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ABSTRACT Unmanned aerial vehicle technology has made great progress in the past and is widely used
in many fields. However, they are unable to meet large-scale and complex missions with a limited energy
reserve. Only multiple unmanned aerial vehicles (multi-UAV) work together to better cope with this problem
and have been extensively studied. In this paper, a new systematic framework is proposed to solve the
problem ofmulti-UAV collaborative task allocation. It is formulated as a combinatorial optimization problem
and solved by the improved clustering algorithm. The purpose is to enable multi-UAV to complete tasks
with lower energy consumption. As the number of UAVs rises, it also appears the flight safety issues such
as collisions among the UAVs, an improved multi-UAV collision-resistant method based on the improved
artificial potential field is proposed. Besides, the UAVs connected with the internet are vulnerable to the
various type of network attacks, a method based on the intrusion detection system is proposed to resist
the network attack during multi-UAV mission execution. We have also proposed an improved method to
improve the accuracy of task allocation further. In addition, an online real-time path planning is proposed
to enhance the robustness of multi-UAV to cope with sudden problems. Finally, the numerical simulations
and real physical flying experiments showed that the proposed method could provide a viable solution for
multi-UAV task allocation; moreover, compared with other task allocation methods, our method has great
performance.

INDEX TERMS Multi-UAV, task allocation, collusion-resistant, secure communication, intrusion detection
system, clustering algorithm.

I. INTRODUCTION
The UAV technology has developed rapidly in recent years,
expanding from the past military applications to the civilian
sector. The UAVs can replace the manned vehicles to exe-
cute a variety of complex tasks. With the advantages of the
UAVs, it is widely used in security patrol [1], regional mon-
itoring, target search [2], topographic mapping [3], mineral
exploration [4] and agricultural production [5], etc. Although
the UAVs also exposes many issues, mainly contain limited
energy reserve, the limit of commination distance, which
cannot perform the long-time and large-scale mission. The
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multi-UAV are formed as a cluster and work collaborative to
complete missions effectively and quickly. The problem of
multi-UAV collaborative task allocation is to arrange some
UAVs to perform the tasks consists of given target waypoints
in a shorter decision time, the purpose is to minimal system
cost efficiently.

When themulti-UAV are performing tasks, considering not
only the benefits of single one, but also the overall benefits
of the system. It is a complex combinatorial optimization
problem with a variety of qualifications, considering the size
of the mission, the flight energy reserve of the UAV, and
the communication distance limit [6]. In real environment,
it is difficult to describe this mathematical model accurately,
especially the uncertainties from the external environment.
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Importantly, the task-allocation problem is an NP-hard prob-
lem [7]. Therefore, the size of the problem (the number
of waypoints, the number of missions, and the number of
UAVs in the cluster) will affect the solution to the problem.
The density of the UAVs in cluster determines its ability to
solve problems. With the increasing of multi-UAV cluster
density, the collision possibility [8], [9] is also increasing.
In addition, when the number of UAVs is large, they are
vulnerable to the network attack [10], [11]. The UAVs involve
numerous public safety issues as well as privacy protection,
they should meet the security demands such as privacy, con-
fidentiality, integrity, and non-repudiation to provide secured
communications against attackers, and malicious nodes. How
to distribute a series of mission points to multi-UAV in a
short period to maximize the total flight efficiency of the
UAV system, under the guarantee of collision-resistant and
the secured communications between the UAVs in cluster.
In order to solve this problem, we try to find a system solution
framework that can respond to uncertain environment and
complex tasks.

In this paper, we propose a combined optimization model
for collaborative task assignment in the actual execution of
multi UAVs. Then we proposed a novel method based on
improved artificial potential field to solve the problem of
collision-resistant among UAVs as well as the method to
resist network attack. Then we use the number of UAVs in the
cluster as the number of subtasks. With the improved cluster-
ing algorithm, all the waypoints are divided according to the
Euclidean distance between the waypoints, so that the tasks
are equally distributed to the UAVs. Finally, in order to deal
with the uncertain environment in the flying, we introduce the
robustness theory and task online re-planning scheme should
be this problem. The main contributions of this paper are as
follows:

1) We propose the method to collision-resistant as well
as resisting network attack for the flight safety of
multi-UAV.

2) We propose a solution framework for the task allo-
cation problem based on clustering algorithm and
real-time online path planning method for the sudden
problems.

3) We build a real experimental platform, and conduct
the actual flight and simulation experiments proved the
effectiveness of our algorithm.

