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ABSTRACT This paper studies an interaction between the Internet of Things (IoT) device and users, both
of which act strategically to achieve their own objectives. In the IoT system under consideration, the users
access the service provided by the IoT device, e.g., to obtain sensing information. The device relies on
energy harvesting to serve the users who are priced when accessing the service. When the delay cost of users
is considered, we propose a game-theoretic queuing model to analyze the pricing strategy of the device and
strategic joining rules for users. A Stackelberg game is formulated, in which the device, i.e., the leader,
determines the service price to maximize his revenue facing the strategic users, i.e., the followers who
determine their equilibrium joining strategy to maximize their own utility. Interestingly, we find that the
equilibrium joining probability can be non-monotone in the length of energy harvesting time. Moreover,
from the perspective of a social planner, the optimal service price to induce the maximal social welfare is
derived, and the Price of Anarchy metric is examined accordingly. The numerical examples disclose that the
socially optimal price should be lower than the optimal price for the device.

INDEX TERMS Internet of things (IoT), energy harvesting, Stackelberg game, equilibrium, price of anarchy.

I. INTRODUCTION
Internet of Things (IoT) has become a promising solution to
connect various physical objects and enable data sensing and
exchange among them, such as sensors, vehicles, and per-
sonal digital devices [2]. The development of IoT has brought
great benefits to many practical applications, e.g., healthcare
and transportation.With a well-designed IoT system, the con-
nected objects, devices, and applications, can communicate
and operate autonomously without or with minimal human
intervention to provide efficient and useful services [3]. Since
the IoT devices have to operate remotely or in a mobile
environment, the device has limited energy supply. Energy
harvesting techniques can be used at the device as a means
to supply energy [4]–[6], [8], [10]–[12]. Different modes of
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energy harvesting are available for the device including solar,
vibration, wind, and wireless signals such as magnet reso-
nance and radio frequency (RF) [13].

One of the important issues in IoT systems or in wire-
less sensor networks is the energy harvesting. In an IoT
system, the IoT device can be regarded as a sensor node
receiving an access request from IoT applications and users.
If the device has enough energy, it will serve the request by
sending the sensing information back to the user. Otherwise,
these requests will be blocked. For all its prevalence, using
energy harvesting in the IoT device faces some significant
challenges. Firstly, the availability of energy supply from
ambient sources is random. Thus, energy outage can happen
unpredictably. Secondly, when multiple users request for a
service from the IoT device, the device can be busy serving
one request and also the energy depletes quickly. This causes
a competitive situation among the users in accessing the
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service and/or waiting for the device to be available. This
phenomenon is also known as ‘‘negative externality’’.

On the other hand, an IoT device can be regarded as a
service provider or seller, it can charge the users for serving
their requests to generate revenue and profit. As such, the self-
interested IoT device and users have to act strategically to
reach an equilibrium solution of such an IoT system.

In this paper, we present a joint queuing and game theoretic
model for the aforementioned IoT system. We focus on the
service management of an IoT device with a retrial queue and
general service time when the energy harvesting is consid-
ered. The model is thus able to characterize repeated behav-
ior in communication networks. Different from conventional
queuing models where an IoT user’s request always finds
an idle server for immediately service processing, the device
in the IoT system model under our consideration relies on
energy harvesting, and the service delay as well as unavail-
ability is expected. In this regard, if the IoT device is busy,
e.g., due to energy harvesting or serving the other user’
request, the incoming request may be recalled to a wait-
ing orbit and processed again later, namely, retrial behav-
ior. Among these incoming requests, upon arrival some of
them may also balk from the system based on their utilities.
Additionally, we employ a two-stage Stackelberg game to
model the interaction between the IoT device and users. The
strategy of the IoT users is the service joining probability
which indicates the decision that the user chooses to wait if
its request cannot be satisfied by the IoT device immediately.
On the other hand, the strategy of the IoT device is to set
the price charged per user’s request served. The Stackelberg
equilibrium of the game is obtained which maximizes the
revenue of the IoT device given that the users adopt the best
response service joining probability. Apart from the Stackel-
berg equilibrium, we also analyze the maximal social welfare
of the IoT system from the perspective of a social planner.

In summary, we have the following several contributions:
(1) The system performance measures (e.g., steady-state
probabilities as well as mean delay) with energy harvesting
and retrial orbit are derived. (2) The equilibrium strategy
for users is characterized, in which the equilibrium joining
probability can be non-monotone in the average time of
energy harvesting. (3) The optimal pricing strategy for IoT
device and social planner are obtained and compared. To the
best of our knowledge, this is the first work that studies the
energy harvesting in the IoT system when the balking and
retrial behaviors of users are considered, and service pricing
is incorporated. In particular, it is for the first time that the
concept of ‘‘rational queuing’’ is adopted and applied in the
communications with energy harvesting context. To this end,
we investigate the Price of Anarchy (PoA) analytically and
numerically.

The reminder of paper is organized as follows. Section II
reviews the related work. Section III introduces the sys-
tem model considered in this paper. The equilibrium ser-
vice joining strategy of IoT users is derived in Section IV.
In SectionV, the revenue of IoT device and its optimal service

price is obtained. An optimal social welfare strategy which
maximizes the utility of the users and the revenue of the IoT
device is derived in Section VI. The Price of Anarchy (PoA)
for social welfare is investigated in Section VII. Section VIII
presents the performance evaluation. Finally, Section IX con-
cludes the paper, all proofs and two more extensions are
provided in Appendix.

II. RELATED WORK
A. ENERGY EFFICIENCY AND ENERGY HARVESTING
IN INTERNET OF THINGS (IoT) SYSTEMS
In practical IoT systems,many limitations such as device size,
cost, and energy supply may affect the system performance,
which are related to the energy efficiency of IoT devices [14].
Energy is always among the most important resources for
IoT systems to sustain their operation. In many IoT sensing
applications, energy harvesting such as solar, wind, vibration,
and RF, is employed at the IoT devices or sensors as replacing
or charging their battery are nearly technically impossible
and/or economically infeasible. Reference [15] shows that
energy supply and storage of IoT nodes may affect the topol-
ogy and lifetime of the whole network. Therefore, energy
management is significant for IoT systems to achieve the
optimal performance.

Energy management and energy efficiency designs in IoT
systems have been studied extensively in existing literature.
For example, Aziz et al. [15] defined the direct impacts of
single node energy to the whole network performance. Data
caching is employed in [16] for a sensor node in IoT to avoid
frequently sensing to minimize the consumption of energy.
For the next 5G IoT networks, energy efficiency has to be
optimized efficiently and the energy usage should be reduced
by 90% compared with the current designs [17]. However,
energy efficiency designs in wireless sensor networks are not
directly applicable to IoT scenarios, due to the features of
IoT systems such as the vast diversity and cost-aware com-
munication patterns [18], [19]. An energy efficiency frame-
work combining both wireless and wired subsystems of IoT
systems is studied in [20].

To overcome the energy supply limitation, energy har-
vesting techniques [4] are developed to replenish a bat-
tery of a mobile device including an IoT node. Energy
sources are diverse such as motion and vibration [5], elec-
tromagnetic field [6], ambient RF energy [8], dedicated
RF energy [10], solar energy [11], and combined energy
sources [12]. A recent major development of energy har-
vesting is RF energy transfer, called simultaneous wireless
information and power transfer (SWIPT). SWIPT allows an
energy and information source, e.g., a wireless base sta-
tion, to transfer information and energy simultaneously to
a receiver [21]–[23]. Although SWIPT supports mostly the
downlink transmission, the same concept is applied for the
uplink which suits more to IoT systems, i.e., data transmis-
sion from IoT nodes to a gateway. The major challenge of
energy harvesting is the low energy efficiency due to the
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additive effect of limited transmission power, transmission
loss, and RF-to-DC conversion efficiency [24]. Low energy
efficiency may cause exhaustion of battery energy for IoT
devices with batteries or low energy supply for battery-free
IoT designs, which significantly affects IoT service quality.

B. QUEUEING THEORY AND OPTIMIZATION
To model and analyze energy efficiency in IoT systems,
stochastic optimization and analysis approaches have been
applied. In particular, queuing theory is employed as a clas-
sical service management model to analyze systems where
users’ access requests are processed sequentially. Energy
arrival was considered in a discrete manner as energy pack-
ets in [25]. Here, energy packets arrive following a Poisson
arrival pattern. A coupled dual-queue Markovian system
model was studied in [26], where each mobile node has
unlimited buffer size for data flow but limited energy buffer
size for energy harvesting. The study in [26] was on perfor-
mance metrics of energy management in the case of unstable
connectivity, where an optimal energy buffer size is derived,
and the system stability in terms of energy overflow and
depletion is analyzed.

For the queuing theory modeled energy harvesting sys-
tems, game theoretic analyses have been conducted by some
studies in the literature. For example, in [27], anM/M/N/N
queue was formulated to describe the competition among N
users, whose bidding strategy for energy receiving from an
access point converges to a Nash equilibrium. Li et al. [28]
modeled an energy queue at a base station which receives
energy supplied by either traditional electric grid or renew-
able energy. A non-cooperative game was formulated and
solved to investigate an interaction between the renewable
energy supplier and the base station. Game theoretic anal-
ysis on queuing with retrial behaviors in a local area net-
work (LAN)was performed in [29] and [30], where the retrial
rate is linear to the number of users in the orbit.

Evidently, existing literature mainly focuses on the behav-
iors and performance metrics of energy harvesting. However,
strategic interactions between IoT device and users through
service pricing and service joining, respectively, were not
studied before. Especially with unstable energy harvesting,
retrial behaviors, as well as social welfare of the IoT sys-
tem require further analysis and investigation which are the
focuses of this paper.

III. SYSTEM MODEL
The IoT system under consideration is illustrated in Fig. 1.
In the system, the IoT device, e.g., a sensor node, employs
an energy harvesting technique, e.g., RF energy. The device
is equipped with an energy harvester, a controller unit, and
energy storage [31]. A super-capacitor which requires a lower
voltage level to charge than that of a rechargeable battery
is commonly used in such IoT devices. However, the super-
capacitor has a limited capacity which is typically sufficient
only for few packet transmissions. Therefore, once the IoT
device transmits some packet to a user, it does not have

FIGURE 1. System model of IoT service.

enough energy in its energy storage to transmit more data.
Consequently, the IoT device has to harvest energy and
recharge its energy storage which takes a certain time period,
during which it is unavailable.

