot clusters into identifiable
sequential conception. Hence, we applied the second-order
cone programming (SOCP) for the optimal pilot power design
and the stochastic search for the optimal pilot placement.
Simulation results confirms that the proposed pilot design
scheme can provide optimal pilot sequence allocable to the
pilot cluster which can significantly improve the estimation
accuracy of the OFDM system over DS channel. To ensure
a satisfactory estimation, we have further proposed a new
DCS recovery algorithm based on stage determined match-
ing pursuit (SdMP) namely, DCS-SdMP that possesses the
advantage of multiple common-support indices selections per
iteration and then adds a backtracking process (at a later
iteration) to subsequently refine the previously selected com-
mon support indices. Hence, the proposed algorithm enables
the existing SdMP algorithm [26] of our prior work to deal
with the problem of the distributed recovery of jointly sparse
signals that share the same support. Simulation results show
that the proposed pilot design and CE scheme, achieve better
performance than existing approaches.

The remainder of this paper is organized as follows.
In Section II, a review of CS and DCS theories and the
OFDM system model over a DS channel are presented.
In Section III, description of the new pilot design scheme
is presented. Section IV introduces the proposed joint recon-
struction algorithm for DCS that allows for joint recovery of
signals ensembles with common-sparse supports. Section V
presents the simulation results and performance evaluation.
Finally, Section VI concludes the paper.
Notations: We use boldface lowercase and uppercase let-

ters to denote vectors and matrices, respectively. For a
given matrix A, A−1, A†, AT and AH represent its inverse,
pseudo inverse, transpose and conjugate transpose, respec-
tively. 0M×N and 0M denote the M × N all zero matrix and
the zero vector with dimension M , respectively. P denotes a
set. [A]P represents the selected rows of A, whose indices
correspond to the set P . CM×N represents the set of M × N
matrices in complex field. IN denotes the N × N identity
matrix. I〈q〉N denotes the permutation matrix which is obtained

from IN by shifting its column circularly |q|-times to the right
for q < 0 and to the left otherwise. CN (0, σ 2) represents the
complex normal distribution with independent real and imag-
inary parts eachwithmean zero and variance σ 2/2.⊗ denotes
the Kronecker product, [A]a,b denotes a submatrix with row
indices a and columns indices b, and diag(a) changes a vector
a into a diagonal matrix.

II. CS AND DSC THEORIES AND SYSTEM MODEL
Here, we first present the CS and DCS theories, followed by
a detailed description of the OFDM system model over a DS
channel and then we introduce the sparse CE-BEM channel
model within multiple OFDM symbols.

A. CS AND DCS THEORIES
1) CS THEORY
The goal of CS is to recover (or approximately recover) the
original signal x ∈ CN , from its measurements y ∈ CM

[2], [26]. The CS of a signal x ∈ CN is summarized as
two processes: The first is termed the measured process and
expressed as

y = 9x+ v (1)

where y ∈ CM denotes the measured signal or compressed
measurements, 9 ∈ CM×N denotes the measurement matrix
with M � N and v ∼ CN (0M , σ 2

v IM ) ∈ CM denotes the
noise term. Generally, the original signal x is assumed to have
a sparse representation in a certain basis 8 = {φ1, . . . ,φN },
since the path delay difference from the similar scatterer is
far less than the system sampling period [2], [27]–[29]. This
can be denoted by the following equation:

x =
N−1∑
i=0

φihi = 8h (2)

where 8 ∈ CN×N represents a matrix with elements φi ∈
CN , for i ∈ [0,N−1] and h ∈ CN represents a vector. We say
that h ∈ CN is S-sparse in the basis 8 if ‖h‖`0 ≤ S [27],
where ‖ · ‖`0 denotes the so-called `0-norm of a vector that
measures the number of nonzero components of the vector.
Now, using (1) and (2) we can write

y = 98h+ v = Ah+ v, (3)

where A = 98 ∈ CM×N denotes the measurement matrix,
which is the generally employed notation in the CS literature
and will be used in the rest of this paper.

The second process is termed the reconstruction process
and deals with the recovery of the signal from its compressed
measurement. The following reconstruction error bound is
one of the basic results of CS (See [27], [30], and [31], and
for further results and a discussion). In (3), since M �

N , the recovery problem is ill-posed. However, the restrict
isometry property (RIP) demonstrates that the sparse vector
h in (3) can be recovered exactly from the noiseless mea-
surement y (i.e., in the noise-free case v = 0M ) with high
probability, if matrix A satisfies the RIP [27]. The M × N
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FIGURE 1. OFDM system transceiver block diagram.

matrix A in (3) is said to satisfy the RIP of order S if there
exists a constant δS ∈ (0, 1) such that

(1− δS )‖h‖2`2 ≤ ‖Ah‖
2
`2
≤ (1+ δS )‖h‖2`2 , (4)

is satisfied for all vectors with ‖h‖`0 ≤ S, where the `0-norm
measures the nonzero elements in h [27], [28], [31], [32].
We have written ‖ · ‖`0 and ‖ · ‖`2 for the `0-norm vector and
`2-norm vector, respectively. δS denotes the restricted isome-
try constant (RIC) which is the infimum of all possible δ for
a given A ∈ CM×N which can be expressed mathematically
as

δS := argmin
δ≥0
{δ : (1− δ)‖h‖2`2 ≤ ‖Ah‖

2
`2
≤ (1+ δ)‖h‖2`2 ,

∀h ∈ 6S}.

Unfortunately, verifying (4) for a given A, S and δS ∈ (0, 1)
has been shown to be NP-hard [27], [33] in general from
the perspective of computational complexity. Fortunately,
the most obvious application for the l1-norm is to replace
the l0-norm problem [2]. Hence, computationally efficient
l1-norm algorithms are well-developed to solve a relaxed
version of the l0-norm problem. One of these algorithms is
basis pursuit. However, the l1-norm approach is often still
computationally intensive and challenging to implement in
real-time systems. Alternatively, a widely deployed frame-
work for sparse signal recovery is the mutual incoherence
property (MIP) presented in [29] and [34]. Using determinis-
tic sensing matrices, if S < 1

2 (1+
1

µ(A) ) [30], [31], where

µ(A) = max
m 6=n

|aHman|
‖am‖`2‖an‖`2

, for 1 ≤ m, n ≤ N (5)

with am denoting the m-th column of A, the same sparse
reconstruction performance can be achieved from (3) via
greedy pursuit (GP) algorithms like orthogonal matching
pursuit (OMP) [28] with significantly less complexity. There-
fore, in recent years, much attention has been focused on
computationally efficient approaches. Further exciting results
on CS can be found in [2], [26], and [33].

2) DCS THEORY
In DCS problem, a set of Q sparse vectors xq, for
q ∈ [0,Q − 1] that assume a sparse representation
{hq}D−1q=0 ∈ CN in some orthonormal basis8, i.e., xq = 8hq,

q ∈ [0,Q − 1] is to be jointly recovered from a set of Q
measurement vectors

yq = 98hq + vq ∀q ∈ [0,Q− 1]

= Ahq + vq, (6)

where yq ∈ CM is a measurement vector, A ∈ CM×N a
measurement matrix, vq ∈ CN is the noise term, M � N .
In (6), each sparse vector hq, q ∈ [0,Q−1] is supported only
on the same3 ⊂ {1, . . . ,N } with |3| = S. Thus, the signals
ensemble i.e., {xq}

Q−1
i=0 ∈ CN are S-sparse and are constructed

from the same S elements of the orthonormal basis 8 [35],
but with arbitrarily different coefficients. Assuming that the
Q sparse vectors and theQmeasurement vectors are arranged
as columns of matrices H = (h0, . . . ,hQ−1) ∈ CN×Q and
Y = (s0, . . . , sQ−1) ∈ CM×Q, respectively. In DCS problem,
H is to be reconstructed given Y [36]

Y = AH+ V, (7)

where V = [v0, . . . , vQ−1] ∈ CM×Q is an ensemble of noise
terms.