The organization structure of this paper are as follows:
the related issues are discussed detailedly in Section II.
In Section III, we introduce the mathematical model and
the problem formulation. In Section IV, we proposed the
method to flight safety of multi-UAV. The framework of task
allocation algorithm is proposed in Section V. In Section VI,
we proposed the real-time online path planning under sudden
task allocation. In Section VII, serval simulations conducted
to verify our algorithm. Finally, further discussions and con-
clusions are proposed in Section VIII.

II. RELATED WORK
The problem of multi-UAV task allocation has been studied
extensively. It mainly includes the basic mathematics model,
solving algorithms and the handling of sudden problems.

A. MATHEMATICS MODEL
For the basic mathematical models of multi-UAV task allo-
cation, varieties of models have emerged. Forsmo et al. [12]
solved this problem by the mixed integer linear programming
model (MILP). Kendall and Phillip used a network flow
optimization model (NFO) [13], proposed a method to task
allocation for drones in a cluster. Peng et al. [14] proposed
a multi intelligent agent-based systems to task allocation.
In addition, Alighanbari and How [15] attributed this problem
to a Dynamic Programming (DP) problem, which is more
tractable than the previous MILP solution method.

In recent years, with the development of interdisci-
plinary studies, some research methods in other fields
have been applied to solve this problem. For example,
Karaman et al. [16] build a model of this problem by the
Process Algebra. The authors firmly grasp the time-sequence
of these tasks with composition to express all actions of the
multi-UAV. Similarly, Karaman and Frazzoli [17] introduced
the linear temporal logic language to represent this problem
and then apply it into MILP formulations.

B. SOLVING ALGORITHMS
In term of the solving algorithm, there is no perfect way to
solve the NP-hard problem in present stage. Even though, it is
possible to be solved in small-scale and medium-scale situa-
tions, the solving methods can be divided into centralized and
decentralized. For the centralized method: Shima et al. [18]
proposed a method on multi-agent to multi-task allocation
problem by the genetic algorithm. Alighanbari et al. [19]
introduce a MILP model to solve the task allocation problem
by the Tabu Search algorithm. Zhu and Tang [20] introduced
the method to task allocation by the particle optimization
algorithm. Besides; tree search algorithm, the ant colony
algorithm and state-space best-first search algorithm are also
the centralized methods [21]–[23]. Most of these methods
are global optimization algorithms that are very helpful in
solving the NP-hard problems. The previous work of the dis-
tributed algorithms is significantly fewer than the ones of the
centralized algorithms [24], [25]. The main advantage of the
distributed algorithm to improve the robustness of multi-UAV
task allocation. While multi-UAV are working cooperatively,
others can re-allocate the task by the distributed algorithm
immediately even if one of them cannot work well to ensure
that the whole multi-UAV system can still work successfully.
Even though, the distributed method is seldom ensuring the
result optimization of the results.

When the UAVs in the cluster are executing tasks together
in the Three-dimensional space, if the distance between the
UAVs is shorter than the safe radius, the collision will occur.
So the collision possibility is mainly determined by the
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relative position between the UAVs. Fraichard and
Asama proposed Deterministic methods including the
construction of regions of inevitable collision [26].
Du Toit and Burdick [27] proposed a method ignoring the
uncertainty associated with the sensed obstacle, and proposed
an approximation and its validity to enforce the result of
collision chance constraints. Zhou et al. proposed a method
that use a virtual rigid body abstraction, the collision are auto-
matically avoided within the swarm of UAVs and between
the UAVs and the obstacles [28]. Zhao Yue Zhang and Jing
Zhang focused on the risk of conflict between manned and
unmanned aerial vehicles and carry out the risk assessment
experiment of unmanned aerial vehicle (UAV) in non-isolated
airspace conflict. But the automatic avoidance system ofUAV
will increase [29].

The sudden problem of multi-UAV task allocation should
be considered seriously, it concludes: the failure of UAV,
changed environment, waypoints added in flight. Enhancing
the robustness is a better method to establish the model,
aiming to get an optimal result that can meet sorts of con-
straints in any situation even in the worst case. There are
some frameworks for the robust optimization theory [28],
[30]–[32]. If a new waypoint need to be add to the whole
task [33], and the single task cannot be finished due to the
commination problem of UAVs task re-allocation in real time
that can ensure the effectiveness.

Compared with different model of multi-UAV task allo-
cation, the model proposed in this paper is classical MILP
model. In addition, we introduce the distributed algorithm
that can improve the robustness of whole systems, and ensure
the task re-allocation while a new waypoint added in real
time.

