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ABSTRACT This paper proposes a linear quadratic predictive fault-tolerant control (LQPFTC) scheme for
multi-phase batch processes with input time-delay and actuator faults. First of all, according to a given model
with input time-delay, a new variable is introduced and the given model is transformed into an extended
state-space model without time delay. And then, a new 2D switched system model based on an equivalent
2D-Roesser model is constructed by introducing the state error and the output tracking error to solve
the actuator fault and realize the optimal control performance. By adjusting the variable in the function,
a quadratic performance function based on the model is designed and a linear predictive fault-tolerant
controller by combining with the principle of predictive control is proposed. Then, using the Lyapunov
function and the average dwell time method, the sufficient conditions for the robust exponential stability
of the system along the time and batch direction, and the minimum running time of each phase are derived.
Finally, taking the injection molding process as an example, different fault values are selected for simulation.
The results show that the 2D controller designed can realize tracking control with different actuator fault
values and even a serious one.

INDEX TERMS Model predictive fault-tolerant control, batch process, input time-delay, equivalent
2D-Roesser model, actuator faults.

I. INTRODUCTION
With the small-scale, multi-variety and high value-added
production characteristics, the batch process has become the
mainstay in modern industrial production [1]. In recent years,
research on optimization and advanced control of batch pro-
cess has also appeared as a new research area [2]–[4].

However, as the complexity of the production process and
operating process increases, the probability of fault also does
so. In the actual production process, the faults are roughly
divided into actuator faults, sensor faults and internal system
faults. Since there are friction, saturation, dead zone, etc.
everywhere in actual production, the actuator fault is the most
common, so its research is more valuable. If an actuator
fault cannot be detected and corrected effectively, system
control performance will be degraded and even cause seri-
ous personnel safety issues. In addition, due to high quality,
high precision production requirements, the system control
performance requirements will also increase. It is important
to find useful approaches to cope with this problem.

The associate editor coordinating the review of this manuscript and
approving it for publication was Youqing Wang.

In this context, the research on fault-tolerant control (FTC)
has attracted people’s attention [5]–[11]. The main goal of
FTC is that the closed-loop system can still guarantee good
control performance under faults. For example, considering
the problem of control system/actuator failures in nonlin-
ear processes subject to input constraints, [5] presents two
approaches for fault-tolerant control that focus on incorporat-
ing performance and robustness considerations, respectively.
For FTC of a six-phase permanent-magnet synchronous
motor drive system with open phases, an intelligent comple-
mentary sliding-mode control was presented in [6]. A novel
adaptive fault tolerant controller was studied for nonlinear
unknown systems that have multiple actuators [7]. At the
same time, some fault diagnosis and control strategies have
also been put forward [8]–[11].

As mentioned above, actuator faults especially partial
faults are very common in industrial systems. Subject to the
complexity of the production process itself, and the imma-
ture support technology, the research results related to FTC
of batch processes did not occur until 2006 [12]. In [12],
to handle the system under actuators, a particular 2D iterative
learning reliability controller was proposed. With the wide
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application of iterative learning control [13]–[16] (ILC) and
the emergence of fault diagnosis methods for various batch
processes, the control problem gradually received attention
and successively appeared a series of research results. For
the single-phase batch processes with partial actuator faults,
unknown disturbances and/or time-delay, the FTC is designed
through robust ILC or guaranteed cost performance control
using linear matrix inequality (LMI) [17], [18]. The results
are also extended into multi-phase batch process [19], [20].
In [19], the FTC problem is transformed into an equivalent
switching system based on the 2D equivalent model, and
sufficient conditions are given by the average dwell time
method, which ensures that the system remains robust along
time and batch direction, and gives the minimum run time for
each phase.

Most of these results are for the batch process to study the
reliable fault-tolerant control (RFTC) in the case of actuator
faults. For the model, linear and nonlinear systems have also
been studied, and it has been extended to the FTC of the
multi-phase batch processes. However, RFTC only allows
faults to vary within a certain range. Once the fault is out
of range, the controller will not work more effectively and
the system control performance will degrade, thus affecting
product quality. It is necessary to seek new control methods.

Recently, Model predictive control (MPC) has attracted
much attention because it can improve the system per-
formance and be easy to deal with constraints, distur-
bances [21], [22]. In today’s increasingly complex industrial
environment, MPC is widely used in industrial control with
its unique charm, and there have been many researches on
predictive control of batch processes. In order to solve the
online computing burden of integrated scheduling and control
for batch processes, multi-parameter model predictive control
(mp-MPC) can be included in the integration of scheduling
and control. Also, the iterative learning model predictive
control (ILMPC) has the advantages of ILC and MPC, and
has good anti- disturbance ability and constraint processing
ability. Nonlinear modeling and identification based Model
Predictive Control (NMPC)method can addresses constraints
and nonlinearities during the feedback control [23], [24].
In order to solve the multi-phase characteristics of the batch
process and reduce the computational burden, the online
ILMPC law is proposed and the quadratic programming prob-
lem online is solved [25].