B. OFDM SYSTEM MODEL OVER A DS CHANNEL
Consider an OFDM system with N subcarriers, as shown
in Fig.1. Let the transmit signal at the n-th subcarrier during
the k-th OFDM symbol be represented as xn(k) for n ∈
[0,N − 1] and k ∈ [0,K − 1], with [x(k)]n , [Xn(k)]
for n ∈ [0,N − 1]. Without loss of generality, the transmit
signal is composed of x(k) , [X0(k), ...,XN−1(k)]T , for
k ∈ [0,K − 1]. Suppose that the set of the pilot subcarriers
is denoted as P̆ = {p0, . . . , pM−1}, without losing gener-
ality, we assume that P̆ ⊂ {1, . . . ,N }. Therefore, we use
[x(k)]P̆ and [x(k)]D to denote the pilots of the k-th OFDM
symbol and the corresponding data, respectively; such that
P̆(|P̆| = M ) and D(|D| = N −M ) denote the set of pilots-
and data- subcarrier indices, respectively, and P̆ ∩ D = ∅
(where ∩ denotes the intersection operator). The transmit
signal x(k) for k ∈ [0,K−1] is used tomodulateN carriers as
x(t)(k) = FHN x(k) for k ∈ [0,K−1] in the time domain, where
FN ∈ CN×N is theN -point normalized discrete Fourier trans-
form (DFT) matrix with [FN ]a,b = 1/

√
N exp(−j2πab/N )

for a, b ∈ [0,N − 1]. Let us now define h(t)n,l(k) as the
l-th channel tap at n-th time instant within the k-th OFDM
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symbol, and let us assume that h(t)n,l(k) have finite order L,
i.e., h(t)n,l(k) = 0 for l < 0 or l > L−1 within the k-th OFDM
symbol. Consequently, for each time domain channel tap l,
we define

h(t)l (k) , [h(t)0,l(k), . . . , h
(t)
N−1,l(k)], l ∈ [0,L − 1] (8)

as a vector that stacks the time variations of the channel
taps during the k-th OFDM symbol of the channel. The
vector h(t)(k) within the k-th OFDM symbol is assumed to
be S-sparse (or approximately sparse) in some transform
domain, since the number of dominant channel taps is no
more than S in h(t)(k). Hence, ‖h(t)(k)‖`0 ≤ S � L where
‖ ·‖`0 denotes the `0-norm of a vector that counts the number
of nonzero entries of a vector.

After inserting the cyclic prefix (CP), the serially converted
signal vector of the k-th OFDMsymbol is transmitted through
the DS channel h(t)n,l(k). After removal of CP and reshaped
by a windowing filter, the received signal vector in the time
domain of the k-th OFDM symbol can be expressed as

y(t)(k) = diag(η)H(t)(k)FHN x(k)+ diag(η)v(t)(k), (9)

where η = (η0, . . . , ηN−1)T denotes the time domain
window, while H(t)(k) and v(t)(k) denote the time domain
channel matrix and noise term, respectively, without win-
dowing. Herein, by the term without windowing we mean,
a banded approximation ofH(t)(k) is to be determined, which
does not require an appropriate window η that provides the
smoothness [37] needed in OFDM symbol; rather than deter-
mining diag(η)H(t)(k) that requires an appropriate window
η. Subsequently, the time domain signal samples y(t)(k) is
then demodulated by the N -point normalized DFT matrix
FN ∈ CN×N in the receiver, and transformed to the frequency
domain as

y(k) = FN y(t)(k) = FNdiag(η)H(t)(k)FHN x(k) (10)

+FNdiag(η)v(t)(k)

= FN H̃(t)(k)FHN x(k)+ FN ṽ(t)(k)

= H(k)x(k)+ v(k), (11)

for ∀k ∈ [0,K − 1] with no appropriate window required
for H̃(t)(k) := diag(η)H(t)(k) and ṽ(t)(k) := diag(η)v(t)(k),
where y(k) = [Y0(k), . . . ,YN−1(k)]T denotes the frequency
domain received signal samples over all subcarriers during
the k-th OFDM symbol, H(k) := FN H̃(t)(k)FHN ∈ CN×N

denotes the frequency domain channel matrix and v(k) =
[V0(k), . . . ,VN−1(k)]T denotes the frequency domain noise
term.
If we then assume that the length of the cyclic pre-

fix Lcp satisfies Lcp ≥ L and being that the chan-
nel is time-variant, then matrix H̃(t)(k) ∈ CN×N is
‘‘pseudocirculant’’ [5], [6], [11], [38]. Consequently, matrix
H(k) becomes practically a diagonally dominant yet full
matrix rather than a diagonalmatrix.Which essentiallymeans
that the received frequency-domain samples rely on both
the pilot signals, known to the receiver and the unknown

data signals. Mathematically, the time-domain N ×N matrix
H̃(t)(k) for k ∈ [0,K−1], which constitutes themain attribute
of the channel matrixH(k) for k ∈ [0,K−1] can be expressed
as follows [5]

[H̃(t)(k)]a,b = h(t)(Lcp+a,mod (a−b,N ))k , (12)

where mod(a−b,N ) denotes the remainder of (a−b) divided
by N where (a − b) and N are integers. To be specific,
the frequency domain channel matrixH(k) for k ∈ [0,K −1]
can be expressed as

[H(k)]a+d,a =
1
N

N−1∑
n=0

L−1∑
l=0

h(t)k(Lcp+n,l)e
−j2π (al+dn), (13)

Thus, in order to eliminate ICI at the receiver for K consec-
utive OFDM symbol, KNL channel coefficients of h(t)k(Lcp+n,l)
for k ∈ [0,K − 1], n ∈ [0,N − 1] and l ∈ [0,L− 1] needs to
be identified. This, unfortunately, incurs prohibitively large
number of channel coefficients and thus increased estimation
complexity.

Our objective is to design a scheme for estimating the
unknown channel coefficients from a reduced number of
the observed sequence of channel coefficients, and thus
reduced estimation complexity since a reduced number of
pilot overhead will be required for reliable CE. In the fol-
lowing subsection, we adopt a model to reduce the number of
channel coefficients to be estimated. In a later section, a new
pilot design scheme that identifies the optimal pilot place-
ment and values is proposed to provide a reliable estimate
of the reduced number of the unknown channel coefficients.
Subsequently, to obtain a channel estimator consistent with
the jointly sparse two dimensional (2D) (i.e., delay-Doppler)
channel model, a channel estimator consistent with the jointly
sparse channel model is proposed.

C. REMODELING OF THE CIR WITH SPARSE CE-BEM
We provide in this section an attempt to develop an accurate
time-domain sparse channel model of h(t)k(Lcp+n,l) for k ∈
[0,K−1], n ∈ [0,N−1] and l ∈ [0,L−1], using a BEM. For-
tunately, there exists some correlation among the unknown
channel coefficients [12], h(t)k(Lcp+n,l) in the time index, n as
the time variation of the l-th channel tap is rather smooth.1

Thus, by exploiting the time correlations of the physical chan-
nel, the number of channel coefficients prior to CE can be
reduced. On this account, the BEM is introduced as the CIR
basis to exploit and capture the channel temporal correlations
that exist over the physical channel. In this work, we model
the rapidly time-varying channel, h(t)k(Lcp+n,l) by a superpo-
sition of deterministic time-varying basis functions (e.g.,
complex exponentials (CE)) with time-invariant coefficients.

1Since channel parameters cannot change in a sudden way in the
time domain, one may expect correlation among the time-varying channel
parameters [39]. To model using the BEM, we assume that the time variation
of the l-th channel tap is smooth, and thus h(t)k(Lcp+n,l) is correlated in the time
index n. Then, we can accurately model K consecutive samples of the l-th
channel tap.
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Now, collecting the time-varying function of the l-th chan-
nel tap h(t)l (k) := (h(t)k(N+Lcp)+Lcp,l, . . . , h

(t)
(k+1)(N+Lcp)−1,l

)T

∈ CN×1 for l ∈ [0,L−1] of the k-th OFDM sysmbol, we can
express h(t)l (k) as

h(t)l (k) = Bcl(k)+ ξ l(k), ∀l ∈ [0,L − 1] (14)

where B := [b0, . . . , bQ−1] ∈ CN×Q stacks Q(Q � N )
orthonormal basis functions bq ∈ CN×1 for q ∈ [0,Q −
1] which are complex exponential as columns, cl(k) :=
[c0,l(k), . . . , cQ−1,l(k)]T ∈ CQ×1 represents the correspond-
ing BEM coefficients for the l-th distinct channel delay, and
ξ l(k) := [ξ0,l(k), . . . , ξN−1,l(k)]T ∈ CN×1 represents the
BEM modelling error. Here, a BEM with complex exponen-
tials (CE-BEM) is used to model the time-varying unwin-
dowed channel since it relies on a banded approximation
of the frequency domain channel matrix. Notably, by utiliz-
ing the CE-BEM and exploiting the delay-Doppler domain
channel sparsity within multiple OFDM symbols, we turn to
estimate the jointly sparse CE-BEM coefficients cq,l(k) for
k ∈ [0,K−1], q ∈ [0,Q−1] and l ∈ [0,L−1] which requires
the estimation ofKQL unknown channel coefficients with the
aid of pilots. Rather than estimating the numerous channel
coefficients, h(t)n,l(k) for k ∈ [0,K − 1], n ∈ [0,N − 1] and
l ∈ [0,L − 1] i.e., KNL,
Definition 1: Suppose that L = {l : |hn,l(k)| > S} for

l ∈ [0,L − 1] denotes the position index set of dominant
channel taps for a fixed n related to the k-th OFDM symbol,
then we have h(t)l (k) = 0 for k ∈ [0,K − 1] and l 6= L.
Therefore, since one can show that c0,l(k) = · · · =

cQ−1,l(k) = 0 for l 6= L, then the CE-BEM coefficient
vector cq(k) for q ∈ [0,Q− 1] and k ∈ [0,K − 1] is as well
jointly sparse and share the same sparse support with that of
h(t)l (k), ∀l (i.e., (c0,l(k), . . . , cQ−1,l(k))T = B†h(t)l (k), ∀l ∈
[0,L − 1]).