Based on the above typical setting of an IoT device, when
the IoT device receives a request from one of the users,
it will serve the user immediately, e.g., transmitting sensing
information to the user, if it is idle. And the IoT device is
idle if and only if it has sufficient energy and it is not serving
any other user. After the IoT device finishes serving the user,
the device will switch to an energy harvesting mode, during
which it cannot serve any incoming user. If a user sends a
request when the IoT device is busy, i.e., serving any other
user, or when it is harvesting energy, the user will not be
served, i.e., the incoming user is blocked. The blocked user
then may put itself in a waiting orbit and will retry to access
the IoT device again later.1 After the IoT device harvests
enough energy, it will be idle and able to serve an incoming
user which can be a new user or repeating user among the
users in the waiting orbit.

The homogeneous users request to access the IoT device
with a positive arrival rate λ which follows the Poisson
process. In practice, in many IoT sensing services, the homo-
geneous users use the same applications which leads to the
similar service access behavior such as arrival and retrial
rates. The IoT device’s service time follows a general distri-
bution with mean E[S] = 1/µ, where µ > 0 can be regarded
as the service rate. The variance of service time is denoted by
Var[S] = E[S2] − E2[S]. After serving the user, an average
time that the IoT device spends to harvest energy is 1/β.
However, if the user finds the IoT device unavailable (busy
or harvesting energy), the user, with probability q ∈ [0, 1],
joins the waiting orbit. Each user in the waiting orbit will
retry to access the device again with rate θ , i.e., the retrial
rate. The retrial interval is determined by the capacity of
communication system and is independent to the strategy

1For the rest of the paper, we use ‘‘IoT service’’ and ‘‘IoT device’’
interchangeably.
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of users. Other users who choose to balk (with probability
1 − q) will leave the system, and have no chances to retry
their accesses as the ones in orbit in the future. In this case,
the overall retrial rate from the orbit to the IoT device is linear
to the number of users and is independent to users’ behavior.
That is, the users just make the joining-balking decision.
An example timing describing this scenario is shown in Fig. 2.

FIGURE 2. Example timing.

If the IoT device serves the user, the device charges a
positive service price denoted by P to the user, e.g., through
the IoT service provider which can be the owner of the device.
After the user is served, the user receives a positive reward
denoted by R. Furthermore, sending a request and receiving
the result incur a positive cost per unit time, e.g., bandwidth
usage, denoted by C to the user. Here, the IoT device sets
and announces the price first. Based on the price, the user
makes a decision that whether to join or balk to determine
whether the user will join the waiting orbit to wait and retry
to access the IoT device again or not. Denote by T (q) the
average delay for the joining users when all other users adopt
a curtain joining probability q, then the tagged arriving user
needs to determine the joining probability q̂ ∈ [0, 1] so as to
maximize her expected utility:

argmax
q̂∈[0,1]

U (q̂; q) , q̂ · U (q) = q̂[R− P− CT (q)], (1)

where U (q) is the expected utility for user if she chooses
to join. As we are investigating the behavior homogeneous
users, we consider the symmetric equilibrium among them.
Therefore, qe characterizes an equilibrium if and only if
argmax
q̂∈[0,1]

U (q̂; qe) = qe. On the other hand, the IoT device

can choose an optimal service price to maximize its revenue,
knowing how the price affects the service joining probability
of the users. Again, if one of the users is being served,
the other users cannot be served. This creates a compet-
itive situation among the users whose strategy has to be
adjusted accordingly. Under this circumstance, we formu-
late a two-stage Stackelberg game to model the interaction
between the IoT device and users. The players of the game
are the IoT device, i.e., the leader, and the users, i.e., the
followers. The strategy of the IoT device is the service price
while that of the users is the joining probability. Here, the IoT
device chooses the price before the users choose the service
joining probability, and hence the users are able to observe
the price strategy of the IoT device. Under equilibrium, the
payoff of joining users is their utility (i.e., U (qe)), while the
IoT device is the revenue per time unit λeP = λ[πa + qe ·

πu] · P, where λe = [πa + qe · πu] is the overall effective
arrival rate, πa and πu are the probabilities that the system is
available and unavailable, respectively.

Next, we follow backward induction by analyzing the strat-
egy of the users first. Then, the strategy of the IoT device is
examined.

IV. USERS‘ (FOLLOWERS’) STRATEGY
In the Stackelberg game, we first analyze the strategy of
the users in terms of the service joining probability given
service price P charged by the IoT device. In the model,
the users are indistinguishable upon their arrivals which
forms a symmetric game among them. An incoming user that
finds the IoT device idle will be served immediately, and upon
service completion, the user receives utility R > 0, where
naturally R > P. On the contrary, the user that finds the
IoT device busy or harvesting energy upon arrival, i.e., the
blocked user, cannot be served and the corresponding user
has a mixed strategy specified by the service joining prob-
ability q, where q ∈ [0, 1]. The goal here is to obtain the
Nash equilibrium service joining strategy among symmetric
users. We first give the performance analysis of system for
the fixed joining probability q, and then the equilibrium qe is
characterized.

A. PERFORMANCE ANALYSIS
The service time distribution function is B(x) for both new
and repeating users. We assume that the input flow of users,
intervals between repetitions, and service times are mutually
independent. Let I (t) denote the state of the IoT device at
time t . The events I (t) = 0, 1, 2 correspond to, respectively,
the states that the IoT device is idle, busy serving a user,
or harvesting energy. Let N (t) be the number of users in the
waiting orbit at time t . Here, the IoT system can be regarded
as a queuing system in which the server is the IoT device and
the queue is for the users waiting in the orbit. Accordingly,
the state space of the IoT system is denoted by

1 =

{
(I ,N ); I ∈ {0, 1, 2},N ∈ {0, 1, . . .}

}
. (2)

FIGURE 3. State transition diagram of the IoT system.

Fig. 3 shows the state transition diagram in the Markovian
case, i.e., when the service time is exponential distribution.
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The IoT device’s state may start from the idle state, and
it transits to the busy (serving) state when a user arrives,
i.e., with the rate λ. After the IoT device finishes serving
the user with the rate µ, it transits to the energy harvesting
state, and subsequently transits to the idle state again with
the rate β. The number of users in the waiting orbit increases
if a user arrives when the IoT device is in the busy state
or energy harvesting state. The increase rate is weighted by
the probability q. Then, if IoT device becomes idle when
there is a user in the waiting orbit, the device becomes busy
again if one of the users retries. Here, the rate of retrying,
i.e., θ, 2θ, 3θ, . . ., increases as the number of users in the
waiting orbit increases. This is from the fact that each of the
users can retry independently.

However, the stochastic process of the IoT service
{(I (t),N (t)), t ≥ 0} is not the continuous time Markov chain
when we consider a general service time. Thus, we introduce
a supplementary variable ξ (t) as the elapsed service time of
the user being served when I (t) = 1. Let b(x) = B′(x)

1−B(x) be the

instantaneous service intensity given that the elapsed service
time is equal to x, where B′(x) = dB(x)/dx is the probability
density function for service time S. We let the joint distribu-
tion of the IoT device state and queue length, i.e., the number
of users in the waiting orbit, in the steady-state state are as
follows:

p0n = Prob[I (t) = 0,N (t) = n], (3)

p1n(x) =
d
dx

Prob[I (t) = 1, ξ (t) < x,N (t) = n], (4)

p2n = Prob[I (t) = 2,N (t) = n], (5)

where ξ (t) is the elapsed service time in t and p1n =∫
∞

0 p1n(x)dx.
We define the following generating functions:

5i(z) =
∞∑
j=0

pi,jzj, 51(z, x) =
∞∑
j=0

p1,j(x)zj, (6)

for i = 0, 2. Then, the balance equations are expressed as
follows:

(λ+ iθ )p0i = βp2i, (7)

dp1i(x)
dx

= −(λq+ b(x))p1i(x)+ λqp1,i−1(x), (8)

p1i(0) = λp0i + (i+ 1)θp0,i+1, (9)

(λq+ β)p2i = λqp2,i−1 +
∫
∞

0
p1i(x)b(x)dx, (10)

where pi,−1 = 0, i ≥ 0.
Theorem 1: For the IoT system with energy harvesting

in the steady state, the users enter the waiting orbit with
probability q when they find the IoT device unavailable upon
the arrival. Let ρ = λE[S] and K ′′ = λ2q2E[S2]. We derive
the following results under β > λq+ ρqβ.

1) The probabilities that the IoT device is idle, busy,
or harvesting energy are, respectively, given by

50(1) =
β − λq− βρq

(1− q)(λ+ ρβ)+ β
, (11)

51(1) =
ρβ

(1− q)(λ+ ρβ)+ β
, (12)

52(1) =
λ

(1− q)(λ+ ρβ)+ β
. (13)

2) The mean numbers of users in the waiting orbit when
the IoT device is idle, busy, or harvesting energy are,
respectively, given by (14)–(16), as shown at the bottom
of this page.

3) The expected waiting time for the repeating users is
given by

T (q) =
1
θ
+

λ+ ρβ

θ(β − λq− ρqβ)

+

λ+ ρβ +
K ′′β2

2q2λ

(λ+ ρβ)(β − λq− ρqβ)
, (17)

which is strictly increasing for q∈ [0, 1].

