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ABSTRACT In this paper, we propose an error-tracking iterative learning control scheme to tackle the
position tracking problem for robot manipulators with random initial errors and iteration-varying reference
trajectories. Different from general usual ones, the control strategy in our work is to drive system errors
perfectly track the desired error trajectories over the whole time interval as the iteration number increases,
by which, the position trajectory and velocity trajectory can respectively track their reference trajectories
during the predefined part operation interval. For fulfilling the control design, a new construction method of
desired error trajectories is presented to remove the perfect initial resetting condition, which must be satisfied
in most traditional iterative learning control algorithms. The uncertainties and disturbances in the robotic
system dynamics are compensated by the robust approach and iterative learning approach, combinedly.

INDEX TERMS Iterative learning control, initial problem, robot manipulators.

I. INTRODUCTION
Iterative learning control (ILC) is suitable for designing
control laws for repetitive control process over a finite
time interval [1]–[8]. It pursues high-precision control per-
formance through updating control input from cycle to
cycle. In ILC designs, the dynamics of the system need
not be known a priori. Nowadays, robot manipulators have
been widely used to undertake repetitive tasks in assem-
bly lines, rehabilitation processes, etc. In these situations,
ILC is a proper technique to design control systems for
obtaining good trajectory-tracking performances. Actually,
numerous ILC algorithms for robotic applications have been
reported right from the beginning of ILC research, i.e., the
early 1980s [1], [9].

Adaptive ILC has attracted a lot of attentions since the
beginning of this century [10]. Many achievements of adap-
tive ILC for robotic systems have witnessed the years of
explorations and efforts. Most of these achievements focus on
the position trajectory tracking of robotic systems [11]–[14].

The associate editor coordinating the review of this manuscript and
approving it for publication was Xiaoli Luan.

In [11], three simple ILC schemes were proposed to deal with
the trajectory tracking problem for rigid robot manipulators.
In [12], a combined time-domain and iteration-domain learn-
ing strategy was developed for uncertain robot manipulators.
In [13], an adaptive boundary ILC scheme was designed for
a two−link rigid−flexible manipulator, aiming at achieving
good trajectory tracking performance and eliminating defor-
mation of flexible beam simultaneously. In [14], the iterative
learning impedance control for rehabilitation robots was dis-
cussed. In these above-mentioned algorithms on ILC applica-
tion to robot systems, the initial errors of robotic systemswere
assumed to be zero at each iteration cycle. Due to the limita-
tion of practical resetting mechanism, it is yet difficult for
actual robotic systems to implement such a zero-error initial
resetting at the beginning of each iteration. Through contin-
uous efforts, people have obtained a few promising results to
solve the initial problem of ILC for normal nonlinear systems
[15]–[20]. However, as far as the adaptive ILC design for
robotic systems with random initial errors is concerned, the
literature results have been still very few up to now. In the
Remark 3 of [12], Chien et al. suggested that the time-varying
boundary layer approach and the initial rectifying action may
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be used to deal with the nonzero initial errors in ILC systems,
but they did not present specific details. As reported in [21],
initial rectifying action was used in the ILC design of upper
limb rehabilitation robots. Besides, for the situations that
reference trajectory is spatially closed, repetitive learning
control is regarded as a remedy to remove zero-error initial
resetting [22], [23], by adopting the final state of the previous
iteration as the initial state of the current iteration. On the
whole, in the adaptive ILC law design of robot manipulators,
how to deal with random initial position/velocity errors is still
an issue to be further studied.

On the other hand, in traditional ILC alogrithms, usu-
ally, the reference trajectory is iteration-invariant. However,
in practical applications, the reference trajectories maybe
change due to the variation of control objectives. Hence, it is
of significance to investigate ILC algorithms suitable to the
cases that reference trajectories varies in the iteration domain.
The ILC research on tracking iteration-varying trajectories
has arisen a lot of interests in the past two decades. In [24],
Saab et al. investigated contraction-mapping ILC for systems
with slowly iteration-varying reference trajectories. In [25],
Xu et al. considered the adaptive ILC law design for cases that
the target trajectories at the any two consecutive iterations are
completely different. In [26], a novel adaptive iterative learn-
ing control approach is proposed to handle the non-uniform
trajectory tracking problem for hybrid parametric nonlinear
systems, with backstepping mechanism used to deduce the
control law and learning law. Later, researchers have explored
the ILC design for systems with iteration-varying trajectories
and random initial condition [27]–[29]. As far as robotic ILC
systems are concerned, in some cases, owing to the varia-
tion of control objectives or task specifications, the target
trajectories will have to vary accordingly. Then, for robotic
adaptive ILC algorithms designed only for iteration-invariant
trajectory tracking, once the desired trajectory varies, even
if the variation is very small, the robotic ILC systems will
have to restart the learning process from the very beginning,
and the previously learned information can not be used any
more. In such cases, the robotic ILC schemes of tracking
iteration-varying trajectories have higher efficiency. Since
the robotic systems can learn consecutively from different
tracking control tasks, therefore, there is no need to restart the
learning process from the very beginning even if the target
trajectory varies. In addition, for the robotic ILC systems
which need simultaneously deal with distinct task trajectories
in different cycles, one has no choice but to design proper ILC
laws to achieve iteration-varying trajectory tracking. Up to
now, few results consider the position-tracking issue of robot
ILC systems with iteration-varying trajectories and random
initial condition. Without perfect initial resetting, how to
develop an effective ILC algorithm to meet the requirement
of tracking iteration-varying trajectories, as well as to deal
with the uncertainties in robot systems, is worthwhile to be
researched.