The above studies have one thing in common, that is,
they are all conducted under normal systems. As the above
description shows, actuator fault is inevitable. Predictive con-
trol is used for FTC by virtue of its own advantages. Cur-
rently, most of predictive fault-tolerant control (PFTC) treat
actuator faults as mismatched disturbances and treat batch
processing as a one-dimensional (1D) system. For exam-
ple, for the single-phase batch process with partial actuator
faults or unknown disturbances, Zhang et al. [26], [27] pro-
posed new linear quadratic control (LQ) andMPC that can be
designed based on state space model/minimum optimization
respectively. Alternatively, robust model predictive control

can be designed for fault handling [28]. Zhang et al. pro-
posed a FTC strategy based on state space model [29] and
a predictive function control method [30] and even combine
both them [31]. However, 1D predictive control only allows
the system to achieve its optimal control performance on
the timeline, and performance is not improved in the batch
direction. Recently, research on 2D system models-based
model predictive control has been emerged [32]–[35]. This
method can significantly change the control performance of
the batch direction. Particularly, for batch processing with
actuator fault and uncertain disturbance, Shi et al. [35] pro-
posed robust iterative learning fault-tolerant control (ILFTC)
that is studied under the framework of predictive control.

However, the above method research on predictive control
does not consider the multi-phase characteristics of the batch
process, so it cannot guarantee that the system performance is
always optimal under the actuator fault, because the control
performance of the previous phase will affect the next phase,
thereby affecting the product quality. Compared with single-
phase control studies, the results of multi-phase processes are
relatively small [36]–[38], especially in the case of system
faults [39]–[41]. Further analysis of multi-phase batch pro-
cesses obviously remains to be explored.

To solve the problems, the paper proposes a linear
quadratic predictive fault-tolerant control method for multi-
phase batch process based on 2D model theory specific for
actuator fault and batch process’ repeatability, 2D charac-
teristic and multi-phase characteristic. The method effec-
tively solves the batch process control problem with actuator
fault and different phase switching time. The advantages are:
(1) the proposed method can update the control law in time,
can solve the system deviation problem caused by the distur-
bance and the serious fault, ensure the optimal control perfor-
mance of system and achieve high quality production; (2) the
controller designed for actuator fault has certain robustness;
(3) the method designs the switching signal meeting the
system’s stability requirement according to the multi-phase
characteristic to ensure the control system’s robustness and
get the minimum running time of system, thus realizes the
high-efficiency production. Finally, the paper demonstrates
the feasibility and effectiveness of method proposed by mod-
eling and simulating the injection molding process. Different
fault values are selected and the simulating results show that
the designed control law can still guarantee certain control
effects under different actuator fault values.

II. PROBLEM FORMULATION
Considering the multi-phase characteristic, the batch process
system model in the ith phase with input delay is described as
follows:

x i(t + 1, k) = Āix i(t, k)+ B̄iui(t − d, k)

yi(t, k) = C̄ ix i(t, k) (1)

where t is the time at the present moment with 0 < t ≤
T
′

i , k is the batch, T
′

i is the end time point of processing
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interval in each phase for each batch, x i(t, k) ∈ Rn, yi(t, k) ∈
Rl, ui(t, k) ∈ Rm are the state, the output and the input
variable of batch k in phase i at moment t respectively, d is
the time delay of batch process and

{
Āi, B̄i, C̄ i

}
is the system

matrix with appropriate dimensions.
In the industrial production, the system will have faults

due to the long-term and repetitive operation of equipment.
In the case of system fault, it’s hard for the system’s input
ui(t, k) to reach the expected value after passing through the
actuator, thus affecting the quality of products. The actuator
fault is divided into the stuck fault, the partial fault and the
complete fault. Therefore, we use α to represent different
types of actuator fault. α > 0 means the partial fault and
α = 0 means the complete fault. The paper only studies the
partial actuator fault.

The batch process is multi-phase one, so the actuator fault
is supposed to be αi, the input signal through the actuator
is uiF (t, k). The system model with fault is expressed in the
following form:

uiF (t, k) = αiui(t, k) (i = 1, 2, · · · , n) (2)

where 0 < α ≤ αi ≤ α, αi(αi < 1) and ᾱi(ᾱi ≥ 1) are
known variables. Therefore, the system model with actuator
faults can be expressed as follows:

x i(t + 1, k) = Āix i(t, k)+ B̄iuiF (t − d, k)

yi(t, k) = C̄ ix i(t, k) (3)

Objective: Propose a linear quadratic predictive fault-tolerant
control method for multi-phase batch processes with actuator
faults to ensure the system’s stable running and good control
performance in the case of failures.
Conventional Control Method: The conventional method

makes the design based on 1D system model (i.e., combining
the state error and the output error in the direction of time
alone), and then designs the controller using the conventional
infinite-time-domain linear quadratic control.
New Control Method: The method proposed makes the

design based on 2D system model (i.e., combining the state
error and the output error in directions of time and batch),
introduces a new state-space variable to transform the model
into an equivalent 2D system model without time delay,
and then designs a controller using the infinite-time-domain
quadratic predictive fault-tolerant control to realize the mini-
mum performance index with the minimum control input.

To realize the objective above, the paper first introduces
a new state-space variable to transform model (3) into an
equivalent state-spacemodel without time delay first and then
an equivalent 2Dmodel. Then, basing on the model, the paper
designs a control law and a switching law of the objective and
analyzes the system’s stability, and finally verifies the feasi-
bility and effectiveness of control method proposed through
a simulation. The specific steps are as follows.
Remark 1: The method proposed in this paper is not a

reliable control, but a more advanced control method. Reli-
able control can only solve actuator failures within a certain

range, and it adopts the same controller throughout the whole
process, cannot solve the system deviation problem. How-
ever, the method proposed in this paper can solve the actuator
fault in more serious cases and solves the system deviation
problem, because the controller can be adjusted in real time.
Remark 2: In the actual industrial production process,

the batch process has nonlinear characteristics. In this paper,
the linear model is used for preliminary research. The non-
linear problem can be regarded as the problem of disturbance
under the linear model. Here the control law can resist dis-
turbance as shown in [25], [26], and [42]. For the nonlinear
characteristics, it will be studied in the follow-up work.