Remark: Theorem 1 shows that the expected waiting time
for blocked users is increasing in their joining probability q.
It is intuitive because when q increases, the system will
become more congested, and more negative externalities are
resulted. Thus the mean delay for them would be increased.
From the denominator of T (q), we can derive the sufficient
and necessary condition for the system stability as follows:
β > λq + ρqβ. Since the arrival rate λ can be too large
which affects the stability, we consider two cases to discuss
the equilibrium strategy of service joining probability of the
users. These two cases are λ <

µβ
µ+β

and λ ≥ µβ
µ+β

.
Furthermore, with the reward and cost of the user accessing

N0 =
λq(λ+ ρβ)

θ ((1− q)(λ+ ρβ)+ β)
, (14)

N1 =
θ (2(λq)2qρ + 2λβ(ρq)2q− λqK ′′β + K ′′β2)+ 2λq2ρβ(λ+ ρβ)

2θ ((1− q)(λ+ ρβ)+ β)(β − λq− ρqβ)q
, (15)

N2 =
λθ (−2βρ2q2 + 2ρqβ − 2ρq2λ+ βK ′′ + 2λq)+ 2λ2q(λ+ ρβ)

2θ ((1− q)(λ+ ρβ)+ β)(β − λq− ρqβ)
. (16)
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the IoT device, the expected utility of the joining user who
finds a unavailable server is expressed as follows:

U (q) = R− P− CT (q)

= R− P− C

β + (1− q)(λ+ ρβ)
θ (β − λq− ρqβ)

+
λ+ ρβ +

λE[S2]β2

2

(λ+ ρβ)(β − λq− ρqβ)

, (18)

where R is the reward of the service completion, P is the
price charged by the IoT device, and C is the cost of the user.
The utility in (18) is for the general service time distribution.
Nonetheless, we can consider two special cases, i.e., deter-
ministic service time and exponentially distributed service
time.

For the deterministic service time, i.e.,Var[S] = 0, the ser-
vice time degenerates to a constant 1/µ with probability
one. The expected utility of the blocked user is obtained as
follows:

U (q) = R− P− C

β + (1− q)(λ+ ρβ)
θ (β − λq− ρqβ)

+

λ+ ρβ +
ρβ2

2µ

(λ+ ρβ)(β − λq− ρqβ)

 . (19)

For the exponentially distributed service time, the expected
utility becomes

U (q) = R− P− C
(
1
θ
+

(µ+ β)2(θ + λ)− θµβ
θ (µ+ β)(µβ − (µ+ β)λq)

)
.

(20)

It is not difficult to verify that the expected utility for blocked
users who decide to join the system is higher under deter-
ministic service time, because of the lower variance. So far,
for a given q, the expected utility of users can be determined.
Next, wewill characterize the equilibrium joining probability,
i.e., qe, based on the utility.

B. EQUILIBRIUM JOINING STRATEGY
Notice that U (q) < R − P for any q ∈ [0, 1], to avoid
triviality, we just consider the case of R − P > 0. Other-
wise, none of the users would join the waiting orbit. As we
have proven the monotonicity of average waiting time in
the orbit, the equilibrium service joining strategy for the
users can be determined uniquely for the given reward-cost
values and price P. We consider the equilibrium in both cases,
i.e., λ < µβ

µ+β
and λ ≥ µβ

µ+β
, in the following theorem.

Theorem 2: In the IoT system with energy harvesting,
a unique Nash equilibrium strategy of the users observing
the IoT device unavailable upon the arrival, i.e., blocked
users, to join the waiting orbit, i.e., probability qe, exists. The
probability qe is given as follows.

For λ < µβ
µ+β

, we have

qe =



0, if 0 <
R− P
C

< T (0),

[(R− P)θ − C]β − (λ+ ρβ + θ + λE[S2]β2θ
2(λ+ρβ) )C

[(R− P)θ − C](λ+ ρβ)
,

if T (0) ≤
R− P
C
≤ T (1),

1, if
R− P
C

> T (1),

(21)

and for λ ≥ µβ
µ+β

, we have

qe =


0, if 0 <

R− P
C

< T (0),

[(R− P)θ − C]β − (λ+ ρβ + θ + λE[S2]β2θ
2(λ+ρβ) )C

[(R− P)θ − C](λ+ ρβ)
,

if T (0) ≤ R−P
C ,

(22)

where

T (0) =
1
θ
+
λ+ ρβ

θβ
+
λ+ ρβ +

λE[S2]β2

2

(λ+ ρβ)β
, (23)

T (1) =
1
θ
+

λ+ ρβ

θ ((1− ρ)β − λ)
+

λ+ ρβ +
λE[S2]β2

2

(λ+ ρβ)((1− ρ)β − λ)
.

(24)

Remark: Theorem 2 shows that there exists unique equilib-
rium strategy in the IoT systemwith energy harvesting.When
qe = 0, i.e., R is small, it can be explained by that the users
have no alternative than getting the device’s information,
i.e., they simply cannot wait or decide to leave the system
when the IoT device is found to be unavailable. BecauseU (q)
is a decreasing in q ∈ [0, 1], when all other blocked users
adopt a higher joining probability q, the tagged user is more
hesitate to join the system because if she does, a lower utility
is obtained. Therefore, the best response of the tagged user is
decreasing in the joining strategy of others. That is, we have
an ‘‘avoid the crowd (ATC)’’ (see [9] and [29] for further
descriptions about ATC) situation for the queuing system.
It can be explained by the negative externalities that are made
by other users.

In the following, we show some important properties of the
equilibrium service joining strategy.
Theorem 3: In the IoT system with energy harvesting,

the Nash equilibrium strategy of joining probability qe has
the following properties under β > λq+ ρqβ.

1) The equilibrium joining probability qe is increasing in
the retrial rate θ .

2) qe is not monotone in the energy harvesting rate β.
Specifically, for the service time variance Var[S] < V ,
qe is increasing in β. Otherwise, qe is unimodal in β,
where V = (R−P)θ−C

Cθµ .
Remark: Theorem 3 shows that in the IoT system, when

the energy harvesting rate increases, it does not necessarily
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induce a higher equilibrium joining probability for the users.
In particular, when the energy harvesting time is shorter,
the blocked users may be less inclined to join the waiting
orbit. This result is counter-intuitive because a shorter har-
vesting time normally means a smaller total delay for the
users. Nonetheless, this phenomenon can be interpreted as
follows.When β increases, more users will find that it is more
easily to be served by the IoT device. Therefore, they do not
need to retry with a high probability.Moreover, if the variance
of service time is large, the negative impact of variance on
the delay increases heavily with β because of the frequent
energy harvesting. Thus, the blocked users can experience
a higher expected delay. In particular, if the service time S
is exponentially distributed, we have Var[S] = 1/µ2 < V
because (R− P)/C > 1/µ+ 1/θ . That is, qe is increasing in
β under the exponential distribution.

FIGURE 4. The equilibrium joining probability strategy qe versus β for
R = 100, P = 20, θ = µ = λ = 2. (a) Var[S] = 10. (b) Var[S] = 60.

Fig. 4 shows the equilibrium service joining strategy qe
with β under different Var[S]. When Var[S] is relatively
small, i.e., Var[S] = 10, qe is increasing in β (see Fig. 4(a)).
When Var[S] is relatively large, i.e., Var[S] = 60, qe is
increasing in β ∈ (1, 4) and then decreasing in β > 4
(see Fig. 4(b)). In other words, in the IoT system, the energy
harvesting rate as well as the service variance have a great
impact on the equilibrium service joining strategy of the
users. Comparatively, when Var[S] = E2[S], i.e., S is expo-
nentially distributed, and β →∞, qe degenerates to the result

in [30], then we can summarize the results in Table 1. And we
can observe that when the general service time is adopted,
qe can be either larger or smaller than the exponential one,
which has been derived in [30]. That is, when the distribution
is mistakenly evaluated, the strategy of users will be greatly
changed. Also, when the service time is exponential and
β < ∞, we can verify that qe is increasing in β, then the
non-monotone case diminishes.

TABLE 1. Comparisons with [30] when R = 30, P = 20, β →∞ and
θ = µ = λ = 2.

V. IOT DEVICE’s (LEADER’s) STRATEGY
In this section, we examine the IoT device’s revenue accord-
ing to the equilibrium service joining strategy of the users
that we obtain in Section IV. With the full awareness of the
service joining strategy of users, the IoT device can adjust the
service priceP to achieve its goal. In this regard, when the IoT
device charges a high price, few users want to join the waiting
orbit, which results in a low revenue. Conversely, when the
IoT device charges a low price, many users will wait for the
service. However, it can also lead to a low revenue due to
the low price. Therefore, it is important for the IoT device
to determine an optimal price to maximize its revenue. As we
obtain the effective arrival rate, i.e., in (65), we can then derive
the IoT device’s revenue as follows:

f (P) = λe(P)P, (25)

where λe(P) = λ · (50(1)+ qe[51(1)+52(1)]) =
β

[1−qe(P)](λ+ρβ)+β
is the overall effective arrival rate to system

given the equilibrium service joining strategy qe of the users
and service price P (different from the effective arrival rate to
λeff in (65)). It is given as follows:

λe(P) =
λβ

[1− qe(P)](λ+ ρβ)+ β
. (26)

Therefore, the revenue function of the IoT device can be
written as follows:

f (P) =
λµβP

λ[1− qe(P)](µ+ β)+ µβ
. (27)

Before determining the optimal price for the IoT device,
we give the following lemmas.
Lemma 1: In the IoT system under consideration with

λ <
µβ
µ+β

, the objective (revenue) function of the IoT device
f (P) is concave for max{0,R− CT (1)} < P ≤ R− CT (0).
Similarly, we can have this property when λ ≥ µβ

µ+β
in the

following lemma. Nonetheless, the proof is similar to that of
Lemma 1 and hence omitted for brevity.
Lemma 2: In the IoT system with λ ≥ µβ

µ+β
, the rev-

enue function of the IoT device f (P) is concave for
0 < P ≤ R− CT (0).
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Based on the equilibrium strategy of the users, the con-
cavity of f (P) is established through Lemmas 1-2, which
implies that unique price can be found to maximize the payoff
of IoT device. To have a better presentation for the optimal
prices, we consider two cases according to arrival rate λ in
the following subsections: (1) λ < µβ

µ+β
and (2) λ ≥ µβ

µ+β
.

A. OPTIMAL PRICE FOR λ < µβ
µ+β

We first consider the case with the condition of λ < µβ
µ+β

.
We give the optimal price for the IoT device first and then
provide its proof.
Theorem 4: In the considered IoT system with energy har-

vesting and λ < µβ
µ+β

, the revenue of the IoT device and its
corresponding optimal price P∗ser that maximizes its revenue
can be obtained as follows.