This paper focuses on the trajectory-tracking problem
for uncertain robot manipulators with random initial errors

and iteration-varying trajectories. Compared to the exist-
ing results, the main contributions of this work lie in the
following:

(1) By letting the system errors follow the constructed
auxiliary signals over the whole interval, the position and
velocity states of robotic systems can precisely track the tar-
get trajectories during the predefined part interval. The con-
trol strategy is different from traditional ILC ones. And the
auxiliary signals, named as desired error trajectories in this
paper, are constructed with the given construction method.

(2) Both random initial errors and iteration-varying refer-
ence trajectories are considered in the adaptive ILC design of
uncertain robot systems.

(3) Adaptive learning technique and robust technique are
applied together for compensating the parametric uncertain-
ties and disturbances. Full saturation learning method is pre-
sented to estimate the unknown parameters and the upper
bound of disturbances in uncertain robotic systems.

The remainder of this paper is organized as follows.
In Section 2, an n degree-of-freedom manipulator is pre-
sented. In Section 3, the construction method of auxiliary
signals is presented, and the robust learning controller is
designed by using Lyapunov approach. In Section 4, through
rigorous analysis, the uniform convergence of joint position
and velocity tracking errors are shown. Also, the simulation
results are illustrated in Section 5, followed by Section 6
which concludes this work.

II. PROBLEM FORMULATION
Let us consider an n degrees-of-freedom rigid manipulator
with the dynamic equations is expressed by

M (qk (t))q̈k (t)+ C(qk (t), q̇k (t))q̇k (t)+ G(qk (t))

= τk (t)+ dk (t), (1)

where k = 0, 1, 2, · · · denotes the iteration index, qk =
[q1,k , q2,k , · · · , qn,k ]T ∈ Rn is the vector of joint position at
the kth iteration, M (qk (t)) ∈ Rn×n is the symmetric positive
definite manipulator inertia matrix, C(qk (t), q̇k (t))q̇k (t) ∈ Rn

is the vector of centripetal andCoriolis torques,G(qk (t)) ∈ Rn

is the vector of gravitational torques, τk (t) ∈ Rn is the control
input vector containing the torques and forces to be applied
at each joint, and dk (t) = [d1,k , d2,k , · · · , dn,k ]T ∈ Rn

is the vector containing the unmodeled dynamics and other
unknown external disturbances.

This paper studies the iterative learning control for the
robot manipulators under the condition that qk (0) 6= qd (0)
and q̇k (0) 6= q̇d (0). The control objective is to design a proper
iterative learning control law τk (t), t ∈ [0,T ] which guaran-
tees the boundedness of qk (t), q̇k (t), q̈k (t),∀t ∈ [0,T ], and
make qk (t) follow the desired reference trajectory qd (t) =
[q1,d (t), q2,d (t), · · · , qn,d (t)]T for all t ∈ [th,T ] when k
tends to infinity, with th a predetermined time point during
(0,T ).
The properties of the dynamic model (1) are given in the

following:
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Property 1: The matrix Ṁ (qk (t)) − 2C(qk (t), q̇k (t)) is
skew symmetric, whichmeans xT (Ṁ (qk )(t)−2C(qk (t), q̇k (t))
x = 0,∀x ∈ Rn.
Property 2: There exists a vector θ ∈ Rm, with com-

ponents depending on manipulator parameters (masses,
moments of inertia, etc.), such that

M (qk (t))v̇+ C(qk (t), q̇k (t))v+ G(qk (t))

= W (qk , q̇k , v, v̇)θ, (2)

where W (qk , q̇k , v, v̇) ∈ Rn×m is the regression matrix, and
v ∈ Rn is a vector of smooth functions [30], [31].

In this paper, M (qk )(t), C(qk (t), q̇k (t)) and G(qk (t)) are
respectively abbreviated as Mk , Ck and Gk for brevity, and
arguments are sometimes omitted while no confusion occurs.