By stacking all the channel taps within the k-th block in a
single vector

h(t)(k) := (h(t)k(N+Lcp)+Lcp,0, . . . , h
(t)
k(N+Lcp)+Lcp,L−1

,

. . . , h(t)(k+1)(N+Lcp)−1,0, . . . , h
(t)
(k+1)(N+Lcp)−1,L−1

)T

the BEM permits to express this vector as

h(t)(k) = (B ⊗ IL)c(k)+ ξ (k), (15)

where IL denotes the identity matrix of L × L dimen-
sion, c(k) := (c0,0(k), . . . , c0,L−1(k), . . . , cQ,0(k), . . . ,
cQ,L−1(k))T denotes the BEM stacking coefficient vector of
all the channel taps within the k-th OFDM system; ξ (k) :=
(ξ0,0(k), . . . , ξ0,L−1(k), . . . , ξN−1,0(k) . . . ,
ξN−1,L−1(k))T .
Consequently, (10) can be expressed in terms of CE-BEM

as

y(k) = H(k)x(k)+ v(k) (16)

=

( Q−1∑
q=0

BCEq CCE
q (k)

)
x(k)+ v(k), (17)

with H(k) =
∑Q−1

q=0 B
CE
q CCE

q (k), where BCEq :=

√
NFNdiag(bCEq FHN =

√
N I
〈q−Q−1

2 〉

N ∈ CN×N denotes
the circulant matrix in the frequency domain whose q-th

basis is expressed as bCEq =

(
1, . . . , ej

2π
N n(q−Q−1

2 ),

. . . , ej
2π
N (N−1)(q−Q−1

2 )
)T

, with I〈q〉N denoting the permu-

tation matrix which is obtained from IN by shift-
ing its column circularly |q|-times to the right for
q < 0 and to the left otherwise, and CCE

q (k)x(k) =
diag(FN ((cCEq (k))T ,01×(N−L))T )x(k) = diag(x(k))·
F′N c

CE
q (k) for q ∈ [0,Q − 1] denotes the corresponding

CE-BEM coefficients, while F′N denotes the discrete Fourier
transform (DFT) submatrix that extracts the first L columns
of FN ∈ CN×N which can be written as

F′N =


1 1

cdots 1
1 ω · · · ωL−1

...
...

. . .
...

1 ωN−1 · · · ω(N−1)(L−1)


N×L

, ω=e−j
2π
N ,

(18)

Consequently, (16) can be rewritten as

y(k) =
Q−1∑
q=0

I
〈q−Q−1

2 〉

N diag(x(k))F′N cq(k)+ v(k). (19)

Then we can express the K consecutive OFDM received
symbols in terms of sparse CE-BEM as

y =
Q−1∑
q=0

I
〈q−Q−1

2 〉

KN diag(x)(IK ⊗ F′N )

 cCEq (0)
...

cCEq (K − 1)

+ v,
(20)

We estimate the CE-BEM coefficients, cq,l(k) for k ∈
[0,K − 1], q ∈ [0,Q − 1] and l ∈ [0,L − 1] with the
aid of pilots p̆eff = [xk ]P̆eff := [X0(k), . . . ,XM−1(k)]T ,
for k ∈ [0,K − 1] with positions represented by P̆eff

=

{p0, . . . , pM−1}. Therefore, to render the equivalent channel
matrix circulant and perfectly diagonalizable by the DFT,
we add (Q − 1) guard symbols before and after each effec-
tive pilot symbol. Hence, both interblock interference (IBI)
between successive transmitted blocks and ICI between the
frequency subchannels in each block in the desired link, can
be mitigated. We then assume that there are M pilot clusters
within the k-th OFDM symbol of length Lp = (2Q − 1)
(as will be shown later), represented as x́(PG)k (m) for m ∈
[0,M−1] and k ∈ [0,K −1] for each effective pilot position
as illustrated in Fig. 2. Stacking together all the transmitted
signal (i.e., pilot symbols and guard symbols) within the k-th
OFDM symbol yields the pilot vector denoted as

x́(PG)(k) := (x́(PG)T0 (k), . . . , x́(PG)TM−1 (k))T (21)
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FIGURE 2. Placement of the optimal pilot symbols. Note that the distance
between each pilot cluster is unequal.

where we denote pPG := x́(PG)(k), where each of its elements
{x́(PG)m (k)}M−1m=0 is a cluster of pilot subcarriers of length Lp.
The term pPG indicates the total transmitted pilot symbols
and guard symbols within the k-th OFDM symbol, with its
corresponding location index set denoted as P̄PG. From (21),
them pilot cluster of length Lp within the k-th OFDM symbol
is defined as x́(PG)m (k) = (xbm (k), . . . , xbm+Lp−1(k))

T for
m ∈ [0,M − 1], where bm denotes the begin position in the
cluster. For example, with m = 0, represents the first cluster
x́(PG)0 (k) = (x(k), . . . , xLp−1(k))

T , with bm = 0 denoting its
begin position.

Since each cluster consists of (2Q−2) guard pilot symbols
pG, plus one effective pilot symbol, then a total of (2Q −
2) + 1 = 2Q − 1 guard symbols and pilot symbol are
transmitted per cluster. Thus, a total of (2Q − 2)M guard
symbols is utilized within the k-th OFDM symbol, such that
|pi−pj| ≥ 2Q−1, i 6= j is maintained to prevent overlapping.
Consequently, the guard pilot index set canmathematically be
expressed as:PG

= ∪{t−Q−1, . . . , t−1, t+1, . . . , t+Q−1}
where t ∈ P̆ . It is worth noting that the symbol values of the
guard pilots pG are set to zero.

Now, in order to track the CE-BEM coefficients corre-
sponding to the q-th basis function, we re-divide the effective
pilot indices P̆eff into Q subsets as

P̀q = P̆eff
−

(
Q− 1
2
− q

)
, q ∈ [0,Q− 1] (22)

as illustrated in Fig. 2 (with the assumption that Q = 3), and
the number of guard pilots before and after each effective pilot
is Q−1. Next, let us define the q-th pilot selection matrix for
K consecutive OFDM symbols as Zq =: [IKN ]P̀q

∈ CM×KN

for q ∈ [0,Q− 1]. It then follows from (20) that

[y]P̀q
= Zqy

=

Q−1∑
%=0

ZqI
〈%−

Q−1
2 〉

KN diag(x)�

 cCE% (0)
...

cCE% (K − 1)

+ṽ, (23)

where ṽ = Zqv and � , [IK ⊗ F′N ]. From (23), since

ZqI
〈%−

Q−1
2 〉

KN = Zq−%+Q−1
2
, one can easily show that

[y]P̀q
=

Q−1∑
%=0

Zq−%+Q−1
2
diag(x)�c̃CE% + ṽ, (24)

where c̃CE% , ((cCE% (0))T , . . . , (cCE% (K − 1))T ) ∈ CKL×1.
Without loss of generality, we assume that Q is an odd num-
ber, then the pilot subcarriers can be represented as

[x]P̀q
=


0, q 6=

Q− 1
2

p̆eff, q =
Q− 1
2

(25)

Hence, the nonzero values from x can only be extracted if
% = q. Hence, (24) can be re-expressed as

[y]P̀q
= diag(p̆eff)�P̆eff c̃CEq + ṽ ∀q ∈ [0,Q− 1] (26)

where c̃CEq , ((cCEq (0))T , . . . , (cCEq (K − 1))T ) ∈ CKL×1.