1) For R < CT (0), we have

P∗ser = R. (28)

2) For CT (0) ≤ R < CT (1), we have

P∗ser =

{
R, if R− CT (0) < P ≤ R,
P′, if 0 < P ≤ R− CT (0),

(29)

with f ∗(P) = max{f (R), f (P′)} where P′ satisfies the
first-order condition for optimality, i.e.,

λe(P)+ P
dλe(P)
dP

= 0, (30)

for P ∈ (0,R− CT (0)]. Otherwise, P′ = R− CT (0).
3) For CT (1) ≤ R <∞, we have

P∗ser =


R, if R− CT (0) < P ≤ R,
P†, if R− CT (1) < P ≤ R

−CT (0),
R− CT (1), if 0 < P ≤ R− CT (0),

(31)

with f ∗(P) = max{f (R), f (P†), f (R − CT (1))}, where
P† satisfies the first-order condition for optimality, i.e.,

λe(P)+ P
dλe(P)
dP

= 0, (32)

for P ∈ (R− CT (1),R− CT (0)]. Otherwise,
P† = R− CT (0).

Next, we consider the counterpart, i.e., when λ is large.

B. OPTIMAL PRICE FOR λ ≥ µβ
µ+β

When λ ≥ µβ
µ+β

, the major steps are similar to the anal-

ysis of λ ≥ µβ
µ+β

. The only difference is that there exists

q(P0) ∈ (0, 1] such that T (q(P−0 )) = ∞ for λ ≥ µβ
µ+β

.
Thus, the condition R ≥ CT (1) is never active. The following
theorem gives the optimal price for the IoT device in this case.
Theorem 5: In the considered IoT system with energy har-

vesting and λ ≥ µβ
µ+β

, the revenue of IoT device and its
corresponding optimal price P∗ser that maximizes the revenue
of the IoT device can be determined as follows.

1) For R < CT (0), we have

P∗ser = R. (33)

2) For R ≥ CT (0), we have

P∗ser =

{
R, if R− CT (0) < P ≤ R,
P′, if 0 < P ≤ R− CT (0),

(34)

where P′ is defined in Theorem 4.
Again, the proof is similar to that of Theorem 4, so it is
omitted.
Remark: Theorems 4-5 give the optimal price for IoT

device. When R is too small, i.e., R < CT (0), in which all
blocked users are not cost-effective to join. Thus the optimal
price can be attained at as large as possible: P∗ser = R, which
is only paid by the users who find an available server. It shows
that IoT device will strategically omit blocked users when
R is small. On the other hand, when R is large, the optimal
price should be carefully selected because multiple pricing
strategies are available to Iot device. As the service provider,
he can charge a low service fee to serve more users or
post a high service fee to serve the unblocked users only
(i.e., P∗ser = R).

VI. SOCIAL PLANNER’s PROBLEM
In Sections IV and V, the IoT device makes the decision as
the leader in the Stackelberg game setting to maximize its
own revenue. Alternatively, we can consider the IoT device
to be a social planner that optimizes the service price so that
the social welfare defined in terms of the utility of the users
and revenue of the IoT device is maximized. Again, let q
denote the service joining probability of the users, c(q) denote
the surplus of the users, and f (q) denote the corresponding
revenue of the IoT device. They are defined as follows:

c(q) = λ50(1)(R− P)+ λq(51(1)+52(1))

× (R− P− CT (q)),

f (q) = (λ50(1)+ λq(51(1)+52(1)))P,

where 51(1) and 52(1) are defined in (12) and (13), respec-
tively. The social welfare is thus defined as follows:

SW (q) = c(q)+ f (q),

=
λRµβ

λ(1− q)(µ+ β)+ µβ

−
λ2q(µ+ β)C

θ (λ(1− q)(µ+ β)+ µβ)

×

(
1+

2µ(λ+ ρβ + θ )(µ+ β)+ µ2θE[S2]β2

2(µ+ β)(µβ − (µ+ β)λq)

)
,

which is a function of q. The social planner wants to moti-
vate the users to adopt the socially-optimal strategy, i.e., the
service joining probability qsoc, to maximize the social wel-
fare. The social planner can thus set the price to achieve
qsoc which is also the equilibrium strategy of the users. The
next theorem gives the optimal service joining strategy qsoc.
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F(0) =
(βµ+ λ(β + µ))

(
β(β + µ)+

(
β2θE[S2]µ

2 + (β + µ)(θ + λ+ βρ)
))

β2θµ(β + µ)
, (37)

F(1) =
λµ

(
β2θE[S2]µ

2 + (β + µ)(θ + λ+ βρ)
)

θ (βµ− λ(β + µ))2

+

(βµ+ λ(β + µ))
(
(β + µ)(βµ− λ(β + µ))+ µ

(
β2θE[S2]µ

2 + (β + µ)(θ + λ+ βρ)
))

θβµ(β + µ)(βµ− λ(β + µ))
. (38)

D = βλ(β + µ)2(λµ+ β(λ+ µ− θµν)), (39)

E = βλ2(β + µ)2
(
β2λ+ β(θ + 2λ)µ+ µ(

β2θE[S2]µ
2

+ (θ + λ)µ)
)

×

(
β2θE[S2]µ

2
(λµ+ β(λ+ µ))+ θ (β + µ)

(
λµ+ β2λν + β(λ+ µ+ λµν)

))
, (40)

F = λ2(β + µ)2(A+ (β + µ)(θ + β(−1+ θν))). (41)

To simplify the notations, we denote ν = R/C which is the
ratio of reward to cost of the user.
Theorem 6: In the considered IoT system with energy har-

vesting and λ < µβ
µ+β

, the unique optimal strategy qsoc of the
users that maximizes the social welfare is given by

qsoc =


0, if 0 < ν < F(0),
q′, if F(0) ≤ ν ≤ F(1),
1, if F(1) < ν,

(35)

where F(0) and F(1) are defined in (37) and (38), as shown
at the top of this page, respectively, and

q′ =
−D−

√
E

F
, (36)

where D, E and F are given in (39)-(41), as shown at the top
of this page.

In Theorem 6, the socially optimal joining probability is
uniquely determined, which is dependent on the value of
ν = R/c, i.e., the reward-cost ratio. When ν is small, from the
perspective of social planner, it is never wise to allow the join-
ing of blocked users because the additional reward brought by
them cannot compensate for the increased system congestion
that is resulted by them. Therefore, we have qsoc = 0. On the
other hand, when ν is too large, the increased delay cost could
be secondary comparing to the improved reward. Thus a high
joining probability qsoc = 1 should be adopted.
Remark: For the case of λ ≥ µβ

µ+β
, similar to Theorem 6,

the unique socially-optimal service joining strategy qsoc is
given by

qsoc =

{
0, if 0 < ν < F(0),
q′, if F(0) ≤ ν,

(42)

where q′ and F(0) are given in (36) and (37), respectively.
The social planner needs to find the optimal price for the

optimal strategy qsoc. The corresponding optimal price P∗ for
the case of λ < µβ

µ+β
is given in the following theorem.

Theorem 7: In the considered IoT system with energy
harvesting and λ <

µβ
µ+β

, the socially-optimal price that

maximizes the social welfare is given by

P∗soc =



C(F(0)− T (0)), if 0 < ν < F(0),

R− C

β + (1− q′)(λ+ ρβ)
θ (β − λq′ − ρq′β)

+
λ+ ρβ +

λE[S2]β2

2

(λ+ ρβ)(β − λq′ − ρq′β)

 ,
if F(0) ≤ ν ≤ F(1),

C(F(1)− T (1)), if F(1) < ν,

(43)

where F(0), F(1) and q′ are, respectively, given by (37), (38)
and (36), and T (q) is the expected waiting time for the users.
Remark: For the case of λ ≥ µβ

µ+β
, the socially-optimal

price is given by

P∗soc =



C(F(0)− T (0)), if 0 < ν < F(0),

R-C
(
1
θ
+

λ+ ρβ

θ (β − λq′ − ρq′β)

+
λ+ ρβ +

λE[S2]β2

2

(λ+ ρβ)(β − λq′ − ρq′β)

 ,
if F(0) ≤ ν ≤ F(1).

(44)

The proof is again similar to that of Theorem 7, and it is
omitted.

In Sections V and VI, we show that in the IoT system with
energy harvesting, a unique price can be set to maximize the
revenue of the IoT device and the social welfare, respectively.
However, there exists a difference between the two prices P∗ser
and P∗soc. In Section VII, we examine the difference in terms
of the Price of Anarchy (PoA).

VII. THE PRICE OF ANARCHY
The Price of Anarchy (PoA) is a measure for the loss of
optimality due to self-interest behavior. As we obtain the
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optimal social welfare under a certain price P∗soc (Section VI)
proposed by the IoT device, we can also obtain the social
welfare with the ‘worst equilibrium’ which can be derived
through a corresponding price P. Here, the PoA is defined as
the ratio of the expected optimal welfare SW ∗ to the expected
social welfare SWw under the ‘worst equilibrium’. Define
q0 as the unique solution of R − CT (q0) = 0. Notice that

q0 ≤ 1 ⇔ ν ≤
β+θ+

λE[S2]β2θ
2(λ+ρβ)

(β(1−ρ)−λ)θ = ν, then we have the
following lemma.
Lemma 3: In the considered IoT system with energy har-

vesting and λ < µβ
µ+β

, a unique service joining strategy qw

that makes the social welfare the worst, given that the users
adopt an equilibrium strategy, is given as follows.
• For ν ≤ ν, we have

qw =


q0 if 0 < ν < F(0),
argminq{SW (q = 0), SW (q = q0)},

if F(0) ≤ ν ≤ F(1),
0, if F(1) < ν.

(45)

• For ν > ν, we have

qw =


1, if 0 < ν < F(0),
argminq{SW (q = 0), SW (q = 1)},

if F(0) ≤ ν ≤ F(1),
0, if F(1) < ν,

(46)

where

SW (0) =
λRµβ

λ(µ+ β)+ µβ
,

SW (1) = λR−
λ2C
θµβ

 (θ + β)(µ+ β)µ+ β2µ2θE[S2]
2

µβ − (µ+ β)λ

,
SW (q0) =

λR(λ+ ρβ + θ + λE[S2]β2θ
2(λ+ρβ) )(

λ+ ρβ + θ +
λE[S2]β2θ
2(λ+ρβ)

)
+ (λ+ ρβ)(Rθ − 1)

.

Based on the definition of PoA, we have

PoA(λ,µ, ν, θ, β) =
SW (qsoc)
SW (qw)

. (47)

Theorem 8: In the considered IoT system with energy har-
vesting and λ < µβ

µ+β
, the PoA is obtained as follows.