A. BUILD A NEW STATE-SPACE MODEL
Two ways are available to solve the time delay problem. The
first one is to introduce a new state and transforming the
system with time delay into the system without time delay
by extending dimensions. This method has the simple model
and the easy design of controller. The other is to analyze the
system control using the time-delay system control theory,
which is dependent of the size of time delay. This method is
less conservative but the design of controller is complicated.
The paper adopts the first method, i.e. transform the system
with input time delay into the state-space model without time
delay.

For the new state-space variable x im(t, k)
T without time

delay, we have the following form:

x im(t, k)
T
=
[
x i(t, k)T ui(t−1, k)T · · · ui(t − d, k)T

]
(4)

Transforming equation (4), we get a new state-space model
without time delay in the ith phase, and its form is:

x im(t + 1, k) = Aif x
i
m(t, k)+ B

i
f u
i(t, k)

yi(t, k) = C i
f x
i
m(t, k) (5)

where

Aif =



A
i

0 0 · · · 0 B
i
αi

0 0 0 · · · 0 0

0 αi 0 · · ·
... 0

0 0 αi 0 0
...

...
...

. . .
. . .

. . .
...

0 0 · · · 0 αi 0


Bif =

[
0 αi 0 · · · 0

]iT
,

C i
f =

[
C
i

0 0 · · · 0
]
,

T is the transpose symbol of matrix, and 0 and 0 are both the
null vectors with appropriate dimensions.

To keep the system stable running in the case of system
fault, we design a fault-tolerant controller including the out-
put error ei(t, k) = yir (t) − yi(t, k) to make the output track
the expected output yir (t) as much as possible and preserve
the optimal control even under actuator faults.
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Remark 3: In order to improve the shortcomings of reli-
able control, and based on (5), new MPC is proposed where
performance can be improved by adjusting the performance
index. Here the stability and shortest running time using
2D theory are derived.

B. EQUIVALENT 2D MODEL
According to actual needs, we extend the dimensions of
equation (5) by introducing the system state error and the out-
put tracking error and transform the model into an equivalent
2D model.

First, we introduce the following ILC law:∑
ilc

: ui(t, k) = ui(t, k − 1)+ r i(t, k), ui(t, 0) = 0,

t = 0, 1, 2, · · · ,T
′

i , i = 1 (6)

in which ui(t, 0) is the initial value of iteration and its value is
generally set as 0, and r i(t, k) ∈ Rm is the update law of ILC.
The design of ILC law aims to determine r i(t, k), the update
law at moment t of the k th batch with system fault to make
system output yi(t, k) track the expected output yir (t) given.
We define the system state error as

f i(t, k) = fk (t), δ(f i(t, k)) = f i(t, k)− f i(t, k − 1) (7)

From model (5) and ILC law (6), we get

δ(x im(t + 1, k)) = Aif δ(x
i
m(t, k))+ B

i
f r
i(t, k) (8)

We define the output error ei(t, k) = yir (t)−y
i(t, k), and then

get

ei(t+1, k)=ei(t+1, k−1)−C i
f A

i
f δ(x

i
m(t, k))−C

i
f B

i
f r
i(t, k)

(9)

Without considering external disturbance, the equivalent
2D-Roesser model of (8) and (9) can be written in the fol-
lowing form:[
δ(x im(t+1, k))
ei(t+1, k)

]
= Āif

[
δ(x im(t, k))

ei(t+1, k−1)

]
+B

i
f r
i(t, k) (10)

where

Āif =

[
Aif 0
−C i

f A
i
f I

i

]
, B

i
f =

[
Bif
−C i

f B
i
f

]
.

And then, the model above can be transformed equivalently
into

z′i(t, k) = A
i
f z
i(t, k)+ B

i
f r
i(t, k) (11)

in which

z′i(t, k) =
[
δ(x im(t + 1, k))
ei(t + 1, k)

]
=

(
zih(t + 1, k)
ziv(t, k + 1)

)
,

zi(t, k) =
[

δ(x im(t, k))
ei(t + 1, k − 1)

]
=

(
zih(t, k)
ziv(t, k)

)
.

We reproduce the system above into the following switching
system model:

z′(t, k) = Āσ (t,k)f z(t, k)+ B̄σ (t,k)f r(t, k) (12)

in which σ (t, k) : Z+ → N := {1, 2, · · · , n} represents the
switching signal may be correlated to time or system sate, and
N is the number of phases of subsystem. Āϑ(t,k)m , B̄ϑ(t,k)m are
both represented with the switching system model (12) for
different phases. The switching sequence is defined as

6 = {
[
(T
′1
0 , k0), σ (T

′1
0 , k0)

]
,
[
(T
′2
0 , k0), σ (T

′2
0 , k0)

]
, · · ·[

(T
′n
0 , k0), σ (T

′n
0 , k0)

]
,
[
(T
′1
1 , k1),σ(T

′1
1 , k1)

]
,[

(T
′n
1 , k1),σ(T

′n
1 , k1)

]
, · · · ,

[
(T
′1
k , kk ),σ(T

′1
k , kk )

]
, · · · ,[

(T
′n
k , kk ), σ (T

′n
k , kk )

]
· · · }

in which
[
(T
′n
i , ki), σ (T

′n
i , ki)

]
is the connection point

between the end of the previous batch and the start of the
next batch.