III. PROBLEM DESCRIPTION AND FORMULATION
A. PROBLEM DESCRIPTION
There are Nt waypoints needed to be visited by UAV in
a soon time, a UAV cannot meet the demands due to the
limit of flight-distance. The problem proposed in this paper
is assigning Nt waypoints to Nv UAV to finish the task with
lower cost, where Nv < Nt and t, v ∈ (1, 2, 3 . . .). The cost
contains two parts: the flight-path length the time cost of task-
allocation. For the first problem. By the mirror representa-
tion of the waypoints [14]. The method in this paper is that
transform one waypoint multi tasks problem to one
waypoint-one task problem, then the multi-UAV task allo-
cation problem is defined as a multi Traveling Salesmen
Problem (m-TSP). And then it can be formulated by a com-
plete digraph G = (V ,E), where vertex set V ∈ (1, 2, 3 · · ·)
numbers the starting points of the UAV and the mirrored way-
point points; and each edge in t, j ∈ E represents the shortest
flying path between i waypoint and j waypoint (named city in
m-TSP), where i 6= j. For the rotor UAV, the shortest path
is the straight line of two waypoints. The m-TSP is also a
NP-hard problem, so the main problem is that divided the
total waypoint into Ns, s ∈ (1, 2, 3 · · ·) tasks where Ns < Nv,
then the m-TSP problem is formulated as Ns-TSP problem.

B. PROBLEM FORMULATION
The multi UAVs task allocation problem can be formulated
as a combinatorial optimization problem:

min
∑Ns
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∑N s
t

t=1

∑Nv

v=1
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k=1
X ki,j = 1, ∀i (3)∑Nt
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∑Nv
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Lki,j <

∑Nv

k=1
Lklim, ∀k (4)

where X ki,j is a 0-1 decision variable, which means that the k
UAV flies from the i-th waypoint to the j-th waypoint. The
N s
t means that the s task consists of m waypoints where

m < Nt . The count(Cs) means the number of waypoint in the
s-th task. The Lki,j represents the length of the shortest path
of k-th UAV flies from the i waypoint to the j waypoint. The
Pks represents the succeed rate of whether the k-th UAV have
enough energy storage metrics to receive the s task, due to the
remind energy of current UAV. The Lklim means the maximum
flying distance of k-th UAV with the limit energy.

The objective function (1) minimizes the weighted cost,
which concludes three main components: succeed rates,
flying length and the waypoint sequence of waypoint.
Their computing details will be illustrated further in the
section IIIC. For ∀i, j ∈ (1.2.3 . . . ,Nt) and ∀k ∈

(1.2.3 . . . ,Nk), when the UAV is flying between the way-
points, there are constraints are as follows: All the waypoints
will be visited ensured by the constraint (3), which is the
original constraint of the m-TSP problem. Each UAV must
land off the waypoint where it takes off. The constraint (5)
means that the sum length ofNk UAVflight distance is longer
than the sum optimal path length of Ns task. According to
this model, its variable dimension is Ns × Nt × N 2

t , with
the increase of Ns Nv and Nt , this problem will be more
complicated.

C. COMPUTING DETAILS
From the part B, the shortest feasible path Lij can be computed
by the coordinate of the i-th waypoint to the j-th waypoint by
the EuclidianDistancemethods.We assumeVk is the nominal
velocity of the k-th UAV, then the tki,j is the flying time of the
k-th UAV flies from i waypoint to j waypoint as follows:

Lij =

√∑n

k=1

(
xki − x

k
j

)2
(5)

tki,j =
Lki,j
Vk

(6)

In (1), the total cost of the multi-UAV depends on Ns task
and the optional path. This problem is divided into two parts:
allocating Ni waypoint to Ns task, path planning. We firstly
allocate Nt waypoints into Ns lists, each list consists of Nm
waypoints, where m = count(Cs). The N0 waypoint is the
point where the UAVs take off. In addition, they only can land
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FIGURE 1. Subtask distributing process.

off at the same waypoint. Then we should append N0 to the
s list as the first point and the last point. Finally, the s task
is boiled up by s list and two waypoint this method can be
descripted as Fig.1.

The Nt waypoints are evenly distributed to Ns task. Then
we allocate s-th task to the k-th UAV. Before the UAV flyting
form the i-thwaypoint to j-th waypoint,We sort thewaypoints
to find the best order to find the best path to reduce the flying
distance, then the UAV take off and flying by the waypoint
sequence, finally arrive and land at the N0.