1) For ν < F(0), we have

PoA(λ,µ, ν, θ, β)

=



SW (0)
SW (q0)

, if ν < ν,

SW (0)
SW (1)

, if ν ≤ ν < F(0),

SW (q′)
min{SW (0), SW (1)}

, if F(0) ≤ ν < F(1),

SW (q′)
SW (0)

, if F(1) ≤ ν.

(48)

2) For ν ≥ F(0), we have

PoA(λ,µ, ν, θ, β)

=



SW (0)
SW (q0)

, if ν < F(0),

SW (q′)
min{SW (0), SW (q0)}

, if F(0) ≤ ν < ν,

SW (q′)
min{SW (0), SW (1)}

, if ν ≤ ν < F(1),

SW (q′)
SW (0) , if F(1) ≤ ν.

(49)

Based on the results in Theorem 6 and Lemma 3, we have
the corresponding qsoc and qw in each subcase, respectively.
And the PoA can be derived by substituting them into
SW (qsoc)/SW (qw).

In particular, it is not difficult to verify that for ν → ∞,
we have limν→∞ PoA(λ,µ, ν, θ, β) = SW (1)/SW (0) =
1+ (µ+β)λ

µβ
. It is interesting to find that the PoA is independent

of θ when ν is great enough. Specifically, for β → ∞,
we can obtain the same result as [32, Lemma 3.1], which is
limν→∞ PoA = 1+ ρ. The limit results provide an intuition
that the PoA could be quite large when ν increases. Thus it is
imperative to regulate the joining strategy of users for social
planner so as to maximize the social welfare.

Analogically, note that for λ ≥ µβ
µ+β

, we must have q0 < 1.
Then, it is not necessary to consider ν, which is defined before
Lemma 3.
Remark: For λ ≥ µβ

µ+β
, a unique mixed service joining

strategy qw that makes the social welfare the worst is given by

qw =


q0, if 0 < ν < F(0),
argminq{SW (q = 0), SW (q = q0)},

if F(0) ≤ ν.

(50)

The corresponding PoA is

PoA(λ,µ, ν, θ, β)

=


SW (0)
SW (q0)

, if 0 < ν < F(0),

SW (q′)
min{SW (0), SW (q0)}

, if ν ≥ F(0).
(51)

VIII. PERFORMANCE EVALUATION
In this section, we perform some numerical experiments
to illustrate the effects of the parameters on the pricing
of the IoT device. Specifically, we explore the sensitivity
of the revenue-maximizing as well as the socially-optimal
prices with respect to the given parameters, µ, λ, θ , and β
(Section VIII.A). Furthermore, the sensitivity of equilibrium
joining probability and the results for PoA are illustrated in
Section VIII.B and Section VIII.C, respectively, to verify our
theoretical analysis presented in Section VII.
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FIGURE 5. (a) Revenue-maximizing and socially-optimal prices versus service rate µ for R = 100, θ = β = 2 and
λ = 1 and (b) the prices versus arrival rate λ for R = 100, θ = β = µ = 2.

FIGURE 6. (a) Revenue-maximizing and socially-optimal prices versus energy harvesting rate β for R = 100, λ = 1,
and µ = θ = 2 and (b) the prices versus retrial rate θ for R = 100, λ = µ = β = 2.

A. THE COMPARISON BETWEEN THE REVENUE-
MAXIMIZING AND THE SOCIALLY-OPTIMAL
PRICES OF THE IoT DEVICE
In Fig. 5(a), we observe that P∗ser and P∗soc are not mono-
tone in µ. In particular, for µ ∈ [0.5, 2], both P∗ser and
P∗soc are non-increasing in µ. The reason is that when µ
increases, the IoT device can serve more users. By setting a
lower price, more users are attracted to the service for both
revenue-maximizing and the socially-optimal pricing. For
µ > 2, the users are more inclined to join the waiting orbit,
and thus the IoT device applying the socially-optimal pricing
will charge a higher price to decrease the service joining prob-
ability of the users. This is to avoid performance degradation
which leads to a smaller social welfare. Meanwhile, when µ
is large enough, more users are willing to join the waiting
orbit and retry to access the IoT device. Therefore, the IoT
device applying revenue-maximizing pricing can also charge
the users a higher price tomaximize its revenue. As such, both
P∗ser and P

∗
soc are increasing in µ.

Similarly, in Fig. 5(b), P∗ser and P
∗
soc are not monotone in λ.

For λ > µβ
µ+β

, i.e., λ is larger than one, both P∗ser and P
∗
soc

are increasing in λ. This is consistent with the observation

FIGURE 7. Revenue-maximizing and socially-optimal prices versus Var [S]
for R = 100, λ = µ = θ = β = 2.

in Fig. 5(a), where P∗ser and P∗soc are non-increasing in
µ for λ >

µβ
µ+β

. In this case, the IoT device apply-
ing revenue-maximizing and socially-optimal pricing has an
incentive to set a higher price. On the contrary, for λ ≤ µβ

µ+β
,

both P∗ser and P
∗
soc are non-increasing in λ, and the opposite

result can be found in Fig. 5(a). The IoT device uses a low
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FIGURE 8. The effective joining probability versus P , β, θ and Var [S] for R = 100, and λ = µ = 2.
(a) β = θ = Var[S] = 2. (b) θ = Var[S] = 2, P = 20. (c) β = Var[S] = 2, P = 20. (d) β = θ = 2, P = 20.

price to encourage a higher service joining probability of the
users.

Interestingly, the effect of β on the prices is almost the
same as the effect of µ, as shown in Fig. 6(a). For λ > µβ

µ+β
,

both P∗ser and P∗soc are non-increasing in β. The reason is
that when β is too low, the energy harvesting time is long,
and then the users are reluctant to join the waiting orbit.
Consequently, the IoT device applying revenue-maximizing
and socially-optimal pricing wants to set a lower price to
attract more users. On the contrary, the IoT device will charge
a higher price to maximize its revenue because the users are
more likely to join the waiting orbit. The similar effect of
β and µ is from the fact that the energy harvesting delay and
the service time can be regarded as a service delay in general.
Therefore, when the delay is shorter, the users are likely to
join the orbit and wait for the service from the IoT device.

When the retrial rate θ increases, the waiting time of the
users in the orbit decreases, and it results in a less waiting cost
to the users. The IoT device applying revenue-maximizing
and socially-optimal pricing will benefit from setting a higher
price. As shown in Fig. 6(b), Pser and Psoc are increasing in θ .
The retrial rate θ can be interpreted as the repeating frequency
of the users. Thus, when θ is large, the users retry to access
the IoT device more frequently which results in higher prices
to maximize social welfare as well as the revenue.

Fig. 7 shows that both P∗ser and P∗soc are decreasing
with Var[S]. The reason is that when Var[S] increases,
the mean waiting time of the blocked users increases. There-
fore, fewer users are willing to join the waiting orbit. The IoT
device needs to charge a lower price to attract more users.

In summary, through Figs. 5-7, we can always have
P∗ser ≥ P∗soc. That is, to maximize the IoT device’s rev-
enue, the IoT device with revenue-maximizing pricing will
set a higher price than that of the socially-optimal pric-
ing. This results in a lower service joining probability,
i.e., qser ≤ qsoc because qe is decreasing in P. In other
words, the socially-optimal pricing allows more users to
join the waiting orbit to maximize the social welfare. How-
ever, to meet the revenue-maximizing pricing, the higher
price diminishes the users’ surplus, which results in a lower
service joining probability. Such results agree with similar
results concerning the economic analysis of other queuing
models, e.g., [33].

B. EVALUATION ON EFFECTIVE SERVICE
JOINING PROBABILITY
We next examine the effective service joining probability
of the users. Fig. 8 shows the effects of parameters P, β,
θ and Var[S] on effective service joining probability qe.
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Consistent with our intuition, qe is decreasing with price P
and Var[S]. When P approaches 100, qe drops to 0 sharply.
Meanwhile, we find that qe is linear to Var[S]. The reason is
that the waiting time T (q) is linear to Var[S]. On the other
hand, we also observe that qe is increasing in β and θ . The
reason is that the increase of qe leads to the decrease of the
waiting time of the users when Var[S] is small.

C. EVALUATION ON PRICE OF ANARCHY (PoA)
We investigate the PoA to verify the theoretical findings
presented in Section VII. From Fig. 9, the PoA increases
with the increase of ν, where ν = R/C is the ratio between
the reward and cost of the user. Recall our analytical finding

that when ν is high enough, the PoA approaches 1+ λ(β+µ)
βµ

.

In this case, we also find that the PoA approaches 2 when ν
increases, which is consistent with the finding.

FIGURE 9. PoA versus ν for λ = 1 and µ = θ = β = 2.

IX. CONCLUSION
We have considered an IoT system in which the IoT device is
equipped with energy harvesting capability. The IoT device
charges a service price to the IoT users and the users which
find that the IoT device is unavailable, i.e., when it is serving
the other user or harvesting energy, can probabilistically join
the waiting orbit and retry to access the IoT device later.
We have proposed a joint queuing and game theoretic model
to analyze the service pricing and user service joining strat-
egy.We have considered the scenario that the IoT device is the
leader of the Stakelberg game adjusting the service price to
maximize its revenue being aware that the users will choose
their strategy such that their utility is maximized. We have
also extended the analysis considering the scenario that the
IoT device acts as a social planner adjusting the service price
to maximize a social welfare that is the sum of its revenue
and users’ utility. The extensive analyses have been presented
which reveal many important findings regarding the effects
of system parameters to the strategies of the IoT device and
the users. For the future work, it is meaningful to study
the strategic behavior of users in the IoT device which can
serve multiple users, and the heterogeneous users who have
different preference on the IoT device can be considered.