C. DESIGN OF CONTROL LAW
We design the controller for the new 2D model. The design
should meet the requirements of stability of closed-loop
2D system and the optimal control performance (13).

The following is the performance index:

min
r i(t,k)

�i =̂ [
P∑
j=1

z′iT (t + j|t, k)Qiz′i(t + j|t, k)

+

M∑
j=1

r iT (t + j− 1|t, k)Rir i(t + j− 1|t, k)]

Qi = diag
{
qij1, q

i
j2, . . . , q

i
jn, q

i
ju1, q

i
ju2, . . . , q

i
jud , q

i
je

}
1 ≤ j ≤ P (13)

where Qi > 0 is the weighting matrix of process, Ri ≥ 0
is the input weighting matrix of process state, qij1, q

i
j2, . . . ,

qijn, q
i
ju1, q

i
ju2, . . . , q

i
jud , q

i
je is the weighting coefficient of

process state and qije is the weighting coefficient of output
tracking error and qije = 1. Besides, P ≥ M .
Theorem 1: To meet the requirements of optimal control

performance with system fault, the linear quadratic fault-
tolerance control law is designed as

r i = −(9T
i Qi9i + Ri)−19T

i QiE
izi
([

t + 1
t + P

|t, k
)
(14)

Ki = (9T
i Qi9i + Ri)−19T

i QiE
i

ui(t, k) = ui(t, k − 1)+ r i(t, k) (15)

Proof:According to the equivalent 2Dmodel, the output
model within predictive range is set to δ

(
x im

([
t+1
t+P
|t, k

))
ei
([

t+1
t+P
|t, k

)
 = E i

 δ(x im(t, k))

ei
([

t + 1
t + P

|t, k − 1
)

+9ir i
([

t
t +M − 1

|t, k
)

(16)
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in which

9i =̂



(B̄if )
0 0 · · · 0

(B̄if )
1 (B̄if )

0
· · · 0

...
...

...
...

(B̄if )
M−1 (B̄if )

M−2
· · · (B̄if )

0

...
...

. . .
...

(B̄if )
P−1 (B̄if )

P−2
· · ·

P−M∑
j=0

(B̄if )
j


(P×M )

,

E i =̂


A
i
f

(A
i
f )
2

...

(A
i
f )
P


(P×1)

, (A
i
f )
s
=

[
(Aif )

s 0
−C i

f (A
i
f )
s I i

]
,

(
B̄if
)s
=

[
(Aif )

sBif
−C i

f (A
i
f )
sBif

]
,

P−M∑
s=0

(B̄if )
s
=


P−M∑
s=0

(Aif )
sBif

−C i
P−M∑
s=0

(Aif )
sBif

 ,
δ

(
x im

([
t + 1
t + P

|t, k
))

=̂

 δ
(
x im(t + 1|t, k)

)
...

δ
(
x im(t + P|t, k)

)
 ,

ei
([

t + 1
t + P

|t, k
)

=

 ei(t + 1|t, k)
...

ei(t + P|t, k)

 ,
r i
([

t
t +M − 1

|t, k
)

=̂

 r i(t|t, k)
...

r i(t+M−1|t, k)


(M×1)

,

z′i
([

t + 1
t + P

|t, k
)

=

 δ
(
x im

([
t + 1
t + P

|t, k
))

ei
([

t + 1
t + P

|t, k
)



=



[
δ
(
x im (t + 1|t, k)

)
ei (t + 1|t, k)

]
...[

δ
(
x im (t + P|t, k)

)
ei (t + P|t, k)

]


and

zi
([

t + 1
t + P

|t, k
)
=

 δ(x im(t, k))

ei
([

t + 1
t + P

|t, k − 1
)

=



[
δ(x im(t, k))

ei (t + 1|t, k − 1)

]
...[

δ(x im(t, k))
ei (t + P|t, k − 1)

]


Then, the above output model is equivalent to

z′i
([

t + 1
t + P

|t, k
)
= E izi

([
t + 1
t + P

|t, k
)

+9ir i
([

t
t +M − 1

|t, k
)

From the performance index equation (13) and (16), it has

�i =

(
E izi

([
t+1
t+P
|t, k

)
+9ir i

([
t

t+M−1
|t, k

))T
Qi

×

E izi
([

t+1
t+P
|t, k

)
+

9ir i
([

t
t +M − 1

|t, k
)


+ r i
([

t
t +M − 1

|t, k
)T

Rir i
([

t
t +M − 1

|t, k
)

= r i
([

t
t +M − 1

|t, k
)T [

9T
i Qi9i + Ri

]
×, r i

([
t

t +M − 1
|t, k

)

+ 2
(
E izi

([
t + 1
t + P

|t, k
))T

Qi9ir i

×

([
t

t +M − 1
|t, k

)

+

(
E izi

([
t + 1
t + P

|t, k
))T

Qi

(
E izi

([
t + 1
t + P

|t, k
))
(17)

where

Qi =̂


Qi 0 · · · 0
0 Qi · · · 0
...

...
. . .

...