III. ADAPTIVE ILC DESIGN
A. CONSTRUCTION OF DESIRED ERROR TRAJECTORY
Let us define q̃k = [q̃1,k , q̃2,k , · · · , q̃n,k ]T = qk −
qd , dq̃k = [dq̃1,k , dq̃2,k , · · · , dq̃n,k ]T = q̇k − q̇d .
We call q̃∗k = [q̃∗1,k , q̃

∗

2,k , · · · , q̃
∗
n,k ]

T and dq̃∗k =

[dq̃∗1,k , dq̃
∗

2,k , · · · , dq̃
∗
n,k ]

T the desired error trajectory of q̃k
and dq̃k in this paper, which are constructed as following:
For i = 1, 2, · · · , n, while th ≤ t ≤ T , let

q̃∗i,k (t) = 0, (3)

dq̃∗i,k (t) = 0; (4)

while 0 ≤ t < th, let

q̃∗i,k (t) = [q̃i,k (0)+ dq̃i,k (0)
∫ t

0
χ (τ )dτ ]χ (t) (5)

dq̃∗i,k (t) = ˙̃q
∗
i,k (t) = q̃i,k (0)χ̇ (t)+ dq̃i,k (0)χ2(t)

+ dq̃i,k (0)
∫ t

0
χ (τ )dτ χ̇ (t) (6)

where

χ (t) =
10(th − t)3

t3h
−

15(th − t)4

t4h
+

6(th − t)5

t5h
.

From the above construction, we can see that if q̃i,k (t) may
precisely track q̃∗i,k (t) for all t ∈ [th,T ], then we obtain the
convergence from qi,k (t) to qi,d (t) during t ∈ [th,T ].

According to the above construction, we can see the fol-
lowing characteristics of desired error trajectories:

(a). q̃∗k (0) = q̃k (0), dq̃∗k (0) = dq̃k (0), k = 0, 1, 2, · · ·
(b). q̃∗k (t) = 0, dq̃∗k (t) = 0, t ∈ [th,T ]
(c). ¨̃q∗k (t) is continuous for t ∈ (0,T ).

Among them, the characteristic (a) is utilized to relax the
zero-initial-error resetting condition. For more details, see
Remark 2. According to the characteristic (b), if we can make
q̃∗k (t) follow q̃k (t), and dq̃k (t) follow dq̃∗k (t) simultaneously
for t ∈ [th,T ], then qk (t) = qd (t), q̇k (t) = q̇d (t),∀t ∈ [th,T ]
would be obtained. In addition, the characteristic (c) is helpful
to guarantee the continuity of the control input to be designed.

In the next section, we will design an adaptive iterative
learning controller which make [q̃i,k (t), dq̃i,k (t)]T perfectly
track [q̃∗i,k (t), dq̃

∗
i,k (t)]

T for all t ∈ [0,T ] as the iteration
number k increases.

B. CONTROL DESIGN
To facilitate the subsequent control design and stability anal-
ysis, we define

zk = [z1,k , z2,k , · · · , zn,k ]T = q̃k − q̃∗k ,

dzk = [dz1,k , dz2,k , · · · , dzn,k ]T = dq̃k − dq̃∗k ,

sk = [s1,k , s2,k , · · · , sn,k ]T = dzk + αzk (7)

and

sφk = sk − φsat1(
sk
φ
), (8)

where both α and φ are positive constants. In this paper,
the saturation function sat·(·) is defined as, for a scalar â,

satā(â) , sgn(â) min(|â|, ā), (9)

where ā is the upper bound on the magnitude of â, and sgn(·)
is the signum function. For a m−dimensional vector â,

satā(â) = [satā(â1), satā(â2), · · · , satā(âm)]T (10)

According to the above definition,

sat1(
sk
φ
) , [sat1(

s1,k
φ

), sat1(
s2,k
φ

), · · · , sat1(
sn,k
φ

)]T .

From (7), we have sk = q̇k−q̇d− ˙̃q∗k+αzk . Further, we can
get

ṡk = q̈k − q̈zk (11)

with qzk , qd + q̃∗k − α
∫ t
0 zkdτ .

To obtain the control law, we define a nonnegative function
Vk (t) as follows:

Vk =
1
2
sTφkMksφk (12)

After taking the time derivative of Vk , we have

V̇k = sTφk (Mk q̈k −Mk q̈zk )+
1
2
sTφkṀksφk

= sTφk (τk − Ck q̇k − Gk −Mk q̈zk )+
1
2
sTφkṀksφk + sTφkdk

= sTφk [τk − Ck (sφk + q̇zk )− Gk −Mk q̈zk ]

+
1
2
sTφkṀksφk + sTφkdk (13)

According to Property I and II, we can deduce that

−sTφkCksφk +
1
2
sTφkṀksφk = 0 (14)

and

Mk q̈zk + Ck q̇zk + Gk = W (qk , q̇k , q̇zk , q̈zk )θ, (15)

respectively. Let Wk denote W (qk , q̇k , q̇zk , q̈zk ) for brevity
in the rest of this paper. Then, substituting (14) and (15)
into (13), we get

V̇k = sTφk (τk −Wkθ + dk )

≤ sTφk (τk −Wkθ )+
n∑
j=1

(|sφk,j|dj,m) (16)
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where dj,m is the upper bound of dj,k . Based on (16), an iter-
ative learning control law is designed as

τk = −µsφk +Wk θ̂k − d̂ksat1(
sk
φ
), (17)

θk = satθ̄ (θ̂k )