IV. MULTI-UAV FLIGHT SAFETY
A. METHOD TO COLLISION-RESISTANT
The UAVs in the cluster can fly in the Three-dimensional
space, calculating the collision possibility is the premise of
collision-resistant effectively. We assume that the UAVs are
moving linearly so that we can the UAVs move in uniform
linear motion, and their flying velocity can be measured.
We assume that the distance of two UAVs is shorter than
the safety radius then the UAVs will collide or have already
collided. So the collision possibility is calculated by the
distance between UAVs.

The collision possibility is an important standard to guar-
antee the flight safety among the UAVs and offer an important
basis tomulti-UAV task allocation. In order to handle data and
analyze problems more obviously, we have assumed that the
UAVs shape is considered as a particle. And once the UAVs
meet, the process is regarded as static, and assumed that the
UAVs have a linear velocity.

Calculating the collision possibility, the safety radius is
the basic element for the collision judgement. Assuming that
there are two UAVs are flying in the nearby apace descripted
by Fig.2.

The coordinates of each UAV can be transferred from the
onboard-computer to the mobile station in real-time. The
Ci ∀i ∈ (1.2.3 . . .) represents the coordinates include latitude,
longitude, and altitude. Considering any two UAVs i-th and
j-th. In addition, the velocity of k-th UAV is represented asVk .
The Rk represents the safety radius of k-th UAV. The
ak represents the accelerate velocity of k-th UAV. The pro-
graming time on calculating the relative position by the
onboard-computer and the commutate lateness is seen as t.

FIGURE 2. The safety radius and distance between UAVs.

FIGURE 3. Multi UAVs fly by the path with collision risks.

Given that the Ci and Cj, calculated by (6), we can get the
distance Ci,j between i-th UAV and j-th UAV.

Rk = Vk t +
V 2
k

2ak
(7)

Di,j = Li,j −
∑k=j

k=i
Rk (8)

The distance Di,j represents the Buffer distance between the
UAVs, with the increasing of Di,j, the collision possibility
between the two UAVs is decreasing. Once the Di,j = 0,
which means the UAVs will collide.

Assuming that there are three UAVs in the cluster fly-
ing from its position to the target collaboratively, descripted
in Fig.3. TheUAV is flying by the path between its current and
the target. In addition, the UAVmoves to the A(B,C) position
at the time cost t (second), they are more likely to collide.

We project the three points in a two-dimensional plane
as shown in Fig.4. In the 2-D plane, there are three points
(A,B,C);, they represent the current position of each UAVs.
Then calculate the distance D among all the points, and we
assume that the DA,B, DC,B are shorter than others, it means
the UAV whose current position is B has to change its flight
path. The new flight path will be re-planned according the
new adding waypoint B’ and its target B, the process will be
descripted in part VI.

−→
BB′ = a+ b (9)

CB′ = CB +
−→
BB′ (10)

Therefore, the way to find the waypoint B’ is the key
problem to the collision-resistant algorithm proposed in this
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FIGURE 4. Points in the 2-D plane.

paper. The position vector a =
−→
AB and b =

−→
CB can be

calculated by the CA, CB and CC . the length a, b can be
calculated by (9).

B. METHOD TO SCECURED COMMUNICATIONS
The UAVs connected with the ground base station through
the wireless network, and communicate with others via the
Ad-Hoc network. Data transmission between V2B (base sta-
tion) and V2V is real-time.

In particular, the GPS coordinates and task information
between drones require more timeliness protection. This pro-
vides protection for collision-resistant between the multi-
UAV and flight path online planning. Therefore, accurate data
transmission capable of resisting network attacks is crucial.
A secure multi-UAV network needs to resist these attacks
mainly including integrity attacks [34] and denial of service
(DoS) attacks [35], [36]. A sub flight area can be demarcated
by the coordinates of the waypoints in the assigned tasks
of the UAV. The UAV are extremely vulnerable to GPS
spoofing attacks, according to the drone GPS coordinates,
if the current drone exceeds this area, it is considered sus-
picious showed as Fig.5, It will cut off the connection with
other UAVs, and the others reconnect.

In multi-UAV applications, the main task is to monitor,
sense, and disseminate the information collected. Since the
data collected by multiple drones have the same characteris-
tics, the data feature identifiers collected by each aircraft are
compared, and the attacked UAVwill be determined, and then
take the next flight intensification.