0 0 · · · Qi


(P×P)

,

Ri =̂


Ri 0 · · · 0
0 Ri · · · 0
...

...
. . .

...

0 0 · · · Ri


(M×M )

.
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From the equation above, let ∂�i
∂r i = 0 and then we get

r i
([

t
t +M − 1

|t, k
)∗
= −[9T

i Qi9i + Ri]−19T
i QiE

i

× zi
([

t + 1
t + P

|t, k
)

=̂ −Kizi
([

t + 1
t + P

|t, k
)

(18)

Therefore, Theorem 1 is proved.
To get the new input variable ui(t, k), we first make input

variable ui(t, k − 1) act as the controlled object and then
evaluate ui(t, k) with the cycle solving method according to
the update law r i(t, k) obtained.

D. DESIGN OF SWITCHING LAW
For different phases, the switching signal can be designed as
σ (t, k) and, for switched system (12), we suppose

r i
([

t
t +M − 1

|t, k
)∗
=̂ − Kizi

([
t + 1
t + P

|t, k
)

(19)

where Ki = (9T
i Qi9i + Ri)−19T

i QiE
i.

Then, we get the switched system in each phase of i:

z′i
([

t + 1
t + P

|t, k
)
= (E i −9iKi)zi

([
t + 1
t + P

|t, k
)

(20)

To determine the stability of switching system, for the
ith subsystem, we use the following Lyapunov function:

V i
(
zi
([

t + 1
t + P

|t, k
))
= ziT

([
t + 1
t + P

|t, k
)

×Pizi
([

t + 1
t + P

|t, k
)

(21)

in which Pi(t, k), i ∈ N ,N := {1, 2, · · · ,N } is the matrix
dependent of residence time τ i. Then, we have the following
theorem:
Theorem 2: For the given 0 < β i1 < 1, 0 < β i2 < 1 and

convergence index θ i (the horizontal convergence index is no
bigger than β i1 and the vertical convergence index is no bigger
than β i2), if there is a diagonal matrix W i

= diag{W i
h,W

i
v} >

0 in which W i
h ∈ Rn1×n1 ,W i

v ∈ Rn2×n2 , satisfying the
following matrix inequalities[

−W i(β i1, β
i
2) W

i(E i −9iKi)
∗ −W i

]
< 0

Vpi (z(t, k)) ≤ µiVpj (z(t, k)) (22)

where W i(β i1, β
i
2) = diag{β i1W

i
h, β

i
2W

i
v}, µ

i > 1, θ i =
max{β i1, β

i
2} and the average residence time τi satisfies the

following inequality:

τ ai ≥
(
τ ai
)∗
= −

lnµi

ln θ i
. (23)

then the closed-loop system is not only fault-tolerant con-
trolled but also exponentially stable of 2D.

Proof:We use the functional equation:

V i
(
zi
([

t + 1
t + P

|t, k
))

= ziT
([

t + 1
t + P

|t, k
)
Pizi

([
t + 1
t + P

|t, k
)

= V i
h

(
zih

([
t + 1
t + P

|t, k
))
+ V i

v

(
ziv

([
t + 1
t + P

|t, k
))

.

(24)

where Pi = diag{Pih,P
i
v},

V i
h

(
zih

([
t + 1
t + P

|t, k
))

= ziTh

([
t + 1
t + P

|t, k
)
Pihz

i
h

([
t + 1
t + P

|t, k
)

represents the variable in direction T and

V i
v

(
ziv

([
t + 1
t + P

|t, k
))
= ziTv

([
t + 1
t + P

|t, k
)

×Pivz
i
v

([
t + 1
t + P

|t, k
)

represents the variable in direction K .

1V i
(
zi
([

t + 1
t + P

|t, k + 1
))

= V i
h

(
zih

([
t+2

t+P+1
|t, k

))
+ V i

v

(
ziv

([
t+1
t+P
|t, k+1

))
−V i

h

(
zih

([
t+1
t+P
|t, k

))
−V i

v

(
zih

([
t+1
t+P
|t, k

))
(25)

From the switching system in phase i (20) and Lyapunov
function (21), we get

1V i

≤ V i
h

(
zih

([
t+2

t+P+1
|t, k

))
+V i

v

(
ziv

([
t+1
t+P
|t, k+1

))
−β i1V

i
h

(
zih

([
t+1
t+P
|t, k

))
−β i2V

i
v

(
ziv

([
t + 1
t + P

|t, k
))

≤ z
′iT
h

([
t + 1
t + P

|t, k
)
Pihz

′i
h

([
t + 1
t + P

|t, k
)

+ z
′iT
v

([
t + 1
t + P

|t, k
)
Pivz

′i
v

([
t + 1
t + P

|t, k
)

−β i1z
iT
h

([
t + 1
t + P

|t, k
)
Pihz

i
h

([
t + 1
t + P

|t, k
)

−β i2

(
ziTv

([
t + 1
t + P

|t, k
))

Pivz
i
v

([
t + 1
t + P

|t, k
)

≤ ziT
([

t+1
t+P
|t, k

)
(E i−9iKi)TPi(E i−9iKi)zi

×

([
t+1
t+P
|t, k

)
− ziT

×

([
t + 1
t + P

|t, k
)
Pi(β i1, β

i
2)z

i
([

t + 1
t + P

|t, k
)
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≤ ziT
([

t + 1
t + P

|t, k
)
[(E i −9iKi)TPi

× (E i −9iKi)− Pi(β i1, β
i
2)]× z

i
([

t + 1
t + P

|t, k
)