θ̂k = satθ̄ (θ̂k−1)− γ1W
T
k sφk (18)

and

d̂j,k = satd̄ (d̂
∗
j,k )

d̂∗j,k = satd̄ (d̂
∗

j,k−1)+ γ2|sφk,j|, (19)

where µ > 0 is a control gain, γ1 and γ2 are positive
learning gains, d̂k = diag(d̂1,k , d̂2,k , · · · , d̂n,k ) and d̂j,k is
used to estimate dj,m for j = 1, 2, · · · , n; θ̂−1(t) = 0, d̂∗j,−1
(t) = 0,∀t ∈ [0,T ].
Remark 1: For t ∈ [0, th),

˙̃q∗i,k (t) = q̃i,k (0)χ̇ (t)+ dq̃i,k (0)χ2(t)

+ dq̃i,k (0)
∫ t

0
χ (τ )dτ χ̇ (t)

and

¨̃q∗i,k (t) = q̃i,k (0)χ̈ (t)+ 2dq̃i,k (0)χ(t)χ̇ (t)

+ dq̃i,k (0)
∫ t

0
χ (τ )dτ χ̈ (t)+ dq̃i,k (0)χ (τ )χ̇ (t)

hold. For t ∈ [th,T ], ˙̃q∗i,k (t) = 0, ¨̃q∗i,k (t) = 0. From the above
equations and q̈zk = q̈d + ¨̃q∗k − αżk , we can see that q̈k is not
used in the design of control input τk .

IV. STABILITY ANALYSIS
Theorem 1: For the closed-loop system consisting of the

plant (1), and the adaptive iterative learning control given by
(17)-(19), all system variables are guaranteed to be bounded
at each iteration, and the closed-loop system is stable in the
sense that

|q̃j,k (t)| ≤
φ

α
, | ˙̃qj,k (t)| ≤ 2φ, t ∈ [th,T ], j = 1, 2, · · · , n.

Proof: Part A. From (16) and (17), we obtain

Vk ≤
∫ t

0
sTφk (τk −Wkθ )dτ +

∫ t

0

n∑
j=1

|sφk,j|dj,mdτ

=

∫ t

0
(−µsTφksφk + s

T
φkWk θ̃k )dτ

+

n∑
j=1

∫ t

0
|sφk,j|d̃j,kdτ (20)

where θ̃k = θk − θ, d̃j,k = dj,m − dj,k .
Let us define a Lyapunov functional at the kth iteration as

Lk = Vk +
1
2γ1

∫ t

0
θ̃Tk θ̃kdτ +

1
2γ2

n∑
j=1

∫ t

0
d̃2j,kdτ, (21)

in which γ1 and γ2 are positive constant gains. Then, we con-
sider the difference of Lk (t) with respect to iteration number.
While k > 0, from (20) and (21), we obtain

Lk − Lk−1

≤ Vk (0)− Vk−1 +
n∑
j=1

∫ t

0
|sφk,j|d̃j,kdτ −

∫ t

0
µsTφksφkdτ

+

∫ t

0
sTφkWk θ̃kdτ +

1
2γ1

∫ t

0

(
θ̃Tk θ̃k − θ̃

T
k−1θ̃k−1

)
dτ

+
1
2γ2

n∑
j=1

∫ t

0
(d̃2j,k − d̃

2
j,k−1)dτ. (22)

Noting that

θ̃Tk θ̃k − θ̃
T
k−1θ̃k−1

= −2(θ − θk )T (θk − θk−1)− (θk − θk−1)T (θk − θk−1)

≤ 2θ̃Tk (θk − θk−1), (23)

we obtain the following expression:

1
2γ1

(θ̃Tk θ̃k − θ̃
T
k−1θ̃k−1)+ s

T
φkWk θ̃k

≤
1
γ1

[θ̃Tk (θk − θk−1)+ γ1s
T
φkWk θ̃k ]

=
1
γ1

[satθ̄ (θ̂k )− θ ]
T [satθ̄ (θ̂k )− θ̂k ] ≤ 0, (24)

where (18) is used. According to (24), (22) can be rewritten
as

Lk − Lk−1 ≤ Vk (0)− Vk−1 +
n∑
j=1

∫ t

0
|sφk,j|d̃j,kdτ

+
1
2γ2

n∑
j=1

∫ t

0
(d̃2j,k − d̃

2
j,k−1)dτ. (25)

Similar to (23) and (24), from (19), we have

1
2γ2

(d̃2j,k − d̃
2
j,k−1)+ |sφk,j|d̃j,k

≤
1
γ2

[d̃j,k (d̂j,k−1 − d̂j,k )+ γ2|sφk,j|d̃j,k ]

=
1
γ2

[dj,m − satd̄ (d̂
∗
j,k )][d̂

∗
j,k − satd̄ (d̂

∗
j,k )] ≤ 0. (26)

Substituting (26) into (25) yields

Lk − Lk−1 ≤ Vk (0)− Vk−1. (27)

According to the characteristic (a) of desired error trajecto-
ries, Vk (0) = 0. Then, it follows from (27) that

Lk ≤ L0 −
λm

2

k−1∑
j=0

sTφjsφj, (28)

where λm represents the smallest eigenvalue of matrixMk .
Remark 2: Without the characteristic (a), Vk (0) 6= 0.