D. THE DCS FRAMEWORK FOR K CONSECUTIVE
OFDM SYMBOLS
As the ensemble of signals shares the same measurement
matrix, A, it is, thus, considered inefficient to recover each
sparse vector c̃CEq for q ∈ [0,Q− 1] independent. From (22),
note that if q = (Q− 1)/2 implies

P̀Q−1
2
= P̆eff

−

(
Q− 1
2
−
Q− 1
2

)
= P̆eff, (27)

then one can decompose �P̆eff as �P̀Q−1
2

fq, where

fq := diag(1, ωq−
Q−1
2 , . . . , ω(q−Q−1

2 )(L−1)) (28)

is a diagonal matrix. Subsequently, (26) can be rearranged as

[y]P̀q
= (diag(p̆eff)�P̀Q−1

2

)(fqc̃CEq )+ ṽ, (29)

for ∀q ∈ [0,Q− 1] and then

[y]P̀q
= A(fqc̃CEq )+ ṽq, (30)

where A , diag(p̆eff)�P̀Q−1
2

denotes the measurement

matrix which is the same for all signal ensemble. Since
the pilot placement and symbol values are important in the
measurement matrix design, then one can design the effective
pilots by exploiting (27) (i.e., q = (Q − 1)/2). Hence, (30)
can be rewritten as

[y]P̀P̀Q−1
2

= A(fP̀Q−1
2

c̃CEP̀Q−1
2

)+ ṽP̀Q−1
2

, (31)

where 0P̀Q−1
2

= IL . In the sequel, we will refer to P̀Q−1
2

as

P̀∗ for brevity and the corresponding pilot symbols as u.
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For a given pilot pattern P̀∗ = {p0, . . . , pM−1}, where 0 ≤
p0 < p1 < · · · < pM−1 ≤ KN − 1, we express the coherence
of µ{A} for our DCS framework according to (5) as

µ{A} = max
0≤m<n≤L−1

|
∑M−1

i=0 |x(P̀∗i )|2e
−j 2πN P̀∗i (n−m)|∑M−1

i=0 |x(P̀∗i )|2
. (32)

s.t|p̀∗i − p̀
∗
j | ≥ 2Q− 1, ∀i, j, i 6= j (32a)

We observe in (32) that the contribution of pilot values in
the coherence measure is through their magnitudes u(i) =
|x(P̀∗i )|2. Let r = n−m and L = {1, . . . ,L − 1}. Then, (32)
can be rewritten as

µ(P̀∗,u) = max
r∈L

|
∑M−1

i=0 |x(P̀∗i )|2e
−j 2πN P̀∗i r |∑M−1

i=0 |x(P̀∗i )|2
, (33)

s.t |p̀∗i − p̀
∗
j | ≥ 2Q− 1, ∀i, j, i 6= j (33a)

where µ(P̀∗,u) , µ{A}. Our objective is to min-
imize µ(P̀∗,u) by selecting the optimal pilot symbols
u = {x(P̀∗i )}

M−1
i=0 ∈ CM and their placement P̀∗ =

{p0, . . . , pM−1} ∈ CM . We, however, observe in (33) that the
contribution of the pilot values in µ(P̀∗,u) is through their
magnitudes u(i) = |x(P̀∗i )|2 for i ∈ [0,M − 1]. Therefore,
the optimal pilot design problem is simplified as

fopt = arg min
P̀∗,p̀∗

max
r∈L

|
∑M−1

i=0 |x(P̀∗i )|2e
−j 2πN P̀∗i r |∑M−1

i=0 |x(P̀∗i )|2
. (34)

s.t |p̀∗i − p̀
∗
j | ≥ 2Q− 1, ∀i, j, i 6= j (34a)

Here, f , µ(P̀∗,u), where argmin(·) denotes the minimiz-
ing argument to achieve fopt . Rather than the equi-powered
pilot symbol assumption which may not be optimal, our prob-
lem is to determine the optimal u and the corresponding index
set of pilot symbols P̀∗ that can minimize the normalised
mean squared error (NMSE) of CE over the DS channel
allocable to the pilot clusters. For any prescribed energy to
be applied for CE, we normalize the sum of pilot power (i.e
symbol values). Suppose the sum power of all pilot symbols
is

M−1∑
i=0

|x(P̀∗i )|
2
=

M−1∑
i=0

u(i) = λsum, (35)

where u =: [u(0), . . . , u(M − 1)] denotes the pilot symbol2

values that are to be transmitted on M pilot sub-channels
with the additional constraint that λTh < u(i) ≤ λpeak for
i ∈ [0,M − 1], where λTh and λpeak denote the threshold
power and peak power constraint,3 respectively. With these
constraints, the pilot pattern design can be formulated as

f = min
P̀∗,u

µ(P̀∗,u), (36)

2Since we need to normalize the sum of pilot power for any prescribed
energy to be utilized for CE, in the simulation, we set λsum = 1, which
implies that the sum power of pilot symbol values is normalized.

3However, the power allocation among pilot symbols is not uniformly
constrained but set with a peak power constraint of λpeak and with a power
threshold of λTh for the design and placement of pilot symbols. We, there-
fore, set values such that the pilot symbol values does not vary to extremely.

s.t |p̀∗i − p̀
∗
j | ≥ 2Q− 1, ∀i, j, i 6= j (36a)

M−1∑
i=0

u(i) = λsum, λTh < u(i) ≤ λpeak (36b)

which involves the joint optimization of the pilot placement
P̀∗ and pilot power u that can maximize the effective signal-
to-noise ratio (SNR) for the jointly sparse CE-BEM coeffi-
cient vector estimation for OFDMSystems operating over DS
channels.

For the pilot design problem of (36), it is empirically
intractable to get a solution. For example, the exhaustive
search over

(512
24

)
(i.e., for N = 512 and M = 24) typically

requires the generation of all 9.817 × 1040 possible pilot
placements. As the exhaustive search method incurs pro-
hibitive computational costs, we decouple (36) in the sequel
and then propose a low-cost suboptimal solution. Hence, (36)
is decoupled in the following formulations:

For the given set of pilot pattern P̀∗ = {p0, . . . , pM−1} for
P̀∗ ⊂ {1, . . . ,N }, we start by realizing

µu(P̀∗) , min
u
µu(P̀∗,u) (37)

s.t
M−1∑
i=0

u(i) = λsum, λTh < u(i) ≤ λpeak (37a)

and then we determine

min
P̀∗

µu(P̀∗) (38)

s.t |p̀∗i − p̀
∗
j | ≥ 2Q− 1, ∀i, j, i 6= j (38a)

to achieve an optimal pilot placement set P̀∗. At the same
time, the corresponding pilot symbol values u is additionally
obtained.

III. OPTIMIZATION OF PILOT PLACEMENT AND VALUES
This section presents the proposed pilot placement and value
optimization for reliable transmission over DS wireless chan-
nels.

A. PROPOSED PILOT PLACEMENT AND VALUE DESIGN
SCHEME
To assign pilot powers to a given set of pilot locations P̀∗m =
{p0, . . . , pm} in the channel model, we begin fromm = 1 and
progressively move towards m = M . By defining

z(r) ,

∑m−1
i=0 |x(P̀∗i )|2e

−j 2πN P̀∗i r∑m−1
i=0 |x(P̀∗i )|2

, r ∈ L

,
1
λsum

m−1∑
i=0

|x(P̀∗i )|
2e−j

2π
N P̀∗i r , r ∈ L

a

,
1
λsum

m−1∑
i=0

u(i)e−j
2π
N P̀∗i r , r ∈ L (39)
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where (a) follows from (35), then the problem of optimal
power assignment translates into

fopt = min
P̆m,p̀∗m

max
r∈L
|z(r)|, (40)

s.t |p̀∗i − p̀
∗
j | ≥ 2Q− 1, ∀i, j, i 6= j (40a)

M−1∑
i=0

u(i) = λsum, λTh < u(i) ≤ λpeak (40b)

and then

fopt = min
P̀∗m,p̀∗m

‖z‖`∞ (41)

s.t |p̀∗i − p̀
∗
j | ≥ 2Q− 1, ∀i, j, i 6= j (41a)

M−1∑
i=0

u(i) = λsum, λTh < u(i) ≤ λpeak. (41b)

We have written ‖·‖`∞ for the `∞ vector norm. Subsequently,
using (35) and (39), (41) can be rewritten as

fopt = min
P̀∗m,p̀∗m

1
λsum
‖WP̀∗ u‖`∞ (42)

s.t |p̀∗i − p̀
∗
j | ≥ 2Q− 1, ∀i, j, i 6= j (42a)

M−1∑
i=0

u(i) = λsum, λTh < u(i) ≤ λpeak, (42b)

where WP̀∗ :=
∑m−1

i=0 e−j
2π
N P̀∗i r with m = M is a complex-

valued submatrix. Let g(j) represent the j-th row of matrix
WP̀∗ ∈ CL−1×S for j = [1,L−1]. We can moreover express

G(j) =
[
(Re{g(j)})T , (Im{g(j)})T

]T j = [1,L − 1] (43)

where Re{g(j)} and Im{g(j)} represent the real and imaginary
parts of g(j) with dimensions 1× S, respectively, and G(j) is
a 2 × S real valued matrix. Then, (42) can be recast into an
equivalent real-valued optimization problem in the form

min
d
d (44)

s.t ‖G(j)u‖`2 ≤ d j ∈ [1,L − 1] (44a)
M−1∑
i=0

u(i) = λsum, λTh < u(i) ≤ λpeak (44b)

containing the coefficients for the linear and second order
cone constraints as an SOCP optimization problem. Due to
the strengths of the linear and conic optimizers in MOSEK
solver [40], MOSEK solver can be applied to solve the SOCP
optimization problem for the pilot power assignment. Con-
sequently, solutions in the form d̃ and ũ can be realized
from (44), such that µu(P̀∗) := d̃ denotes the designed pilot
symbol values.