≤ ziT
([

t + 1
t + P

|t, k
)
2izi

([
t + 1
t + P

|t, k
)

in which Pi(β i1, β
i
2) = diag{β i1P

i
h, β

i
2P

i
v}. If the switching

system is table, there must be 1V i < 0 which is equivalent
to

2i= (E i−9iKi)TPi(E i−9iKi)−Pi(β i1, β
i
2) < 0 (26)

Here we add the following lemma:
Lemma 1 ((Schur Complement Lemma)): Suppose W , L

and V are given matrices with appropriate dimensions in
whichW and L are positive definite symmetric matrices, then
the necessary and sufficient conditions for the establishment
of

LTVL −W < 0

is [
−W LT

L −V−1

]
< 0 or

[
−V−1 L
LT −W

]
< 0.

Then, we multiply the left and right sides of matrix (21) by
diag{Pi, I i} and diag{Pi, I i} respectively, and according to
Lemma 1, (E i − 9iKi)TPi(E i − 9iKi) − Pi(β i1, β

i
2) < 0 is

satisfied and then we get1V i < 0, so the switched system is
stabilized.

Let θ i = max{β i1, β
i
2}, we can get the following inequality:

V i
h

(
zih

([
t+2

t+P+1
|t, k

))
+ V i

v

(
ziv

([
t+1
t+P
|t, k + 1

))
< θ iV i

(
zi
([

t+1
t+P
|t, k

))
(27)

For arbitrary integers M0 > 0,N0 > 0, y > 0, according
to functional equations (5-24), the following inequality is
obtained

V i
h

(
zih

([
M0 + 2

M0 + P+ 1
|M0,N0 + y

))
+V i

v

(
ziv

([
M0 + 1
M0 + P

|M0,N0 + y+ 1
))

< θ iV i
(
zi
([

M0 + 1
M0 + P

|M0,N0 + y
))

...

V i
h

(
zih

([
M0 + y+ 2

M0 + P+ y+ 1
|M0,N0

))
+V i

v

(
ziv

([
M0 + y+ 1
M0 + P+ y

|M0,N0 + 1
))

< θ iV i
(
zi
([

M0 + y+ 1
M0 + P+ y

|M0,N0

))
(28)

The above inequalities are summed to obtain the following
inequalities:∑

t+k=M0+N0+y+2
M0≤t≤M0+y
N0≤k≤N0+y

V i
(
zi
([

t + 2
t + P+ 1

|t, k
))

≤

∑
t+k=M0+N0+y+2

M0≤t≤M0+y
N0≤k≤N0+y

V i
(
zi
([

t + 2
t + P+ 1

|t, k
))

+V i
v

(
ziv

([
M0 + 1
M0 + P

|M0,N0 + y+ 1
))

+V i
h

(
zih

([
M0 + y+ 2

M0 + P+ y+ 1
|M0,N0

))
< θ i

∑
t+k=M0+N0+y+1

M0≤t≤M0+y
N0≤k≤N0+y

V i
(
zi
([

t + 1
t + P

|t, k
))

(29)

To get the form of switching point, we use kl−f+1 and kl
represent the initial batch and the last batch, respectively,
and then Nη(w,F) represent the number of switching at the
switching signal with the time interval of [w,F], which is
obtained as follows:[
T skl−f+1 , kl−f+1

]
,
[
T s+1kl−f+1

, kk−f+1
]
, . . . ,

[
T p−1kl−f+1

, kk−f+1
]
,[

T p
kl−f+1

, kk−f+1
]
,
[
T skl−f+2 , kl−f+2

]
, ..,

[
T pkl , kl

]
, ..

in which
[
T pkl−f+1 , kl−f+1

]
and

[
Tkl−f+1 , kl−f+1

]
have the

same significance, both representing the end moment of the
previous phase and the initial moment of the next phase.
Besides, mi−1kq = T i−1kq + kq and mkq = Tkq + kq where q =
l−f +1, l−f +2, · · · , l−1, l, so the time interval of batch kq
in phase i is

[
T i−1kq ,Tkq

]
. Let z(t, k) = zt,k for convenience.

In the form above, F ∈
[
mi−1kq ,mkq

]
, V σ (T

i
k ,kl )(zt,k ) and

V
σ
((
T ik
)−
,kl
)
(zt,k ) represent the ith phase and the (i − 1)th

phase of batch kl , respectively. σ
((
T ikl

)−
, kl

)
represents

the Lyapunov function of batch kl−1 in the ith phase. From
Document [34], we get:∑
t+k=F

V σ (T
i
kl ,kl )(zt,k ) <

(
θ i
)F−mi−1kl

∑
t+k=mi−1kl

V σ (T
i
kl
,kl )(zt,k ).

(30)

According to Document [42], at switching moment mi−1kq =

T i−1kq + kq, we can get

∑
t+k=mi−1kl

V σ (T
i
kl ,kl )(zt,k ) ≤ µi

∑
t+k=

(
mi−1kl

)−V
σ

((
T ikl

)−
,kl

)
(zt,k ).

(31)

We first add the following definition:
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Definition 1:Defineχl=sup
{∥∥Xt,k∥∥ : t̄+k=w, t̄, k ≥ 1

}
,

and for the given w ≥ 0 and arbitrary F ≥ w, if there is a
positive definite matrix ϕ satisfying lim

l→F
χF ≤ κϕ(F−w)χw,

then the closed-loop 2D system is exponentially stable at
switching signal σ (·, ·) and ‖•‖ represents the Euclidean
norm here.