V. TASK ALLOCATION METHOD
A. CLUSTERING ALGORITHM
In [35] and [40], the K-means algorithm is a very popular
cluster method, it can divide data into clusters according to
defined measurement standards, and the data in the same
cluster have strong similarity with other group data that are
called clustering. The similarity is calculated by finding the
distance between the data object and the center of the cluster,
and the distance from the center of the cluster is divided into

FIGURE 5. Connection between UAVs.

a cluster. The workflow of K-means are as follows: First, k
objects are randomly selected, each object initially represents
the average or center of a cluster. For each of the remaining
objects, allocate them to the nearest cluster based on their
distance from each cluster center. Then recalculate the aver-
age of each cluster, find the new cluster center, and then re-
cluster. This process is repeated until the criterion function
converges or reaches the maximum number of iterations The
time complexity of the algorithm is O(nkt), where n is the
number of all objects, k is the number of clusters, and t is
the number of iterations. It cannot be applied to the multi-
UAV task allocation directly, we change the measurement
standards, this process will be descripted detailedly in the
next section.

We use distance (5) between two waypoints i and j as the
measurement standard. Firstly, we assume that the number
of tasks is equal to the number of clusters, and then we
select Ns objections randomly as the center of each cluster,
we allocate theNt waypoints to the nearest point ofNs centers
by the distance (5) of t-th waypoint and the nearest center,
and forming as Ns clusters. Then recalculate the average of
each cluster, find the new cluster center, and then repeat
clustering. This process is repeated until the criterion function
converges or the maximum number of loops is reached. The
workflow of waypoints clustering are shown as Fig.6.

From the Fig.7, the left image shows the 25 points in
the coordinate system, which means 25 original waypoints
without clustering by the proposed methods in the operating
area. The right image shows that the 25 points are divided
into 3 clusters and the 3 red dots represent the center of each
group.

For each cluster, we add the take-off point N0 to the top
of the cluster, and then we find the best path by the Genetic-
Algorithm (GA) path-planning method which is introduced
by [38], the GA method is a typical evolution method, used
widely in path planning, which has high efficiency, especially
in the short path planning. Then the full task consists of
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FIGURE 6. The process of clustering waypoints.

waypoints in sequence will be allocated to the UAVs accord-
ing its energy storage metrics. Finally, multi UAVs fly by the
sequence of waypoints.

B. OPTIMAL COUNT OF SUBTASK
Even though the previous methods can solve the task-
allocation problem, in this section we will present a new
method to enhance the effeteness. The K is equals to Ns,
and the proposed task allocation method is based on the
K-means algorithm, and the value of k. is most important. The
k affect the quality of clustering, the result which is calculated

FIGURE 7. The image on the left shows the 25 original waypoint; the
image on the right shows the 3 clusters.

FIGURE 8. The relationship between F and K.

by k is not necessarily the best. Then we should find an
optical k. We introduce that the coefficient F is Intra-cluster
variance that represents the degree of aggregation ofwaypoint
in the cluster, and calculated by the distance between center
and each waypoint that is in the cluster. Given the waypoints,
clustering by the proposed method in the last section, and we
calculate the F. The relationship between F and K is showed
as Fig.8.

VI. ONLINE PATH PLANNING ALGORITHM
In the process of multi-UAV collaborative execution, if a new
target is added to the tasks, we must allocate the new target
to a subtask, and find a new fly sequence of each subtasks.
The key to this problem is to minimize the flight path length
and improve real-time performance. Due to the urgency of
the implementation of new target, most algorithms cannot
guarantee the optimization of online task allocation.

The emergence of new waypoints is very random in the
flight process. If they are found before, the task is executed,
we have enough time to allocate the new waypoints to sub-
tasks to find an optimal solution, and otherwise, we should
find a method without optimization.

We mainly talk about the condition that a new waypoint
is added in the flight process. Firstly, the waypoint should
be allocated to a task. After the original task allocation in
section V, we get 3 points clustering center, which have the
mean and shorter distance to other waypoint in its cluster.
Calculate the distance of newwaypoint and each centers point
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FIGURE 9. The simple new-waypoint allocation method.

showed as Fig.9. we allocate the new waypoint to the nearest
center point, which gets an optimal flight length.

The new waypoint has been allocated to a subtask, then the
UAV needs to re-plan the flight path, because the UAV has
the original task in sequence. If the new waypoint is urgent
and must be vested in T time which calculate from the added
moment.We assume the UAV position where get the new task
as the new start point, and calculate the flight length between
all the left waypoints, then get the tki,j by (7). If Lki,j > T ,
then the UAV should fly to the new waypoint regardless of
optimization, otherwise, the newwaypoint can be visited after
j-th waypoint is visited.