The pseudocode for the optimal pilot power design and
placement scheme is shown as Algorithm 1. The input
parameters to Algorithm 1 include the number of subcarriers
per OFDM symbol N , the number of pilot subcarriers M ,
the number of non-zero taps of the channel S, the number
of outer-loop iterations nout and the number of inner-loop

Algorithm 1 Optimal Pilot Power Design and Placement
Scheme
Input: Number of subcarriersN , number of pilot subcarriers

M , number of non-zero taps of the channel S, number of
outer-loop iterations nout , number of inner-loop iterations
nin and α.

Output: Designed pilot placement P̀∗soln. with optimal pilot
power u. leftmargin=1mm
• Step 1 (Initialization) Store the results of optimized
pilot placement within each iteration of the inner
loop in W ⇐ 0nin×S , Store the results of best opti-
mized pilot placement of W in s⇐ 0nin

• Step 2 (Determine the Optimal Pilot Placement)
1: for i = 0, 1 . . . , nout − 1 do
2: Randomly generate a P̀∗ ⊂ {1, . . . ,N } satisfying
|p̀∗i − p̀

∗
j | ≥ 2Q− 1

3: ṕstore ⇐ 0M {auxiliary pilot vector ṕstore is reset to
zero}

4: for j = 0, 1, . . . , nin − 1 do
5: if C.1 does not hold i.e., P̀∗ 6= ṕstore then
6: ṕstore ⇐ P̀∗
7: for t = 0, 1, . . . , β do

8: Obtain ˆ̀
∗Pp̀∗,t based on (45) {determine the

optimal pilot placement in the current iteration
stage}

9: P̀∗ ⇐ ˆ̀∗Pp̀∗,t {allocate the designed pilot
placement for subsequent storage}

10: end for
11: else
12: break
13: end if
14: end for
15: W (i) ⇐ P̀∗{store the designed pilot placement as

rows in matrix W }
16: s(i)⇐ µu(P̀∗){solve (38)}
17: end for
18: r = arg min

b=0,1,...,nout−1
s(b) {determine the indices cor-

responding to the minimum argument to the solutions in
step 2.16. }

19: return P̀∗soln. = W (r). {Designed Pilot Placement }
leftmargin=1mm
• Step 3 (Determine the Optimal Pilot Power) Substi-
tute the designed pilot placement P̀∗soln. into (44) to
obtain the optimal pilot symbols.

iterations nin. For Algorithm 1, some notations should be
further detailed. First, 0nin×M and 0nin denote nin×M all zero
matrix and the zero vector with dimension nin, respectively.
Second, the pilot placement set obtained in the previous inner
loop iteration is temporarily stored in ṕstore, where ṕstore
denotes the auxiliary pilot vector. Here we further explain the
main steps in Algorithm 1 as follows.

For each inner-loop iteration (i.e., nin), we require to store
the result of optimized pilot placements. Therefore, a nin×M
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dimensional all-zero matrix W is initialized for this purpose
i.e., W ⇐ 0nin×M . Each outer loop iteration involves nin
number of inner loop iterations which gives rise to nin num-
ber of pilot patterns stored as rows in W ; and the optimal
pilot placement for that inner loop iterations is subsequently
stored in s, determined by the minimizing argument for the
optimization problem given in (38). Therefore, s is also
initialized as an all-zero vector i.e., s ⇐ 0nin . First, for
step 2.1∼ 2.16 the proposed algorithm does the follow-
ing: 1) obtains the optimized pilot placement and stores in
each row of W as indicated by step 2.14 and 2) solves
the corresponding objective problem using (38) and stores
in s as indicated by step 2.15 in Algorithm 1. Second,
in step 2.5∼ 2.10, the proposed algorithm updates the solu-
tion of the pilot placement for every inner loop iteration
if the newly generated pilot locations is checked to see
whether it is not a previously generated pilot location. This
is checked to make sure the following condition does not
hold:

C.1 ∀x[x ∈ P̀∗ ←→ x ∈ ṕstore], states that P̀∗ =
ṕstore i.e., the current solution is the same as the previously
generated solution.

If C.1 does not hold then P̀∗ is updated in a set of α entries
invariably, where α < M and β = M/α is a positive integer.
Hence, in the simulation, value will assigned for α. It is worth
mentioning that, α influences the number of ’’for-loop’’ (i.e.,
step 7∼ step 10) iterations for ever outer loop iteration.
Hence, higher values of α means a reduced number of group
entry update (i.e., β = M/α value will be smaller) but leads
to an increased complexity of the algorithm which will be
shown shortly in the algorithm complexity analysis. Finally,
step 2.11 ∼ 2.13 indicate the absence of new pilot pattern
since the currently generated pilot pattern P̀∗ in step 2.2 is
entirely the same as ṕstore and thus executes a break statement
inside the inner loop. This is achieved using an auxiliary
pilot vector ṕstore which is initialized at the beginning of each
iteration of the outer-loop as indicated by step 2.3. Taking the
expression of step 2.7∼2.10 into consideration, the objective
function for the t-th pilot selection can be represented as

ˆ̀∗Pp̀∗,t = arg min
P̀∗

P̀∗(j)=p(j), j=0,...,M−1, j/∈κ
{P̀∗(j), j∈λ}⊂ϕ

µu(P̀∗) (45)

where ϕ = {ψ |ψ ⊆ γ , ‖ψ‖`0 = α}, such that γ , N \
{p(j)|j = 0, . . . ,M − 1, j /∈ κ} and κ , {tα − α + 1, tα −
α + 2, . . . , tα}.

B. DISCUSSIONS ON COMPUTATIONAL COMPLEXITY
In this section, we evaluate the computational complex-
ity of our proposed pilot design scheme over the exhaus-
tive search. The computational complexity of our proposed
scheme, given in Algorithm 1, is primarily dominated to
solving both the SOCP optimization problem in (44) for the
pilot power assignment in terms of realizing feasible solutions
of d̃ and ũ and the pilot placement objective function given

in (45) in terms of the number of iterations. For a given set
of pilot subcarriers, step 2.7∼ step 2.10 requires O

(N−M+α
α

)
operations, to compute the pilot placement, where the bino-
mial coefficient

(N−M+α
α

)
is the number of ways of picking α

unordered outcomes from (N−M+α) possibilities and given
explicitly by

(N−M+α
α

)
≡

(N−M+α)Cα ≡
(N−M+α)!

(N−M+α−α)!α! .
Since the number of iterations in step 2.7∼ step 2.10 is β
as given in step 2.7, then the effect of the two outer loop
iterations is intuitively equivalent to nin = nout = β and
thus, requiresO(β

(N−M+α
α

)
) operations.Moreover, by setting

α = 1, Algorithm 1 becomes efficient in the reduction of
computational complexity with step 2.7∼ step 2.10 reduced
toO

(
N−M+1) operations. Consequently, the computational

complexity of obtaining the the optimal pilot pattern in the
entire step 2 results to O(M

(
N − M + 1

)
) operations, with

β = M/α = M where α = 1. Subsequently, after obtaining
the optimal pilot placement P̀∗soln. requires the substitution of
P̀∗soln. into (44) for the optimal power design. Hence, (44)
requires the search on L columns over M pilot symbols.
Hence, its complexity is given asO((M−1)3.5(L−1)2.5) oper-
ations. Thus, the overall computational complexity becomes
O
(
(M − 1)3.5(L − 1)2.5M (N −M + 1)ninnout

)
Exhaustive search scheme involves optimization of the

pilot power and the search of all possible pilot placement.
The complexity of the exhaustive search will takeO

(N
M

)
oper-

ations for the seach of pilot placement (whereM ofN subcar-
riers are dedicated to transmission of pilots). Hence, the over-
all computational complexity becomes O

(
(M − 1)3.5(L −

1)2.5M
(N
M

)
ninnout

)
, which is relatively higher compared to

our proposed scheme.

IV. DCS-BASED SDMP ALGORITHM WITH APPLICATION
TO SPARSE CHANNEL ESTIMATION
In this section, we propose a novel DCS-based stage deter-
mined matching pursuit (DSC-SdMP) algorithm for sparse
CE over a DS channel, capable of accelerating the recon-
struction process of an ensemble of jointly sparse signals
from an incomplete and inaccurate estimate of the common
support-set.

A. PROPOSED DCS-BASED SDMP (DSC-SDMP)
ALGORITHM

Exploiting the joint (common) sparsity structure of an
ensemble of Q signals enables conventional greedy pursuit
algorithms for joint signal recovery. Hence, an algorithm
in our previous work namely, stage determined matching
pursuit (SdMP) [26], can be easily applied to our DCS sparse
model. Based on SdMP, an algorithm namely, DCS-based
SdMP (DCS-SdMP) is proposed in Algorithm 2, which can
efficiently capture the joint structure among the signals to
improve the performance of DCS recovery for jointly sparse
signal ensembles. DCS-SdMP selects Z (< S) multiple sup-
port indices per iteration, and adds a pruning step at the
end of some latter iterations, after satisfying a sparsity level
condition to refine the selected set. Notably, this can reduce
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Algorithm 2 Distributed Compressed Sensing-based SdMP
(DCS-SdMP) Algorithm
Input: Received signal at pilot subcarriers [Y]P̆ =

([y]P̆0
, . . . , [y]P̆Q−1

), measurement matrix A, sparsity
level S, number of selected atoms at each iteration Z ≤ S.