Thus, from Definition 1, we have∑
t+k=F

V
σ
(
T ikl ,kl

)
(zt,k )

<
(
θ i
)F−mi−1kl

∑
t+k=mi−1kl

V σ
(
T ikl ,kl

)
(zt,k )

≤ µi

(
θ i
)F−mi−1kl

∑
t+k=mi−1kl

V
σ

((
T ikl

)−
,kl

)
(zt,k )

≤ µi

(
θ i
)F−mi−1kl

(
θ i−1

)mi−1kl
−mi−2kl

×

∑
t+k=mi−2kl

V
σ
((
T i−1kl

)
,kl
)
(zt,k )

...

≤
i
5
p=1

(
µp
) Tp(F,w)

τp ×
i
5
p=1

(
θp
)Tp(F,w)

×

∑
t+k=w

V
σ

((
T 1
l−f+1

)−
,kl−f+1

)
(zt,k )

=
i
5
p=1

((
µp
) 1
τp
(
θp
))Tp(F,w) ∑

t+k=w

V
σ
(
T 1
l−f+1,kl−f+1

)
(zt,k )

(32)

Also, we know
(
µp
) 1
τp (θp) < 1 and let ϕp =

maxp∈N

((
µp
) 1
τp (θp)

)
, and then we have

∑
t+k=F

V
σ
(
T ikl ,kl

)
(zt,k )

≤ κ(ϕi)F−w
∑

t+k=w

V
σ
(
T 1
l−f+1,kl−f+1

)
(zt,k ). (33)

We can see that if the switching signal satisfies equation (31)

of theorem condition, V
σ
(
T ikl ,kl

)
is convergent. Therefore, the

closed-loop system designed is asymptotically stable of 2D.

E. CONCULSION
Designing an easy, real-time and flexibly adjustable
controller according to different phases to improve control
quality can solve existing methods’ defect of nonadjustable
controller gain throughout the whole process and offer a
residence time method based on Lyapunov function. With
the method, we can get values directly without getting
the settings of other parameters, thus not only ensure the

optimal control performance of system but also reduce system
running time and realize efficient production.

III. CASE STUDIES
A. CASE ANALYSIS
Using the example of injection molding, the paper ana-
lyzes the fault-tolerant control for multi-phase batch process.
A batch of injection molding process mainly includes the
following three phases: the injection phase, the pressure
holding phase and the cooling phase. The control of injec-
tion and pressure holding phases affects the final quality
of products directly, and the cooling phase only cools the
high-temperature finished products without control mea-
sures. Therefore, the paper only focuses on the injection
phase and pressure holding phase of injection molding, stud-
ies the switch from the injection phase to the pressure holding
phase of system with actuator fault, and builds the corre-
sponding mixed state-space model by combining with the
2D model theory. We select different fault values and com-
pare their experimental images. The comparison results with
different actuator faults show that the 2D method proposed
not only ensures the stable running of system but also has
advantages of fast convergence, short running time and quick
tracking, and thus realizes the high-efficiency production.
The mathematical models of injection phase and pressure
holding phase of injection molding process are described as
follows:

The model of injection speed IV and valve opening VO of
injection phase is

IV
VO
=

8.687z−1 − 5.617z−2

1− 0.9291z−1 − 0.03191z−2
IV (t + 1, k)− 0.9291IV (t, k)− 0.0319IV (t − 1, k)

i.e.

= 8.687VO(t, k)− 5.617VO(t − 1, k).

The model of cavity pressure NP and injection speed IV of
injection phase is

NP
IV
=

0.1054z−1

1− z−1

i.e. NP(t + 1, k) − NP(t, k) = 0.1054IV (t, k), where the
set point for injection speed IV of injection phase is 40mm/s
and the set point for cavity pressure NP of holding phase
is 300bar.

We suppose
x11 (t, k) = IV (t, k)
x12 (t, k) = IV (t − 1, k)
x13 (t, k) = NP(t, k)
u(t, k) = VO(t, k),

x1(t + 1, k) =


x11 (t + 1, k)
x12 (t + 1, k)
x13 (t + 1, k)
u(t, k)
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and then the state-space model of injection phase is as follows

x1(t + 1, k) =


0.9291 0.0319 0 −5.617α

1 0 0 0
0.1054 0 1 0

0 0 0 0



× x1(t, k)+


8.687
0
0
1

 u1F (t, k)
y1(t, k) =

[
1 0 0 0

]
x1(t, k)

The model of cavity pressure NP and valve opening VO of
pressure holding phase is

NP
VO
=

171.8z−1 − 156.8z−2

1− 1.317z−1 + 0.3259z−2

i.e.

NP(t + 1, k)− 1.317NP(t, k)+ 0.3259NP(t − 1, k)

= 171.8VO(t, k)− 156.8VO(t − 1, k).