One can not deduce the inequality (27) or similar inequal-
ities. Then, the convergence of robotic ILC systems can be
obtained.
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Part B. Now, we will show that L0(t) is bounded for
t ∈ [0,T ]. While k = 0, taking the time-derivative of L0(t)
leads to

L̇0 ≤ −µsTφ0sφ0 + s
T
φ0W0θ̃0 +

n∑
j=1

(|sφ0,j|dj,m)

+
1
2γ1

θ̃T0 θ̃0 +
1
2γ2

n∑
j=1

d̃2j,0. (29)

From (18), we have
1
2γ1

θ̃T0 θ̃0 + s
T
φ0W0θ̃0

=
1
2γ1

(θ0 − θ )T (θ0 − θ + 2γ1W0sφ0)

=
1
2γ1

(θ0 − θ )T (θ0 − θ − 2θ̂0)

=
1
2γ1

(θ0 − θ )T (θ0 − θ − 2θ0 + 2θ0 − 2θ̂0)

=
1
2γ1

(θT θ − θT0 θ0)+
1
γ1

(θ0 − θ)T (θ0 − θ̂0). (30)

Meanwhile,
1
γ1

(θ0 − θ)T (θ0 − θ̂0) =
1
γ1

(sat(θ̂0)− θ )T (sat(θ̂0)− θ̂0),

≤ 0 (31)

Therefore, from the above three inequalities, we obtain

L̇0 ≤ −µsTφ0sφ0 +
1
2γ1

(θT θ − θT0 θ0)+
n∑
j=1

(|sφ0,j|dj,m)

+
1
2γ2

n∑
j=1

d̃2j,0 (32)

Similarly, from (19), we can conclude that
n∑
j=1

(|sφk,j|dj,m)+
1
2γ2

n∑
j=1

d̃2j,0 ≤
1
2γ2

n∑
j=1

(d2j,m − d̂
2
j,0) (33)

Combining (33) with (32), we assert

L̇0≤−µsTφ0sφ0 +
1
2γ1

(θT θ − θT0 θ0)+
1
2γ2

n∑
j=1

(d2j,m − d̂
2
j,0)

According to the property of saturation function, it is easily
to see that L0(t) is bounded for t ∈ [0,T ].
Part C. By utilizing the boundedness of L0(t), from (28),

we can easily see

lim
k→+∞

sTφksφk = 0, (34)

which implies limk→+∞ |sφk,j| = 0, j = 1, 2, · · · , n. This
further deduce that

lim
k→+∞

|sj,k | ≤ φ, j = 1, 2, · · · , n. (35)

It follows from (35) that [32]

|q̃j,k (t)| ≤
φ

α
, | ˙̃qj,k (t)| ≤ 2φ, t ∈ [th,T ],

j = 1, 2, · · · , n. (36)

For clarity, we give the simple deduction on the above con-
clusion as follows:

From (7), we can obtain,

eαt żj,k + αeαtzj,k = eαtsj,k . (37)

Calculating the definite integrals on both sides of (37)
from 0 to t yields

eαtzj,k (t)− eαtzj,k (0) =
∫ t

0
eατ sj,k (τ )dτ. (38)

Note that zj,k (0) = 0 holds. After performing some simple
algebraic operations, we have

|zj,k (t)| ≤
e−αt

α
(eαt − 1)φ ≤

φ

α
, t ∈ [0,T ] (39)

which implies that

|q̃j,k (t)| ≤
φ

α
, t ∈ [th,T ], j = 1, 2, · · · , n. (40)

In addition, according to (7), (35) and (39), we have

|żj,k (t)| ≤ |sj,k (t)| + α|zj,k (t)| ≤ 2φ, t ∈ [0,T ], (41)

which implies that

| ˙̃qj,k (t)| ≤ 2φ, t ∈ [th,T ], j = 1, 2, · · · , n. (42)

Combining (40) with (42), we obtain (36).
Through properly choosing α and φ, we can get high-
precision tracking for the closed-loop robotic systems
over [th,T ].

V. SIMULATION RESULTS
To verify the effectiveness of our proposed control scheme,
a two degrees-of-freedom planar manipulator with revolute
joints is considered as follows:[
M11(q2,k ) M12(q2,k )
M12(q2,k ) M22(q2,k )

] [
q̈1,k
q̈2,k

]
+

[
−C12(q2,k )q̇2,k −C12(q2,k )(q̇1,k + q̇2,k )
C12(q2,k )q̇1,k 0

] [
q̇1,k
q̇2,k

]
+

[
G1(q1,k , q2,k )g
G2(q1,k , q2,k )g

]
=

[
τ1,k + d1,k
τ2,k + d2,k

]
, (43)

where

M11(q2,k ) = (m1 + m2)r21 + m2r22 + 2m1m2 cos q2,k ,

M12(q2,k ) = m2r22 + m2r1r2 cos(q2,k ),

M22(q2,k ) = m2r22 ,

C12(q2,k ) = m2r1r2 sin(q2,k ),

G1(q1,k , q2,k ) = (m1 + m2)r1 cos q2,k
+m2r2 cos(q1,k + q2,k ),

G2(q1,k , q2,k ) = m2r2 cos(q1,k + q2,k ), (44)

and parametric uncertainties are m1 = 0.5kg, m2 = 0.5kg.
The robot parameters are given by r1 = 1m, r2 = 0.8m,
g = 9.8m/s2. The disturbances are assumed to be
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FIGURE 1. Actual and reference position trajectory of joint 1 (k = 20,
error tracking ILC).