Output: Estimated sparse channel {c̃CEq }
Q−1
q=0 , estimated

sparse support setO0 leftmargin=1mm
• Step 1 (Initialization)
r0 = Y { Initial residue}
0 = ∅ {Estimated support set }
[M ,L] =size(A)
I = Z { Number of indices for each selection Z (Z ≤
S and Z ≤ M/S)}
k = 0 { Iteration index}
80 = ∅KL×Q { Estimated sparse vector}

• Step 2 (Procedures)
1: while ‖rk‖`2 > ε and k < min{K ,M/I} do
2: k = k + 1
3: zk = argmax(

∑Q−1
q=0 |A

T [rk−1]:,q|, I) { Select indices
corresponding to I largest entries (in magnitude),
where [rk−1]:,q denotes the q-th column of rk−1}

4: 3k = 0k−1 ∪ zk {Merge support}
5: if |3k | 6= |0k−1| then
6: if |3k | ≤ K then
7: f́3k

´̃cCE3k
=
∑Q−1

q=0 A†
3k

[Y]:,q {Channel estima-
tion by LS }

8: 0k = 3k
9: rk =

∑Q−1
q=0 P⊥3k

[Y]:,q
10: else
11: f́3k

´̃cCE3k
=
∑Q−1

q=0 A†
3k

[Y]:,q {Channel estima-
tion by LS }

12: 0k = supp(fS
3k
c̃SCE3k

) {fS
3k
c̃SCE3k

is the best S-
sparse approximation of f3k c̃

CE
3k

}

13: f́0k ´̃cCE0k =
∑Q−1

q=0 A†
0k
[Y]:,q {Channel estimation

by least squares (LS) }
14: rk =

∑Q−1
q=0 P⊥0k [Y]:,q

15: end if
16: else
17: break
18: end if
19: end while
20: f̂0k ˆ̃cCE0k = f́0k ´̃cCE0k , f̂0k ˆ̃cCE0k |0ck = 0 {0ck is the

complementary set of indices to 0k . }
21: obtain ˆ̃cCE0k from f̂0k ˆ̃cCE0k
22: return ˆ̃cCE0k , 0k .

the probability of estimating incorrect support elements and
can maximally satisfy the l2-norm of the residual error vec-
tor based stopping criteria with fewer iterations. Thereby,
increasing the probability of further accelerating the algo-
rithm.

The pseudocode of the DCS-SdMP algorithm is shown in
Algorithm 2. For simplicity, we address the essential part of
the proposed algorithmwithout giving the obvious, redundant

illustration. The following two stages are applied by the
algorithm which it iterates until convergence:

1) FIRST STAGE NON-PRUNING TO EXPAND THE
ESTIMATED COMMON SUPPORT SET
In every iteration, Z (≤ S) maximally correlated common
sparse support indices with the vector residual are selected
zk = argmax(

∑Q−1
q=0 |A

T [rk−1]:,q|, I) and appended to the
list of common support set3k = 0k−1∪zk , where argmax(·)
denotes the maximizing argument. Notably, the choice of Z is
to be constrained to Z = {ni 6= 1, i = 1, 2, . . . , S−1}, where
S is the level of joint sparsity. Subsequently, after adding
the selected common support indices to the list of identified
common support 3k the ensemble of signals is estimated
by solving the LS problem which finds a unique solution
to f́3k

´̃cCE3k
=
∑Q−1

q=0 A†
3k

[Y]:,q, where A†
= (ATA)−1AT

denotes the pseudoinverse of matrix A. Then, the residual of
Y which is rk = Y − A3k (f́3k

´̃cCE3k
) = (1 − A3kA

†
3k

)Y =∑Q−1
q=0 P⊥3k

[Y]:,q (where, P3k = A3kA
†
3k

and P⊥3k
= 1 −

P3k ) is updated. Using stage switching, the algorithm com-
bine the selection of Z multiple columns per iteration with a
pruning step, to manage a S element support throughout the
rest of the iterations.

2) SECOND STAGE PRUNING TO ELIMINATE UNPROMISING
INDICES TO MAINTAIN THE REQUIRED SPARSITY LEVEL
Thus, in every k-th iteration, if the decision |3k | > K holds
true, then |3k | ≤ K+Z columns of matrix Awill be tested to
subsequently select S reliable common support indices after
pruning. The reliability property is captured by finding the
subspace projection coefficients f́0k ´̃cCE0k =

∑Q−1
q=0 A†

0k
[Y]:,q

(otherwise called the LS solution) and selecting S common
support indices with the largest projection coefficient. For
this purpose we introduce the supp(·) function, where 0k =
supp(fS

3k
c̃SCE3k

) denotes the the set 0k which contains the
best S support indices of fS

3k
c̃SCE3k

. The residual error is then

calculated as rk =
∑Q−1

q=0 P⊥0k [Y]:,q. This operations are
performed until the l2-norm of the residual falls below a pre-
specified threshold i.e., ‖rk‖`2 ≤ ε.

B. DISCUSSIONS ON COMPUTATIONAL COMPLEXITY
In this section, we briefly discuss the computational complex-
ity of our proposed scheme in terms of floating-point opera-
tions (FLOPs). Notably, a complex summation requires two
real summations, and a complex multiplication requires four
real multiplications and two real summations, we, however,
count each operation as one FLOP. Following the analysis
in [26], the operation of each step can be summarized as
Correlation vector: The DCS-SdMP algorithm perfomaes

a matrix multiplication AT [rk−1]:,q, which requires (2M −
1)L to be determined Q times. Hence, requires a total of
(2M − 1)LQ flops (i.e., O(MLQ)).
Identification: AT [rk−1]:,q needs to be sorted to obtain

the S best indices, and requires performing LS − S(S −
1)/2 operations a total of Q times, given a complexity of
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QLS − QS(S − 1)/2 flops (i.e., O(QLS)).
Channel estimation: To obtain the least square solution for∑Q−1
q=0 A†

3k
[Y]:,q requires performing theQR factorization of

A†
3k

(A†
3k
= QR), hence, the solution f́3k

´̃cCE3k
leads to a cost

of O(k2MQ) [26].
Pruning: The pruning is similar to the identification step in

terms of complexity. The estimated coefficients are revised in
decreasing order of magnitude and the algorithm selects the
first K at a cost of O(QK logK )
Residual update: To obtain the residual rk = Y −

A3k (f́3k
´̃cCE3k

) = (1 − A3kA
†
3k

)Y =
∑Q−1

q=0 P⊥3k
[Y]:,q

(where,P3k = A3kA
†
3k

andP⊥3k
= 1−P3k ) requiresmatrix-

vector multiplication A3k (f́3k
´̃cCE3k

) with a complexity of
(2Sk−1)MQflops followed by the subtraction which requires
MQ flops i.e., 2SkMQ − MQ − MQ = 2SkMQ. Hence,
O(SkMQ).
In other words, the complexity of the overall k-th itera-

tion requires MLQ + QLS + k2MQ + QK logK + SkMQ.
If the algorithm finishes in K iteration the we have KMLQ+
KQLS+k2MQK+QK 2 logK+KSkMQ = O(KMLQ), since
K < M < L < Q.

V. SIMULATION RESULTS
In this section, we demonstrate the effectiveness of our
proposed DCS based CE scheme and the proposed pilot
design scheme with the conventional schemes operating over
DS channel through simulation studies. For the simulations,
we use the OFDM system parameters that conform with the
LTE standard [41]. The entire experiments were performed
using MATLAB v9.5 (Release 2018b) on a PC Workstation
equipped with Intel Core i5-4460 CPU at 3.20GHz with 4GB
installed memory (RAM).