We suppose 
x21 (t, k) = NP(t, k)
x22 (t, k) = NP(t − 1, k)
u(t, k) = VO(t, k)

and then have the following state-space model of pressure
holding phase:

x2(t + 1, k) =

 1.317 −0.3259 −156.8α
1 0 0
0 0 0


× x2(t, k)+

 171.8α
0
1

 u2F (t, k)
y2(t, k) =

[
1 0 0

]
x2(t, k)

Therefore, we adopt the switching condition of
[
0 0 1 0

]
x i(t, k) ≥ 350, i.e. once the cavity pressure exceeds 350,
the systemwill switch from the injection phase to the pressure
holding phase. Because the switch between the state-space
matrices of injection phase and pressure holding phase is
the transition of different dimensions, we can realize it with
the state-transition matrix [42]. The paper proposes a linear
quadratic tracking predictive fault-tolerant control method
for multi-phase batch process based on 2D model theory.
Using the strategy combining the 2D-model-based ILC with
the linear quadratic predictive fault-tolerant tracking control,
the paper studies the batch process with time delay and
actuator fault. The paper simulates the injection phase and
pressure holding phase of injection molding process and uses
the simulation example with different fault values to prove
the effectiveness of the method proposed.

FIGURE 1. (a) System output for the 29th, 30th and 60th batches
(α = 0.6). (b) System output for the 29th, 30th and
60th batches (α = 0.2).

B. SIMULATION RESULTS
To show the control effect of 2D method proposed,
we select different fault values for the simulation, which
are selected are 0.2 and 0.6. The batch with fault is the
30th batch. We select the 29th, 30th and 60th batches as the
previous batch of fault batch, the fault batch and the batch
after fault. Next, we compare the system output, the tracking
error and the system input with the two fault values through
the simulation. Simulation figures are as follows.

Figure 1a shows the system output before and after
fault. In the previous batch of fault, the system output is
almost a smooth straight line approaching the set value with
small fluctuations in the switching point at the 86th step.
In the fault batch, the system output value fluctuates greatly
and is much lower than the set point 40mm/s after the
50th step. Besides, the cavity pressure is also much less
than the set point 300bar after switch. After a period of
running, in the 60th batch after fault, the system output is
a smooth straight line similar to the control effect of the
29th batch before fault. We can see that the method proposed
is effective.

Figure 1b shows that in the 30th batch with fault, the
system output presents greater fluctuations than the case with
actuator fault of 0.6. The control effect is poor but the system
output can still track the given value.
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FIGURE 2. (a) Tracking error for the 29th, 30th and 60th batches (α = 0.6).
(b) Tracking error for the 29th, 30th and 60th batches (α = 0.2).

Figure 2a shows the tacking error for the batches before and
after fault batch. In the previous batch of fault, the tracking
error stabilizes on a fixed value quickly in the initial phase,
and then has fluctuations after switch, but becomes a straight
line approaching 0.2 infinitely after running a dozen steps.
In the fault batch, the error has obviously greater fluctuations
and the control becomes poor. In the 60th batch after fault, the
error has small fluctuations initially, but the fluctuations are
obviously smaller than those in the 29th batch, the previous
batch of fault batch, and the error presents a stable straight
line approaching 0.1 after running a few steps. Figure 2b
has a more serious fault than figure 2a, so its fluctuations
at the point of switch in the previous batch of are greater
than those in figure 2a, but the value stabilizes on the fixed
value 0.3 after a few steps. In the fault batch, the track-
ing error is obviously bigger than that in figure 2a. In the
60th batch after fault, the error tracking is slow and then sta-
bilizes on a straight line approaching the fixed value of 0.1 in
the 194th step. Although the tracking velocity is slower than
that in figure 2a, the control effect is still good.

Figure 3a shows the system input for the batches before
and after fault. From the figure we can see that in the previ-
ous batch of fault, the input value is a smooth straight line

FIGURE 3. (a) System input for the 29th, 30th and 60th batches (α = 0.6).
(b) System input for the 29th, 30th and 60th batches (α = 0.2).

approaching 0.17. In the fault batch, the input value increases
and approaches a fixed value 0.23 with many fluctuations.
In the 60th batch, the batch after fault, the input value shows as
a smooth straight line approaching 0.28. Figure 3b shows that
in the batch with fault, the system input has obvious fluctua-
tions and presents a straight line approaching 0.35. In the 60th

batch after fault, the input value has smaller fluctuations and
presents a smooth straight line approaching 0.85. Because the
fault hasn’t been eliminated and needs adjustments continu-
ously, the input value increases continuously. Although the
input value increases, the stability is still good. In conclusion,
the method designed has a good control effect on different
actuator faults, thus proving the effectiveness of the method
proposed.

IV. CONCLUSION
The actuator fault is very common in the industrial produc-
tion, so we need to reduce the probability of fault to reduce the
risks caused by fault. The paper proposes a linear quadratic
predictive fault-tolerant control method for multi-phase batch
process based on 2D model theory specific for the problems
of actuator fault and input time delay in bath process pro-
duction. According to the multi-phase batch process model
with time delay and fault, the paper introduces a new variable

VOLUME 7, 2019 33607



L. Wang, W. Luo: LQPFTC for Multi-Phase Batch Processes

to build a new state-space model with no time delay, and
considers the closed-loop system as a 2D-Roesser model
containing the state error and the output tracking error based
on 2D theory and then designs an easy, real-time and flexibly
adjustable controller according to different phases to improve
control quality, and thus solves existing methods’ defect of
nonadjustable controller gain throughout the process. Using
a simulation example, the paper proves that the method pro-
posed can ensure the system’s good tracking performance and
optimal control performance with different actuator faults to
meet the requirements of industrial production and enhance
productivity, and thus can improve modern industrial produc-
tion greatly.
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