APPENDIX
A. PROOFS
Proof of Theorem 1: Multiplying equations (7)-(10) by zi

and summing up over all i, we derive the following basic
equations after some manipulations, i.e.,

λ50(z)+ θz
d50(z)
dz

= β52(z), (52)

∂51(z, x)
∂x

= −(λq− λqz+ b(x))51(z, x), (53)

51(z, 0) = λ50(z)+ θ
d50(z)

dz
, (54)

(λq− λqz+ β)52(z) =
∫
∞

0
p1(z, x)b(x)dx. (55)

Solving the differential equation in (53), we have

51(z, x) = 51(z, 0)(1− B(x))e−(λq−λqz)x . (56)

Substituting (56) into (55), we obtain

(λq− λqz+ β)52(z) = 51(z, 0)k(z), (57)

where k(z) =
∫
∞

0 (1 − B(x))b(x)e−(λq−λqz)xdx. Substituting
52(z) into (52), we get

βk(z)
λq− λqz+ β

51(z, 0) = λ50(z)+ θz
d50(z)
dz

. (58)

Eliminating d50(z)
dz in (58) by combining (54), we have(

βk(z)
λq− λqz+ β

− z
)
51(z, 0) = λ50(z)(1− z). (59)

The expressions in (56) and (59) allow us to derive 51(z, x)
as follows:

51(z, x) =
λ50(z)(1− z)

βk(z)
λq−λqz+β − z

(1− B(x))e−(λq−λqz)x . (60)

Denote α(s) =
∫
∞

0 e−sxdB(x) as the Laplace-Stieltjes
transformation of B(x) and αk = (−1)kα(k)(0), we inte-
grate (60) with respect to x. Using the well known formula
(see p.10 of [7]), it gives∫

∞

0
e−sx(1− B(x))dx =

1− α(s)
s

, (61)

we obtain

51(z) =
1− α(λq(1− z))

( βk(z)
λq−λqz+β − z)q

50(z). (62)

Eliminating 51(z, 0) through (54) and (58), we have

5′0(z) =
λ
(
1− βk(z)

λq−λqz+β

)
(

βk(z)
λq−λqz+β − z

)
θ
50(z). (63)

By solving the above differential equation, we have

50(z) = 50(1) exp

(
λ

θ

∫ z

1

1− βk(u)
λq−λqu+β

βk(u)
λq−λqu+β − u

du

)
. (64)
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It is noted that dk(z)
dz |z=1 = λq

∫
∞

0 xdB(x) = ρq. Then,
by letting z → 1, combining (64), (62), and (52) and using
the normalization condition 50(1) + 51(1) + 52(1) = 1,
we obtain (11)-(13) immediately.

Next, to obtain the number of users in the waiting orbit,
we take the derivative of the expression in (64) with respect to
z at the point z = 1. Then, we obtain the value of N0 = 5

′

0(1)
which yields (14). In a similar way, we can obtain N2 and
N1 through (52) and (62), respectively. We also have N =∑2

i=0 Ni which is the total average number of users in the
system. Therefore, the average waiting time can be computed
with the use of the Little’s formula. Notice that the effective
arrival rate of users to the waiting orbit is

λeff = λq(1−50(1)). (65)

By using Little’s law, we obtain the average waiting time
T (q) = N

λeff
as in (17). Since T (q) = 1

θ
+

λ+ρβ
θ (β−λq−ρqβ) +

λ+ρβ+
λE[S2]β2

2
(λ+ρβ)(β−λq−ρqβ) , which is a function of q, the numerators of

the second term and the third term are constant with respect
to q. When the system is stable, we have (β−λq−ρqβ) > 0.
By taking the derivative of T (q) with respect to q, we have

dT (q)
dq
=

(λ+ ρβ)2

θ (β − λq− ρqβ)2
+
λ+ ρβ +

λE[S2]β2

2

(β − λq− ρqβ)2
> 0.

Thus, T (q) is increasing in q. This completes our proof.
Proof of Theorem 2: Since T (q) is strictly increasing for

q ∈ [0, 1] from Theorem 1, the expected utility U (q) =
R − P − CT (q) is strictly decreasing for q. As we have
mentioned before, qe can characterize an equilibrium if and
only if argmin

q̂∈[0,1]
U (q̂; qe) = qe. Notice that when the user who

finds a unavailable server chooses to balk, her utility is 0.
We can derive the equilibrium qe by considering the following
cases.

1) For the case of λ <
µβ
µ+β

, we have the following
subcases.
• When (R − P)/C ∈ (0,T (0)), the expected
utility for users U (q) is negative for every q,
i.e., U (q) < 0 for q ∈ [0, 1]. Consequently,
the best response is not to wait in the orbit,
i.e., q̂ = 0, and the unique Nash equilibrium strat-
egy is qe = 0.

• When (R− P)/C ∈ [T (0),T (1)], we have U (0) >
0 andU (1) < 0, thus there exists a unique solution
qe ∈ (0, 1) of the equation U (qe) = 0 because
U (q) is decreasing in q ∈ [0, 1]. In this case, when
all other users adopt strategy qe, we have q̂U (qe) =
0 for all q̂ ∈ [0, 1], which gives q̂U (qe) ≤ qeU (qe).
That is, qe is the unique Nash equilibrium strategy.

• When (R−P)/C ∈ (T (1),∞), the expected utility
U (1) is positive. Therefore, we have q̂U (1) > 0
for any q̂ ∈ (0, 1], which implies that joining with
probability 1 is the best response for each blocked
user, i.e., we have qe = 1.

2) For the case of λ ≥ µβ
µ+β

, notice that limq→β/(λ+ρβ)
T (q) = ∞, which implies that limq→β/(λ+ρβ) U (q) =
−∞. Since β/(λ + ρβ) < 1, we must have qe < 1.
Recall that U (q) is strictly decreasing in q ∈ [0, β/
(λ+ ρβ)), we have the following subcases.
• When (R − P)/C ∈ (0,T (0)), the expected utility
for users U (q) is negative for every q ∈ (0, β/(λ+
ρβ)), i.e., U (q) < 0 for all q ∈ [0, β/(λ + ρβ)).
Consequently, the best response is not to join the
orbit, and the unique equilibrium is qe = 0.

• When (R−P)/C > (T (0),∞), we have U (0) < 0
and limq→β/(λ+ρβ) U (q) = −∞, thus there exists
unique Nash equilibrium qe ∈ (0, β/(λ+ρβ)) such
that U (qe) = 0 by noticing that U (q) is decreasing
in q ∈ [0, β/(λ+ ρβ)).

Proof of Theorem 3: In 1) (above), it is sufficient to show
that T (q) is decreasing in θ for every q ∈ [0, 1]. Notice that
β > λq+ ρqβ, then we have λ+ρβ

θ2(β−λq−ρqβ)
> 0, which gives

∂T (q)
∂θ
= −

1
θ2
−

λ+ ρβ

θ2(β − λq− ρqβ)
< 0,

which implies that T (q) decreases with θ , and U (q) increases
with θ . AsU (q) is decreasing in q[0, 1], we can conclude that
qe is increasing in θ .

In 2) (above), consider the service joining probability

qe =
[(R− P)θ − C]β − (λ+ ρβ + θ + λE[S2]β2θ

2(λ+ρβ) )C

[(R− P)θ − C](λ+ ρβ)
,

by taking the derivative with respect to β, we have

∂qe
∂β
=
µ2((R− P)θ (β+µ)− C(β−θ + µ+ Vβθµ))

((R− P)θ − C)λ(β + µ)3
>0,

⇔ ((R−P)θ−C(1+V θµ))β>C(µ−θ)−(R−P)θµ.

Since C(µ − θ ) − (R − P)θµ < 0, if (R − P)θ − C(1 +
V θµ) > 0, i.e., Var[S] < V , we have ∂qe/∂β > 0 for β > 0,
and thus qe is increasing in β. If (R−P)θ −C(1+V θµ) < 0
(i.e., Var[S] > V ), we have

∂qe
∂β

> 0⇔ β <
C(µ− θ )− (R− P)θµ
(R− P)θ − C(1+ V θµ)

,

∂qe
∂β

< 0⇔ β >
C(µ− θ )− (R− P)θµ
(R− P)θ − C(1+ V θµ)

.

That is, qe is increasing in β first, and then decreasing
in β.
Proof of Lemma 1: From Theorem 2, when max{0,R −

CT (1)} < P ≤ R−CT (0), the equilibrium joining probability
is given as follows:

qe =
β

λ+ ρβ
−

(λ+ ρβ + θ + λE[S2]β2θ
2(λ+ρβ) )C

[(R− P)θ − C](λ+ ρβ)
,

which is decreasing and concave in P from

dqe(P)
dP

= −

θ (λ+ ρβ + θ + λE[S2]β2θ
2(λ+ρβ) )C

[(R− P)θ − C]2(λ+ ρβ)
< 0,
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d2qe(P)
dP2

= −

2θ2(λ+ ρβ + θ + λE[S2]β2θ
2(λ+ρβ) )C

[(R− P)θ − C]3(λ+ ρβ)
< 0.

Taking the first and the second derivatives of λe(P) in a similar
way, we can obtain

dλe(P)
dP

=
λ2µβ(µ+ β)

(λ(1− q)(µ+ β)+ µβ)2
dqe(P)
dP

< 0,

d2λe(P)
dP2

=
λ2µβ(µ+ β)

(λ(1− q)(µ+ β)+ µβ)2
d2qe(P)
dP2

+
2λ3µβ(µ+ β)2

(λ(1− q)(µ+ β)+ µβ)3
dqe(P)
dP

< 0.

Therefore, the second-order condition of the revenue function
for the IoT device satisfies

d2f (P)
dP2

= P
d2λe(P)
dP2

+ 2
dλe(P)
dP

< 0.

This completes the proof.
Proof of Theorem 4: Notice that the revenue of the IoT

device can be derived immediately from Theorem 2 and (27).
For the optimal price P∗, we have the three corresponding
cases.

1) If R < CT (0), i.e., for a blocked user that decides to
enter the waiting orbit without other users in the orbit
if the expected waiting time is more than the reward
that the blocked user gains from the service, then the
blocked user never joins the orbit even if there is no
price imposed. Thus, the best response is qe(P) = 0
for any price P. The IoT device’s revenue is f (P) =

λµβP
λ(µ+β)+µβ . Therefore, the price can be set to R.

2) If R−CT (1) < 0, the IoT device’s revenue is given by

f (P) =



λµβP
λ(µ+ β)+ µβ

,

if R− CT (0) < P ≤ R,
λµβP

λ[1− qe(P)](µ+ β)+ µβ
,

if 0 < P ≤ R− CT (0).