FIGURE 2. Actual and reference velocity trajectory of joint 1 (k = 20, error
tracking ILC).

d1,k = 0.5rand1(k) cos(t), d2,k = 0.5rand2(k) sin(t). The
initial states of robot manipulator are as follows:

q1,k (0) = 0.8+ 0.1rand3(k),
dq1,k (0) = 0.05+ 0.05rand4(k),
q2,k (0) = 0.82+ 0.1rand5(k),
dq2,k (0) = 0.05rand6(k),

(45)

where, rand1(·)− rand6(·) are random functions taking their
values between 0 and 1. The reference position trajectories of
q1 and q2 are respectively chosen as

q1,d (t) =

0.5 cos(π t) k = 0, 2, 4, 6, · · ·

1.2+
t2

10
−

2t
5

k = 1, 3, 5, 7, · · ·
(46)

and

q2,d (t) =

cos(2t) k = 0, 2, 4, 6, · · ·

1+
2t
5
−

t2

10
k = 1, 3, 5, 7, · · · ,

(47)

FIGURE 3. Actual and reference position trajectory of joint 2
(k = 20, error tracking ILC).

FIGURE 4. Actual and reference velocity trajectory of joint 2 (k = 20, error
tracking ILC).

FIGURE 5. Position error and desired position error trajectory of joint 1
(k = 20, error tracking ILC).

with q̇1,d (t) and q̇2,d (t) being the corresponding reference
velocity trajectories. Corresponding to (15), we take the
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FIGURE 6. Velocity error and desired velocity error trajectory of joint 1
(k = 20, error tracking ILC).

FIGURE 7. Position error and desired position error trajectory of joint 2
(k = 20, error tracking ILC).

FIGURE 8. Velocity error and desired velocity error trajectory of joint 2
(k = 20, error tracking ILC).

following parameterization:[
M11(q2,k ) M12(q2,k )
M12(q2,k ) M22(q2,k )

] [
q̈zk,1
q̈zk,2

]

FIGURE 9. Difference between q̃1 and q̃∗1 (k = 20, error tracking ILC).

FIGURE 10. Difference between ˙̃q1 and ˙̃q∗1(k = 20, error tracking ILC).

FIGURE 11. Difference between q̃2 and q̃∗2 (k = 20, error tracking ILC).

+

[
−C12(q2,k )q̇2,k −C12(q2,k )(q̇1,k + q̇2,k )
C12(q2,k )q̇1,k 0

] [
q̇zk,1
q̇zk,2

]
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FIGURE 12. Difference between ˙̃q2 and ˙̃q∗2 (k = 20, error tracking ILC).

FIGURE 13. Control input of joint 1 (k = 20, error tracking ILC).

+

[
G1(q1,k , q2,k )g
G2(q1,k , q2,k )g

]
=

[
wz1 wz2 wz3
wz4 wz5 wz6

] θ1θ2
θ3


where

wz1 = q̈zk,1 + g/r1 cos q2,k ,

wz2 = q̈zk,1 + q̈zk,2,

wz3 = 2q̈zk,1 cos q2,k + q̈zk,2 cos q2,k − q̇2,k q̇zk,1 sin q2,k
− (q̇1,k + q̇2,k )q̇zk,2 sin q2,k + g/r1 cos(q1,k + q2,k ),

wz4 = 0,

wz5 = wz2,

wz6 = q̇1,k q̇zk,1 sin q2,k
+ q̈zk,1 cos q2,k + g/r1 cos(q1,k + q2,k )

θ1 = (m1 + m2)r21 ,

θ2 = m2r22 ,

θ3 = m2r1r2. (48)

FIGURE 14. Control input of joint 2 (k = 20, error tracking ILC).

FIGURE 15. Convergence learning history of ‖sφk‖ ( error tracking ILC).

FIGURE 16. Actual and reference position trajectory of joint 1 (k = 19,
error tracking ILC).

Applying the control law (17)−(19), with µ = 5,
γ1 = 1.2, γ2 = 0.6, φ = 0.0005, θ̄ = 20, d̄ = 5,
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FIGURE 17. Actual and reference velocity trajectory of joint 1 (k = 19,
error tracking ILC).

FIGURE 18. Actual and reference position trajectory of joint 2 (k = 19,
error tracking ILC).

FIGURE 19. Actual and reference velocity trajectory of joint 2 (k = 19,
error tracking ILC).