A. SIMULATION SET-UP
An OFDM system with a data sequence modulated by
quadrature phase shift keying (QPSK) is considered with
N = 512 subcarriers, cyclic prefix length LCP = N/8 = 64,
and subcarrier interval

a
f = 15 KHz. In the simulations,

we normalize the total transmission power of each OFDM
frame by setting λsum = 1. Specifically, the parameters
involved in the pilot design are set as follows. The outer
loop iterations nout and the inner loop iterations nin are set
to 1500 and 20, respectively. Unless otherwise mentioned,
we set α = 2 for the set of group update entries. We set
λsum = 1, which means that the sum power of pilot sub-
carriers is normalized. However, the power allocation among
pilot symbols is not uniformly constrained but set with a peak
power constraint of λpeak = 0.14 and with a power threshold
of λTh = 0.04 for the design and placement of pilot symbols.
The length L of the sparse DS channel hn,l , is modeled with
L = 64 taps, where S-positions are nonzero (dominant)
taps of the channel whose elements are randomly distributed
according to CN (0, 1S ). We compare the different pilot
design schemes for DS channels that conform with Jakes’
Doppler profile which assumes the uniform-angle-of-arrival

assumption, while taking the CE-BEM order of Q = 3 (and
Q = 7). Hence, νmax ≤ (Q − 1)/2 must be satisfied to
guarantee that the DS channel taps are well captured in the
CE-BEM by the (known) Fourier basis functions. Here, νmax
denotes the normalizedmaximumDoppler shift. Specifically,
assuming a maximum carrier frequency fc = 3 GHz, and
two different vehicular speed of around v = 350 km/h and
v = 500 km/h (unless otherwise stated), we obtain νmax =
fcv
c
a
f ≈ 0.065 and νmax =

fcv
c
a
f ≈ 0.093 normalized

maximum Doppler shift, respectively, with c = 3.0 × 108

m/s being the speed of light. Noting that: 1 km/m= 0.278m/s
and that 0.065 and 0.093 both satisfy the νmax ≤ (Q − 1)/2
condition, with Q = 3 (unless otherwise stated). We set the
number of multiple OFDM symbols that are jointly estimated
to be K = 3. We set the average number of pilot signals for
the k OFDM symbol as M/K = 72/3 = 24 pilot signals,
where M = 72. We use two different pilot set based on the
CE-BEM order Q. First, for a CE-BEM order of Q = 3,
the average number of the pilot subcarrier (i.e., for both pilot
signals and guard pilots) in our proposed joint multi-symbol
estimation scheme is P = (2Q−1)M/K = 5×(72/3) = 120
(where guard pilots uses (2Q − 2)M/K = 4 × (72/3) = 96
subcarriers out of the 120 average number of pilot subcarrier).
Second for a CE-BEM order of Q = 7, the average number
of the pilot subcarrier (i.e., for both pilot signals and guard
pilots) in our proposed joint multi-symbol estimation scheme
is P = (2Q − 1)M/K = 13 × (72/3) = 312 (where
guard pilots uses (2Q − 2)M/K = 12 × (72/3) = 288
subcarriers out of the 312 average number of pilot subcarrier).
For fair comparison, we assume the same pilot overheads
in each estimation scheme under evaluation, except for the
cubic-spline-interpolation based LS CE higher pilots. For the
estimation of the sparse channels, an Oracle estimator which
has prior knowledge of the location of the non-zero channel
taps is simulated as a reference and employs pilots solely
to deduce the channel tap values by LS estimation. As the
exact recovery of sparse signals from compressed measure-
ments would be highly impracticable in the noisy settings,
we employ the normalized mean square error (NMSE) as a
performance evaluation metric defined as

NMSEh[n](dB)=10 log10

(∑N
n=1 ‖h[n]− ĥ[n]‖

2
`2∑N

n=1 ‖h[n]‖
2
`2

)
, (46)

where ĥ[n] denotes the estimate of the sparse vector h[n] at
instant n. The NMSE performance of the signal recovery of
the proposed algorithm is presented as a function of the SNR,
where the SNR (given in dB) is defined as

SNR(dB) = 10 log10
‖Ah‖2`2
‖V‖2`2

, (47)

since the system model is expressed as Y = Ah + V, where
V is the noise vector whose elements are generated from
Gaussian N (0, 10−SNR/10). In order to recover the sparse
channels, we used the theDCS-SOMP [5], ASA-BOMP [11],
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FIGURE 3. Comparison of µ(P̀∗,u) performance of the proposed pilot
design algorithm and the conventional pilot design schemes with Q = 3
and νmax = 0.065 (where fc = 3 GHz and 1f = 15 KHz) at SNR= 20 dB.

BSOMP [12] and the proposed DCS-SdMP algorithms and
evaluate the average performance over 9500 independent
trials. Additionally, we also evaluate the performance of our
proposed pilot design scheme with the joint pilot symbol and
pilot pattern design algorithm in [14].

B. PARAMETER SETTINGS FOR THE PILOT DESIGN
SCHEME
In the first simulation experiment depicted as Fig.3, we inves-
tigate the impact of various settings of the parameter α ∈
[1, 2] for our pilot design scheme presented in section III-A
with the corresponding objective function µ(P̀∗,u) (i.e.,
mutual coherence of the designed measurement matrix),
based on the CPU runtime.4 Based on the proposed pilot
design scheme, one can indeed, discursively deduce its com-
putational complexity according to Section III-B as one
that increases with increasing values of α settings−used to
tune the set of group update entries. In this experiment,
we consider five pilot design schemes, i.e., discrete stochas-
tic optimization (DSO)-based effective pilot pattern design
scheme in [5]−we denote as DSO-EPPD scheme, the generic
algorithm pilot design scheme in [6] (denoted as GA-PD
scheme), the low coherence pilot pattern design scheme
in [13] (denoted as LCPPD scheme), the joint pilot symbol
and pilot-design-pattern scheme in [14] (denoted as JPSP
scheme) and our proposed pilot design scheme presented as
Algorithm 1. Fig. 3, plots the objective functionµ(P̀∗,u) as a
function of the CPU runtime, under the number of the strong
paths S = 6, the CE-BEM order Q = 3, the normalized
Doppler νmax = 0.065 (i.e., at the speed v = 350 km/h) with
fc = 3 GHz and 1f = 15 KHz, and the average number
of the pilot subcarrier for the joint multi-symbol estimation

4The running time is used rather than the number of iterations for compar-
ison, as the complexity in each iteration varies differently for the algorithms.
Nonetheless, it is worth mentioning that different hardware configurations
may result in different running time measurements.

FIGURE 4. Comparison of the NMSE performance of the proposed
DSC-SdMP algorithm and the conventional reconstruction algorithms with
S = 6, Q = 3, νmax = 0.065 (where fc = 3 GHz and 1f = 15 KHz).

P = 120. It is worth mentioning that the mutual coherence
is a more practical metric for assessing the DCS recovery
properties of designedmeasurementmatrices. Since, the DCS
reconstruction performance improves with lower values of
µ(P̀∗,u), in terms of NMSE [33], [42]. In Fig. 3, we observe
that the proposed pilot design scheme with group update
settings of α = 2 can minimizeµ(P̀∗,u) than that with group
update settings α = 1, but at the cost of increased computa-
tional complexity (i.e., it requires a running time of approx-
imately 120 s for an optimal design). For power-efficient
devices, using the setting of α = 1 may be considered a better
option as it can minimize µ(P̀∗,u) for the low algorithm
runtime (say below 30 s) than with a setting of α = 2, but
at the cost of a decreased reconstruction performance. The
reason is that using the setting of α = 2 provides a better
minimization of µ(P̀∗,u), albeit at greater computational
expense. Nonetheless, since we usually offline train the joint
pilot placement and symbol before the transmission, using the
setting of α = 2 will be a better option and will not bring any
additional complexity to the CE at the receiver. Additionally,
it is clearly seen that our proposed algorithm at both settings
of α ∈ [1, 2] is superior to other pilot design schemes,
based on the minimummutual coherence criteria. Thus, in the
remaining experiments, a setting of α = 2 is used for our
proposed algorithm; and all the pilot design algorithms under
investigation are given sufficient time to training (> 220 s)
for fairness.

C. PERFORMANCE OF THE PROPOSED DCS-SDMP
ALGORITHM
In our second experiment, depicted in Fig. 4, we show the
NMSE comparison of the proposed DSC-SdMP algorithm
with the DCS-SOMP, ASA-BOMP and BSOMP algorithms
for the joint recovery of signals ensembles. This is achieved
using an equal-power, non-uniformly spaced pilot pattern,
under the number of the strong paths S = 6, the CE-BEM
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FIGURE 5. Comparison of the NMSE performance of the proposed
DSC-SdMP algorithm and the conventional reconstruction algorithms with
S = 6, Q = 3, νmax = 0.093 (where fc = 3 GHz and 1f = 15 KHz).

order Q = 3, fc = 3 GHz, 1f = 15 KHz, the normalized
Doppler νmax = 0.065 (i.e., at the speed v = 350 km/h)
and the average number of the pilot subcarrier for the joint
multi-symbol estimation of P = 120. In this experiment,
we also simulate the cubic-spline-interpolation based LS CE
withM = 24 pilots in each OFDM symbol, as the LS proves
to be the best for traditional equispaced CE. From Fig. 4,
we can see that, the DCS algorithms yield better NMSE per-
formance than the solution obtained by using cubic-spline-
interpolation based LS. However, DCS-SdMP achieves a
better NMSE performance compared to DCS-SOMP [5],
ASA-BOMP [11], and BSOMP [12]. For example, at SNR=
20 dB, the NMSE for cubic-spline-interpolation based LS,
DCS-SOMP, BSOMP, ASA-BOMP, and the proposed DCS-
SdMP algorithms are −4.86 dB, −17.78dB, −18.89dB,
−19.64dB, and −21.17dB, respectively. It is clear that the
proposed reconstruction algorithm can acquire very exact
CIR estimationwhen compared to the other different methods
of CE under investigation.