Since f (P) is concave for P ∈ (0,R− CT (0)] from
Lemma 1. Thus, there exists at most one stationary
point that satisfies the first-order condition in (30).
However, the extreme point may not be in the interval
(0,R− CT (0)]. If P′ ∈ (0,R− CT (0)], it is the opti-
mal point. Otherwise, the optimal point is R − CT (0)
because the other end point P = 0 yields zero revenue
to the IoT device. For P ∈ (R− CT (0),R], we have
U (0) < 0, and thus qe(P) = 0. Similar to the case in 1)
above, the price can be set to R.

3) If R−CT (1) ≥ 0, the IoT device’s revenue is given by

f (P) =



λµβP
λ(µ+ β)+ µβ

,

if R− CT (0) < P ≤ R,
λµβP

λ[1− qe(P)](µ+ β)+ µβ
,

if R− CT (1) < P ≤ R− CT (0),
λP, if 0 < P ≤ R− CT (0),

for P ∈ (0,R− CT (1)], we have qe(P) = 1.
Then, the optimal price is R − CT (1). For P ∈

(R− CT (1),R− CT (0)] and P ∈ (R− CT (0),R],
the optimal price P∗ser can be derived in a similar way
to the case in 2) above, so we omit it here.

Proof of Theorem 6: Differentiating SW (q) with respect
to q, we have

dSW (q)
dq

=
λ2(µ+ β)βµC

(βµ+ (1− q)λ(µ+ β))2
(ν − F(q)), (66)

where F(q) is given in (67), as shown at the top of the next
page. To investigate the monotonicity of SW (q), we need to
examine the monotonicity of ν−F(q) by taking the derivative
of F(q). Accordingly, we can derive (68), as shown at the top
of the next page. It is straightforward to find that dF(q)

dq >

0, and thus F(q) is monotonically increasing in q. We thus
consider the following cases.
• If ν > F(1), then dSW (q)

dq > 0 for every q, and the optimal
strategy is qsoc = 1.

• If ν < F(0), then dSW (q)
dq < 0 for every q, and the optimal

strategy is qsoc = 0.
Otherwise, there is a unique q′ such that ν = F(q′) because of
the monotonicity of F(q). It means that SW (q) increases for
q ∈ [0, q′] and decreases for q ∈

(
q′, 1

]
. Therefore, SW (q′)

is the optimal social welfare. This completes our proof.
Proof of Theorem 7: For ν < F(0), the optimal joining

probability is q∗ = 0. By letting P = C(F(0)−T (0)), we can
obtain the inequality R−P

C < T (0), which is the condition
that the equilibrium joining probability is q∗ = 0. Therefore,
P = C(F(0)−T (0)) is the optimal price for the social planner
corresponding to the socially-optimal joining probability. For
F(1) < ν, we can obtain the optimal price similarly.
For F(0) ≤ ν ≤ F(1), the socially-optimal joining

probability is q′ ∈ (0, 1). The corresponding optimal price
can be obtained from solving R− P− CT (q′) = 0 uniquely,
where T (q) is given in (12). Thus, we can obtain P∗ser
immediately.
Proof of Lemma 3: From (66) and (68), we find that the

monotonicity of SW (q) is fully determined by F(q), which is
increasing in q. We consider three subcases as follows.
• If ν > F(1), then dSW (q)

dq > 0 for every q, and the worst
service joining strategy can be obtained at qw = 0.

• If ν < F(0), then dSW (q)
dq < 0 for every q, and the worst

service joining strategy can be obtained at the largest
q. Considering the equilibrium strategy of the users,
we have R− CT (qe) ≥ 0. Thus, the equilibrium joining
probability is at most q0. If q0 > 1, i.e., for ν > ν, then
the corresponding strategy is qw = 1. If 0 ≤ q0 ≤ 1,
i.e., for ν ≤ ν, the worst joining probability is qw = q0.

• If F(0) ≤ ν ≤ F(1), SW (q) is increasing in q ∈[
0, q′

)
and is decreasing in q ∈

[
q′, 1

]
. Then the worst

joining strategy can be obtained at the end points. Thus,
if q0 > 1, i.e., for ν > ν, the minimal social welfare
is min{SW (0), SW (1)}. Otherwise, the minimal social
welfare is min{SW (0), SW (q0)}.

VOLUME 7, 2019 34669



Z. Wang et al.: Strategic Access and Pricing in IoT Service With Energy Harvesting

F(q) =
qλ(βµ+ (1− q)λ(β + µ))

(
β2θE[S2]µ

2 + (β + µ)(θ + λ+ βρ)
)

βθ (βµ− qλ(β + µ))2

+

(βµ+ λ(β + µ))
(
(β + µ)(βµ− qλ(β + µ))+ µ

(
β2θE[S2]µ

2 + (β + µ)(θ + λ+ βρ)
))

θβµ(β + µ)(βµ− qλ(β + µ))
. (67)

dF(q)
dq
=
λµ(λµ+ β(λ+ µ)− qλ(β + µ))

(
2(θ + λ)µ+ β2(E[S2]θµ+ 2ρ)+ 2β(θ + λ+ µρ)

)
θ (βµ− qλ(β + µ))3

. (68)

B. EQUILIBRIUM RETRIAL RATE
In this part, we consider the case that the retrial rate is endoge-
nously determined by users themselves rather than exoge-
nously given by communication system. Therefore, the trial
cost for users should be considered. We denote by Cd and Ct
the delay cost per time unit and the trial cost per revisit,
respectively. Recall that when all users adopt joining strategy
q and retrial rate θ , respectively, the expected waiting time for
blocked users is given by

T (q) =
1
θ
+

λ+ ρβ

θ (β − λq− ρqβ)
+

λ+ ρβ+
λE[S2]β2

2

(λ+ ρβ)(β − λq− ρqβ)
.

Then the expected number of trials is θ ·T (q) by usingWald’s
identity (see [1]). And the expected total cost for the blocked
users who decide to join is

8(q, θ)

= CdT (q)+ CtθT (q)

=

Cd
θ
+

Cd (λ+ ρβ)
θ (β − λq− ρqβ)

+
Cd (λ+ ρβ +

λE[S2]β2

2 )

(λ+ ρβ)(β − λq− ρqβ)


+

Ct + Ct (λ+ ρβ)
β − λq− ρqβ

+
Ctθ (λ+ ρβ +

λE[S2]β2

2 )

(λ+ ρβ)(β − λq− ρqβ)


=

Cd
θ
+

Cd (λ+ ρβ)
θ (β − λq− ρqβ)

+
Ctθ(λ+ ρβ +

λE[S2]β2

2 )

(λ+ ρβ)(β − λq− ρqβ)

+
Cd (λ+ ρβ +

λE[S2]β2

2 )

(λ+ ρβ)(β − λq− ρqβ)
+ Ct +

Ct (λ+ ρβ)
β − λq− ρqβ

≥
2
√
CdCt

β − λq− ρqβ

·

√
[β + (λ+ ρβ)(1− q)](λ+ ρβ + λE[S2]β2/2)

λ+ ρβ

+
Cd (λ+ ρβ + λE[S2]β2/2)
(λ+ ρβ)(β − λq− ρqβ)

+ Ct +
Ct (λ+ ρβ)
β − λq− ρqβ

where the minimization can be attained at θ̂ (q) =√
[β+(λ+ρβ)(1−q)](λ+ρβ)
λ+ρβ+λE[S2]β2/2

, which decreases in q ∈ [0, 1].

By defining 9(q) = 8(q, θ̂ (q)), we have the following
lemma.
Lemma 4: 9(q) is increasing in 0 ≤ q < min{1, β

λ+ρβ
}.

Proof: By plugging θ̂ (q) =
√

[β+(λ+ρβ)(1−q)](λ+ρβ)
λ+ρβ+λE[S2]β2/2

into 8(q, θ), we have which can be rewritten as For any
0 ≤ q < min{1, β

λ+ρβ
}, we have β − λq − ρqβ > 0,

which decreases in q. And it is not difficult to verify
that

[
1

β−λq−ρqβ +
β+λ+ρβ

(β−λq−ρqβ)2

]
and Cd (λ+ρβ+λE[S2]β2/2)

(λ+ρβ)(β−λq−ρqβ) +

Ct (λ+ρβ)
β−λq−ρqβ are both increasing in q, which implies that 9(q)
is increasing in q, this completes the proof.

Lemma 4 shows that the total cost (including trial cost)
is increasing in the joining probability, which is intuitive
because more negative externalities are resulted when q
increases even though the optimal retrial rate is adopted. Next
theorem gives the joint equilibrium strategy of blocked users.
Theorem 9: In the IoT system with energy harvesting,

a unique Nash equilibrium strategy (qe, θe) of the users
observing the IoT device unavailable upon the arrival,
i.e., blocked users, to join the waiting orbit exists. The joining
probability qe is given as follows.

For λ < µβ
µ+β

, we have

qe =


0, if 0 < R− P < 9(0),
q̃, if 9(0) ≤ R− P ≤ 9(1),
1, if R− P > 9(1),

(69)

and for λ ≥ µβ
µ+β

, we have

qe =

{
0, if 0 < R− P < 9(0),
q̃, if 9(0) ≤ R− P,

(70)

where q̃ uniquely solves 9(q) = R − P. The cor-
responding equilibrium retrial rate is given by θe =√

[β+(λ+ρβ)(1−qe)](λ+ρβ)
λ+ρβ+λE[S2]β2/2

.

Proof: Since 9(q) is strictly increasing in from
Lemma 4, the expected utility U (q) = R − P − 9(q) is
strictly decreasing for q. As we have mentioned before, qe
can characterize an equilibrium if and only if argmin

q̂∈[0,1]
U (q̂;

qe) = qe. Notice that when the user who finds a unavailable
server chooses to balk, her utility is 0. We can derive the
equilibrium qe by considering the following cases.
1) For the case of λ <

µβ
µ+β

, we have the following
subcases.
• When R − P ∈ (0, 9(0)), the expected utility for
users U (q) is negative for every q, i.e., U (q) < 0
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9(q) = 2
√
CdCt

√
[β + (λ+ ρβ)(1− q)](λ+ ρβ + λE[S2]β2/2)

(λ+ ρβ)(β − λq− ρqβ)2
+
Cd (λ+ ρβ + λE[S2]β2/2)
(λ+ ρβ)(β − λq− ρqβ)

+ Ct +
Ct (λ+ ρβ)
β − λq− ρqβ

,

9(q) = 2
√
CdCt

√√√√[
1

β−λq−ρqβ+
β+λ+ρβ

(β−λq−ρqβ)2

]
(λ+ ρβ + λE[S2]β2/2)

λ+ ρβ
+
Cd (λ+ ρβ + λE[S2]β2/2)
(λ+ ρβ)(β − λq− ρqβ)

+Ct+
Ct (λ+ ρβ)
β − λq− ρqβ

,

for q ∈ [0, 1]. Consequently, the best response is
not to wait in the orbit, i.e., q̂ = 0, and the unique
Nash equilibrium strategy is qe = 0.