T = 4s and th = 0.6s, we obtain the results shown
in Figs. 1−29 after 20 cycles. The position/velocity trajectory
profiles of joint 1 and joint 2 at the 20th cycle are shown

FIGURE 20. Position error and desired position error trajectory of joint 1
(k = 19, error tracking ILC).

in Figs. 1–4, respectively. We can see that the posi-
tion/velocity trajectories accurately track their reference
trajectories for t ∈ [th,T ]. Figs.5−8 give the profiles of posi-
tion/velocity errors and the desired error trajectories at the
20th iteration, followed by Figs. 9−12 which show the dif-
ference between the errors and the desired error trajectories.
From Fig. 5−12, we can see that the error trajectories follow
the desired error trajectories, respectively. Figs.13−14 plot
the control inputs of joint 1 and 2, respectively. From Fig.15,
we can see sφk converges to zero as the iteration number
increase, where Jk , maxt∈[0,T ] ‖sφk (t)‖.

The simulation results at the 19th cycle are shown
in Figs. 16−29, which are similar to Figs. 1−14. Combin-
ing Figs. 1−4 and Figs. 16−19, we can see that the posi-
tion/velocity trajectories can accurately track the reference
trajectories for t ∈ [th,T ], even if the reference trajectories
are iteration-varying.

For comparison, we perform the simulation for the
initial-rectifying adaptive ILC algorithm of robotic manipu-
lators. Due to the existence of non-zero initial errors, the ref-
erence trajectory qd = [q1,d , q2,d ]T should be rectified, and
the rectified reference position trajectories qi,k,r (t), i = 1, 2
should meet the following four requirement:

1. qi,k,r (0) = qi,k (0);
2. q̇1,k,r (0) = q̇i,k (0);
3. qi,k,r (t) = qi,d (t), q̇i,k,r (t) = q̇i,d (t) and q̈i,k,r (t) =

q̈i,d (t) hold for t ∈ [th,T ];
4. qi,k,r (t), q̇i,k,r (t) and q̈i,k,r (t) are continuous over the

entire interval, in particular, including t = th.
According to the above requirement, a practicable con-

struction strategy is [33], [34]

qi,k,r (t) = ξi · qri,k (t)+ (1− ξi) · xi,d (t), (49)

with

ξi =

{
1 for t ∈ [0, th),
0 for t ∈ [th,T ],

(50)
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FIGURE 21. Velocity error and desired velocity error trajectory of joint 1
(k = 19, error tracking ILC).

FIGURE 22. Position error and desired position error trajectory of joint 2
(k = 19, error tracking ILC).

and qri,k (t) is a smooth-connection curve to be formed. Then,
let

qri,k (t) = Ai,5t5 + Ai,4t4 + Ai,3t3 + Ai,2t2 + Ai,1t + Ai,0,

(51)

where Ai,0 = qi,k (0),Ai,1 = q̇i,k (0),Ai,2 = 0,

Ai,3 =
10

t3h
%1 −

4

t2h
%2 +

1
2th
%3,

Ai,4 = −
15

t4h
%1 +

7

t3h
%2 −

1

t2h
%3,

Ai,5 =
6

t5h
%1 −

3

t4h
%2 +

1

2t3h
%3,

(52)

with %1 = qi,d (th)− q̇i,k (0)th−qi,k (0), %2 = q̇i,d (th)− q̇i,k (0),
%3 = q̈i,d (th).
After defining qk,r = [q1,k,r , q2,k,r ]T , s$k = (q̇k− q̇k,r )+

α(qk −qk,r ), svk = s$k − vsat1(
s$k
v ), we apply the following

FIGURE 23. Velocity error and desired velocity error trajectory of joint 2
(k = 19, error tracking ILC).

FIGURE 24. Difference between q̃1 and q̃∗1 (k = 19, error tracking ILC).

FIGURE 25. Difference between ˙̃q1 and ˙̃q∗1 (k = 19, error tracking ILC).

adaptive ILC control law and learning laws:

τk = −µsvk +W (qk , q̇k , q̇k,r , q̈k,r )θ̂k − d̂ksat1(
s$k

v
),

(53)
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FIGURE 26. Difference between q̃2 and q̃∗2 (k = 19, error tracking ILC).

FIGURE 27. Difference between ˙̃q2 and ˙̃q∗2 (k = 19, error tracking ILC).

FIGURE 28. Control input of joint 1 (k = 19, error tracking ILC).

θk = satθ̄ (θ̂k ),

θ̂k = satθ̄ (θ̂k−1)− γ1W (qk , q̇k , q̇k,r , q̈k,r )svk , (54)

FIGURE 29. Control input of joint 2 (k = 19, error tracking ILC).

and

d̂j,k = satd̄ (d̂
∗
j,k ),

d̂∗j,k = satd̄ (d̂
∗

k,−1)+ γ2|svk,j|, (55)

where θ̂−1 = 0, d̂∗j,−1 = 0,

W (qk , q̇k , q̇k,r , q̈k,r ) =
[
wr1 wr2 wr3
wr4 wr5 wr6

]
, (56)

with

wr1 = q̈1,k,r + g/r1 cos q2,k ,

wr2 = q̈1,k,r + q̈2,k,r ,

wr3 = 2q̈1,k,r cos q2,k + q̈2,k,r cos q2,k − q̇2,k q̇1,k,r sin q2,k
− (q̇1,k + q̇2,k )q̇2,k,r sin q2,k + g/r1 cos(q1,k + q2,k ),

wr4 = 0,

wr5 = wd2,

wr6 = q̇1,k q̇1,k,r sin q2,k + q̈1,k,r cos q2,k + g/r1 cos(q1,k
+ q2,k ).