In our third experiment, depicted in Fig. 5, we carry out a
similar comparison. We plot the NMSE versus SNR for all
the reconstruction algorithms under investigation, for higher
normalized Doppler shift of νmax = 0.093 (i.e., at the speed
v = 500 km/h). According to results in Fig. 5, a similar
relative superiority of the proposed DCS-SdMP reconstruc-
tion algorithm can be observed. However, the performances
of all the curves are degraded relative to the scenario for
νmax = 0.065 in Fig. 4. This is due to the larger modeling
error of the CE-BEM, associated with the higher modeling
error when Doppler frequency increases. Moreover, given the
same sparsity level, the NMSE of DCS-SdMP is closer to
the Oracle estimator than that of the other algorithms under
investigation.

In our fourth experiment, Fig. 6 depicts a comparison of
the NMSE versus the normalized Doppler shift, νmax under
S = 6, fc = 3 GHz, 1f = 15 KHz, Q = 3 at
SNR= 20 dB, in order to examine howDoppler shift impacts

FIGURE 6. NMSE performance versus νmax at SNR= 20 dB with S = 6,
fc = 3 GHz, 1f = 15 KHz, Q = 3 and Q = 7 for the proposed algorithm
and the conventional reconstruction algorithms.

the performance of CE. To further investigate the relationship
between NMSE and model order Q (i.e., the number of
basis functions), we have included in the same simulation
environment a similar comparison of the entire algorithms
under investigation under the same settings but with Q = 7
in Fig. 6. From Fig. 6, we can see that the resulting NMSE
degrades in the high νmax regime. Hence, we could better
comprehend why normalized Doppler shift νmax values are
so critical in the comparative analysis of NMSE of the CE-
BEM for DS channel since a large νmax leads to a large
channel modeling error as a result of failure to capture the
channel time-variation. However, using the proposed algo-
rithm is shown to be more accurate in estimating the chan-
nel. According to the simulation results presented herein,
increasing the BEM order from Q = 3 to Q = 7 can
improve the NMSE performance of CE for all algorithms.
Nonetheless, a similar relative superiority of our proposed
reconstruction algorithm can be observed among algorithms
under investigation. The reason is that with a high order of
the basis functionsQ, more mutually orthogonal elements (or
basis functions) are employed to fit the DS channel, which
leads to better NMSE performance. However, higher-order
basis functions Q achieves better CE performance at the
expense of substantially increased computational complexity.
This is however, obvious since the complexity of the proposed
algorithm is O(KMLQ). Thus, a proper selection of the value
of the BEM order Q is required to balance the reliability and
transmission efficiency of practical wireless communication
systems over DS channel.

In our fifty experiment depicted as Fig. 7, a rough estimate
of the computational complexity of the proposed reconstruc-
tion algorithm based on the CPU runtime is presented. Fig. 7
plots the running time of each reconstruction algorithm as
a function of sparsity under νmax = 0.065 (i.e., for speed
v = 350 km/h), fc = 3 GHz, 1f = 15 KHz and Q = 3 at
SNR= 20 dB. Generally, we observe that BSOMP and ASA-
BOMP have the highest running time and DCS-SOMP and
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FIGURE 7. Running time as a function of sparsity S of the proposed
DCS-SdMP algorithm and the conventional conventional reconstruction
algorithms with Q = 3 and νmax = 0.065 (where fc = 3 GHz and
1f = 15 KHz) at SNR= 20 dB.

DCS-SdMP have the lowest running time among algorithms
under investigation. It is worth noting that the DCS-SdMP
algorithm selects Z (≤ S) maximally correlated common
sparse support indices per iteration and incorporates a prun-
ing step in some subsequent iterations. This increases the
probability of selecting the correct common support indices
per iteration, which has the benefit of maximally reducing the
`2-norm of the residual error vector based stopping criteria
to require fewer iterations and thus a lower running time.
Notably, there are K total iteration in O(KMLQ) for the
DCS-SdMP algorithm. Thus, we can discursively deduce the
superiority of the DCS-SdMP algorithm by examining the
results of Fig. 7 as one that requires fewer iterations and, thus,
a better total computational complexity. When compared to
other reconstruction algorithms, we observe that DCS-SdMP
exhibits better complexity for high S.

D. PERFORMANCE OF THE PROPOSED PILOT POWER
AND PLACEMENT SCHEME
In our sixth experiment, we consider five pilot design
schemes, i.e., the DSO-EPPD scheme [5], the GA-PD
scheme [6], the LCPPD scheme [13], PSP scheme [14] and
our proposed pilot design scheme presented in Algorithm 1.
We also simulate the cubic-spline-interpolation based LS
CE with M = 256 pilots in each OFDM symbol. It is
worth noting that the pilot pattern design schemes in [5], [6],
and [13] estimates the jointly sparse CE-BEM coefficient
vectors over the DS channel based on the assumption that the
pilot symbols are equally-powered. While the pilot scheme
in [14] estimates the jointly sparse CE-BEM coefficient
vectors over the DS channel using the joint optimal pilot
placement and pilot symbol allocation. Our approach jointly
optimized the pilot sequences over both the pilot symbol
values and their placement allocable to the pilot clusters
for the estimation of the jointly sparse CE-BEM coefficient
vectors over the DS channel. In Fig. 8, we plot the NMSE

FIGURE 8. Comparison of the NMSE performance of the proposed pilot
design scheme and the conventional pilot placement schemes with S = 6,
Q = 3 and νmax = 0.065 (where fc = 3 GHz and 1f = 15 KHz) α = 2.

versus SNR for all different pilot design schemes, under the
number of the strong paths S = 6, α = 2, the CE-BEM
order Q = 3, the normalized Doppler νmax = 0.065 (i.e.,
at the speed v = 350 km/h) with fc = 3 GHz and 1f =
15 KHz, and the average number of the pilot subcarrier for
the joint multi-symbol estimation P = 120. In order to
recover the jointly sparse CE-BEM coefficient vectors over
the DS channel, we used the proposedDCS-SdMP algorithms
and evaluate the average performance over 9500 independent
trials. To get an idea of the potential NMSE gain realized by
exploiting the proposed pilot design scheme and the proposed
DCS-SdMP reconstruction algorithm, we have included the
Oracle estimator as a reference, which has prior knowledge
of the location of the nonzero channel taps and employs
pilots solely to deduce the channel tap values by LS estima-
tion. We observe that Algorithm 1 (i.e., our proposed pilot
design scheme) and the JPSP scheme in [14] outperforms
the methods of [5], [6], and [13]. Nonetheless, our proposed
pilot design scheme maintains its superiority over the JPSP
scheme in [14] under the low and high SNR regime, which
verifies the effectiveness of our proposed method. Moreover,
it is observed that the performance of LS which utilizes
256 equally-spaced pilot signals reaches the performance of
the proposed scheme at SNR 25 dB. Hence, the proposed
scheme can conserve 256− P = 136 pilot subcarriers under
the same CE performance (where P = 120), leading to
((256 − P)/N ) × 100 = (136/512) × 100 = 26.56%
improvement in spectrum efficiency (where P and N denote
the number of pilot and guard pilot subcarriers, and total
number of OFDM subcarriers, respectively).

VI. CONCLUSION
In this paper, we study the pilot cluster scheme in the fre-
quency domain for DS channel estimation and proposes a
new joint design pilot scheme and subsequently introduce
a DCS-SdMP algorithm for pursuing efficiency in recon-
structing jointly sparse signals ensemble for OFDM systems.
Taking benefit from the CE-BEM and the channel sparsity in
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the delay-Doppler domain (i.e., two-dimensional (2D) chan-
nel coefficients), the proposed pilot design scheme identifies
the optimal pilot placement and values for each pilot cluster
and can lead to an accurate estimation of the jointly sparse
CE-BEM coefficient vectors. Specifically, this approach
decomposes the problem of jointly optimizing the pilot
sequences over both the pilot placement and values allocable
to the pilot clusters into identifiable sequential formulations.
It is shown through performance analysis and simulation
results that the proposed pilot design scheme can provide
optimal pilot signal allocable to the pilot cluster which can
significantly improve the estimation accuracy of the OFDM
system over DS channel. To ensure a satisfactory estima-
tion, we have further proposed a new DCS recovery algo-
rithm based on stage determined matching pursuit (SdMP)
namely, DCS-SdMP that possesses the advantage of mul-
tiple common-support indices selections per iteration and
then adds a backtracking process (at a later iteration) to
subsequently refine the previously selected common support
indices. The simulation results demonstrate that the proposed
DCS-SdMP algorithm with the new joint pilot design scheme
presents a better NMSE performance for the CE over the DS
channel when compared with existing schemes. Additionally,
the proposed scheme can attain 26.56% improvement in spec-
trum efficiency with similar CE performance when compared
with the conventional LS CE method that does not exploit
sparsity.
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