• When R − P ∈ [9(0), 9(1)], we have U (0) > 0
and U (1) < 0, thus there exists a unique solution
qe ∈ (0, 1) of the equation U (qe) = 0 because
U (q) is decreasing in q ∈ [0, 1]. In this case, when
all other users adopt strategy qe, we have q̂U (qe) =
0 for all q̂ ∈ [0, 1], which gives q̂U (qe) ≤ qeU (qe).
That is, qe is the unique Nash equilibrium strategy.

• When R − P ∈ (9(1),∞), the expected utility
U (1) is positive. Therefore, we have q̂U (1) > 0
for any q̂ ∈ (0, 1], which implies that joining with
probability 1 is the best response for each blocked
user, i.e., we have qe = 1.

2) For the case of λ ≥ µβ
µ+β

, notice that limq→β/(λ+ρβ)

9(q) = ∞, which implies that limq→β/(λ+ρβ) U (q) =
−∞. Since β/(λ + ρβ) < 1, we must have qe < 1.
Recall thatU (q) is strictly decreasing in q ∈ [0, β/(λ+
ρβ)), we have the following subcases.
• When R − P ∈ (0, 9(0)), the expected utility for
users U (q) is negative for every q ∈ (0, β/(λ +
ρβ)), i.e., U (q) < 0 for all q ∈ [0, β/(λ + ρβ)).
Consequently, the best response is not to join the
orbit, and the unique equilibrium is qe = 0.

• When R − P ∈ (9(0),∞), we have U (0) < 0
and limq→β/(λ+ρβ) U (q) = −∞, thus there exists
unique Nash equilibrium qe ∈ (0, β/(λ+ρβ)) such
that U (qe) = 0 by noticing that U (q) is decreasing
in q ∈ [0, β/(λ+ ρβ)).

C. NON-ZERO SETUP TIME
In this subsection, we consider a non-zero setup time to
become state 0 (i.e., idle). That is, when the energy harvesting
is completed, the IoT device cannot be active until the setup
is executed successfully. We assume the setup time is inde-
pendent and exponentially distributed with rate γ , and define
this setup state as I (t) = 3, then we have four system states
as follows:

I (t) =


0, if IoT device is on idle;
1, if IoT device is on busy;
2, if IoT device is on energy harvesting;
3, if IoT device is on setup.

Here we just consider the exponential service time, then the
stochastic process of the IoT service {(I (t),N (t)), t ≥ 0}

becomes to a continuous timeMarkov chain. And the balance
equations are expressed as follows:

(λ+ iθ )p0,i = γ p3,i, (71)

(γ + λq)p3,i = βp2,i + λqp3,i−1, (72)

(β + λq)p2,i = λqp2,i−1 + µp1,i, (73)

(µ+ λq)p1,i = λqp1,i−1 + (i+ 1)θp0,i+1 + λp0,i, (74)

where pi,−1 = 0, i ≥ 0. Also, we define the following
generating functions:

5i(z) =
∞∑
j=0

pi,jzj

for i = 0, 1, 2, 3. By solving these equations, we can have the
following theorem.
Theorem 10: For the IoT system with energy harvesting in

the steady state, the users enter the waiting orbit with prob-
ability q when they find the IoT device unavailable upon the
arrival. We have the following results under βγ > ρq(γµ+
βγ + µβ).

1) The probabilities that the IoT device is idle, busy,
or harvesting energy are, respectively, given by

50(1) =
βγ − ρq(γµ+ βγ + µβ)

βγ + ρ(1− q)(γµ+ βγ + µβ)
,

51(1) =
ρβγ

βγ + ρ(1− q)(γµ+ βγ + µβ)
,

52(1) =
λγ

βγ + ρ(1− q)(γµ+ βγ + µβ)
,

53(1) =
λβ

βγ + ρ(1− q)(γµ+ βγ + µβ)
.

2) The mean numbers of users in the waiting orbit is given
in (75), as shown at the top of the next page.

3) The expected waiting time for the repeating users is
given in (76), as shown at the top of the next page,
which is increasing in q.
Proof: Multiplying equations (71)-(74) by zi and sum-

ming up over all i, we derive the following basic equations
after some manipulations, i.e.,

λ50(z)+ zθ5′0(z) = γ53(z), (77)

(γ + λq(1− z))53(z) = β52(z), (78)

(β + λq(1− z))52(z) = µ51(z), (79)

(µ+ λq(1− z))51(z) = θ5′0(z)+ λ50. (80)
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N =
ρ2
(
q2(γµ+ β(γ + µ))

(
γ 2(θ + λ)µ2

+ βγ (θ + 2λ)µ(γ + µ)+ β2
(
γ 2(θ + λ)+ γ (θ + 2λ)µ+ (θ + λ)µ2

))
ρ
)

βγ θ(βγ − q(γµ+ β(γ + µ))ρ)((1− q)γ λ+ β((1− q)λ+ γ (1+ ρ − qρ)))

+
qβγ (γµ+ β(γ + µ))(µ(γ (2θ + λ)+ θµ)+ β((2θ + λ)µ+ γ (θ + λ+ µ)))ρ3 − β2γ 2θµ(β + γ + µ)ρ2

βγ θ(βγ − q(γµ+ β(γ + µ))ρ)((1− q)γ λ+ β((1− q)λ+ γ (1+ ρ − qρ)))
. (75)

T (q) =
q
(
γ 2(θ + λ)µ2

+ βγ (θ + 2λ)µ(γ + µ)+ β2
(
γ 2(θ + λ)+ γ (θ + 2λ)µ+ (θ + λ)µ2

))
ρ

βγ θ(βγµ− qλ(γµ+ β(γ + µ)))

+
(µ(γ (2θ + λ)+ θµ)+ β((2θ + λ)µ+ γ (θ + λ+ µ)))ρ

θ (βγµ− qλ(γµ+ β(γ + µ)))
−

βγµ(β + γ + µ)
q(γµ+ β(γ + µ))(βγµ− qλ(γµ+ β(γ + µ)))

.

(76)

Combining (77)-(80), we have

5′0(z)

=
λ[γµβ − (γ+λq(1− z))(β+λq(1− z))(µ+λq(1− z))]
[(γ+λq(1− z))(β+λq(1− z))(µ+λq(1− z))z−γµβ]θ
·50(z). (81)

By letting z→ 1, we have

5′0(1) =
λ2q(γµ+ βγ + µβ)

θ[βγµ− λq(γµ+ βγ + µβ)]
·50(1)

through L’Hospital rule. Plugging5′0(1) into (80) and letting
z = 1, we have

51(1) =
λβγ

βγµ− λq(γµ+ βγ + µβ)
·50(1). (82)

By substituting (82) into (79) and letting z = 1, it gives

52(1) =
λµγ

βγµ− λq(γµ+ βγ + µβ)
·50(1). (83)

Similarly, by plugging (84) into (78), we can get

53(1) =
λµβ

βγµ− λq(γµ+ βγ + µβ)
·50(1). (84)

Based on the normalization condition that
3∑
i=0
5i(1) = 1,

we can derive5i(1) for i = 0, 1, 2, 3. By taking the deviation
of (80) and (81) with respect to z, and letting z = 1, we have

(λ+ θ )5′0(1)+ θ5
′′

0(1) = γ5
′

3(1), (85)

5′′0(1)

=
λ3q2

[
(λ+ θ )(γµ+ βγ + βµ)2 − θβγµ(β + γ + µ)

]
[βγµ− qλ(γµ+ βγ + βµ)]2θ2

×50(1). (86)

Taking the deviation of the both sides for (78), (79), and
letting z = 1, we can get

γ5′3(1)− λ53(1) = β5′2(1), (87)

β5′2(1)− λ52(1) = µ5′1(1). (88)

By solving the equations (85)-(88), we can get

5′1(1) =
θ5′′0(1)− λ(52(1)+53(1))+ (θ + λ)5′0(1)

µ

5′2(1) =
θ5′′0(1)− λ53(1)+ (θ + λ)5′0(1)

β

5′3(1) =
θ5′′0(1)+ (θ + λ)5′0(1)

γ

By plugging 5′0(1) and 5′′0(1) into the equations above,
we can derive 5′1(1), 5

′

2(1) and 5
′

3(1), respectively. Then
the total mean number of users in orbit can be obtained as

N =
3∑
i=0
5′i(1). And the mean delay for blocked users is given

by T (q) = N/(λ[1 −50(1)]) by using Little’s formula. It is
noted that

d2 T (q)
dq2

= −
2βγµ(β + γ + µ)(βγµ− qλ[γµ+ β(γ + µ)])

q3(γµ+ β(γ + µ))
< 0.

Thus we have that dT (q)dq is decreasing in q. Because we have

that q < βγµ
λ(γµ+βγ+βµ) , by plugging q = q = βγµ

λ(γµ+βγ+βµ)

into dT (q)
dq , it is not difficult to verify that dT (q)

dq |q=q > 0.
Therefore, we can get that T (q) is increasing in q, which
completes this proof.
Remark:Theorem 10 derives the system performancemea-

sures of IoT system when the setup time is considered. In this
case, we can observe that all the steady-state probability of
idle 50(1) is smaller than that in Theorem 1 in the presence
of setup time. That is, there is a larger probability for users
to be blocked upon arrival. In particular, when γ → ∞,
the setup time approaches to 0, and the 53(1) approaches
to 0, too. Also, it is not difficult to verify that the steady-state
probabilities 50(1), 51(1) and 52(1) degenerate to that in
Theorem 1. Notice that the mean delay of blocked users is
increasing in q, which implies that the expected utility for
blocked users who decide to join is decreasing in q. Thus a
unique equilibrium joining strategy can be characterized by
using the similar argument in Theorem 2.
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