The control parameter are set: v = 0.0005, others are the
same as the ones in the previous simulation. The initial state
is chosen as (45). After 20 cycles, the simulation results
are presented in Figs. 30–46. Among these figures, Figs.
30–33 show the position/velocity trajectory profiles at the
20th cycle, while Figs. 39–42 show the position/velocity
trajectory profiles at the 19th cycle. The difference between
position/velocity trajectories and the corresponding recti-
fied reference trajectories at the 20th cycle are presented
in Figs. 34–37, and the ones at the 19 cycle are presented
in Figs. 43–46. From these above-mentioned figures, we can
see that qk (t) and q̇k (t) can accurately track qd (t) and q̇d (t)
for t ∈ [th,T ], respectively. The learning convergence his-
tory during 20 cycles is shown in Fig. 38, where Jvk ,
maxt∈[0,T ] ‖svk (t)‖. We can see that initial rectifying ILC is
also effective to solve the trajectory tracking problem for
robotic systems.
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FIGURE 30. Actual and reference position trajectory of joint 1 (k = 20,
initial rectifying ILC).

FIGURE 31. Actual and reference velocity trajectory of joint 1 (k = 20,
initial rectifying ILC).

FIGURE 32. Actual and reference position trajectory of joint 2 (k = 20,
initial rectifying ILC).

Comparing Figs. 8–12 with Figs. 34–37, we can see
that the error tracking ILC and initial rectifying ILC have

FIGURE 33. Actual and reference velocity trajectory of joint 2 (k = 20,
initial rectifying ILC).

FIGURE 34. Difference between q1 and q∗1 (k = 20, initial rectifying ILC).

FIGURE 35. Difference between q̇2 and q̇∗2 (k = 20, initial rectifying ILC).

almost same tracking accuracy at the 20th cycle. Comparing
Figs. 24–27 with Figs. 43–46, we can see that, at the 19th
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FIGURE 36. Difference between q2 and q∗2 (k = 20, initial rectifying ILC).

FIGURE 37. Difference between q̇2 and q̇∗2 (k = 20, initial rectifying ILC).

FIGURE 38. Convergence learning history of ‖svk‖ (initial rectifying ILC).

cycle, the tracking accuracy of error tracking ILC is a lit-
tle better than that of initial rectifying ILC. The simulation

FIGURE 39. Actual and reference position trajectory of joint 1 (k = 19,
initial rectifying ILC).

FIGURE 40. Actual and reference velocity trajectory of joint 1 (k = 19,
initial rectifying ILC).

FIGURE 41. Actual and reference position trajectory of joint 2 (k = 19,
initial rectifying ILC).

results verify the effectiveness of our proposed error tracking
ILC schme.
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FIGURE 42. Actual and reference velocity trajectory of joint 2 (k = 19,
initial rectifying ILC).

FIGURE 43. Difference between q1 and q∗1 (k = 19, initial rectifying ILC).

FIGURE 44. Difference between q̇2 and q̇∗2 (k = 19, initial rectifying ILC).

It should be noted that the main advantage of error tracking
ILC lies in the simplicity of constructing desired error tra-
jectories. As can be seen from equality (5), only q̃i,k (0) and

FIGURE 45. Difference between q2 and q∗2 (k = 19, initial rectifying ILC).

FIGURE 46. Difference between q̇2 and q̇∗2 (k = 19, initial rectifying ILC).

˙̃qi,k (0) need to be considered in the construction of q̃∗i,k (t).
During the initial rectifying ILC design for robotic systems,
to make rectified reference position trajectory qi,k,r (t) in (49)
meet the four requirements, qd (th), q̇d (th) and q̈d (th) also
need to be used in constructing qri,k (t), besides q̃i,k (0) and
˙̃qi,k (0). We need find out Ai,5,Ai,4, · · · ,Ai,0 in (51), with
the method of undetermined coefficient. By contrast, we can
see that constructing desired error trajectories is easier than
constructing rectified reference trajectories.

VI. CONCLUSION
In this paper, a robust learning control scheme is proposed to
solve the trajectory-tracking problem for robot manipulators
with random initial errors and iteration-varying trajectories.
Error-tracking strategy is applied to design the controller,
with the parametric uncertainties and disturbances compen-
sated by difference learning technique and robust technique,
combinedly. A simulation example further verify the theo-
retical results in the end of this paper. The proposed control
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scheme extends the applications of iterative learning control
in robotic systems.
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