VII. SIMULTAION AND EXPERIMENTATION
A. COMPARISION
This section, we will verify the proposed multi-UAV task
assignment algorithm through simulation experiments, and
conduct two comparison experiments. The comparison test
of Nv UAVs under one whole task, and comparing with
other methods of multi-UAV task assignment algorithm. All
the simulations are coded by PyCharm 2018.1.5(Community
Edition) in the Windows 10 Enterprise Edition 64-Bits Sys-
tem, and the hardware environment of all the simulation is in
a computer composed with Intel(R) Core(TM) i3-7100 CPU
@3.90Ghz 3.91Ghz,8.00G Samsung DDR4 2400Mhz RAM.

Assuming that the whole task consists 60 waypoints and
the point where UAVs take off, we allocate the whole task to
Nv UAVs, where ∀Nv ∈ (3.4.5.6). The runtime of algorithm
concerns the timeliness of task allocation, the flight distance
means the UAV energy cost. In order to avoid the randomness
of the experiment, we run 20 times to find the average of the
runtime and flight distance to ensure accuracy.

Assuming that the number of iterates is 6000, the Lklim is
2000(10m)which means the maximum flight distance of sin-
gle UAV, the method without allocation iterates 6000 times,
the number of the iterations by our algorithm is 6000/Nv. The
experiment result shows in Table 1.

TABLE 1. The comparison between task allocated and the whole task.

FIGURE 10. The comparison between serval methods.

We can see that with the increasing of Nv, the total flight
distance of Nv UAVs is decreasing, which means the flight
cost of multi-UAV is decreasing. The runtime of proposed
algorithm is also decreasing, which means the task allocation
process can be finished in a shorter time ensuring the timeli-
ness. Obviously, viewing from where Nv = 1, distance >Lklim,
which means a single UAV cannot finish the whole task.

We conduct the experiment compared our method with
other usual task allocation method such as the modified
GA with multi-type genes (MGA) [39], the greedy algo-
rithm, the random search (RS) method. Assume that there
are 25 waypoints in the operation area, and we assign Nv = 3
UAVs fly to finish the whole task. The experiment readily
20 times for each method, the comparison results are shown
in Fig.10. We can see that our method has the better per-
formance compared with other methods, and the RS method
has the worst performance. In the condition of our experi-
ment environment, the average simulation time of these algo-
rithm is 5.58 (MGA), 13.57(Gre), 6.15(KGA), 19.34(RS).
Although the runtime of our algorithm is longer than MGA
method, but it has the shorter flight length, which is the most
critical factor in multi-UAV task allocation.

B. REAL EXPERIMENT
In order to verify the effectiveness of our proposed solu-
tion, we validated it using a real experimental platform. Our
hardware experiment platform consists of three UAVs; the
model of the UAV is DJI M100, equipped with an on-board
Linux computer Manifold and other sensor device. All the
UAV connect with each other by the Wireless communi-
cation device installed on its computer, showed in Fig.11,
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FIGURE 11. The multi-UAV system.

FIGURE 12. Three UAVs fly in the sky.

the UAV can exchange the data collected by the sensor in the
real-time.

We conduct a real flight experiment on a 60 × 120 play-
ground. From the figure 10, there are three UAVs landing
at the nearby field. We set the velocity Vk = 12(m/s),
the acceleration ak = 6(m/s), and the commination lateness
is 0.1s. Given the flight task consists of 25 waypoints, after
allocating the whole task to three subtasks and distributing to
the UAVs. Then the UAVs take off from the home point and
fly by the sequence ofwaypoints. At onemoment, threeUAVs
are flying in the sky and keep a relative position showed as
Fig.12. and calculated the collision possibility.

We performed ten repeated experiments. The task alloca-
tion algorithm runs on the onboard computer for an average
time of 9.38 s, and then the UAVs take off to perform the task.
Whenmulti-UAV are approaching, a UAV can re-plan its path
to prevent the collision by calculating the collision possibility.
In addition, in the actual flight process, the UAVs are affected
by many factors; the GPS signal quality affected by the
weather condition, the deviation of the real-time position of
the drone, the flight speed and acceleration influenced by the
wind in the sky, etc. Generally, the experimental results of
actual flight are consistent with the simulation experiments,
which proves the feasibility and accuracy of our algorithms.

VIII. CONCLUSION AND FUTURE WORK
For the multi-UAV task allocation problem, we formulated it
as a combinatorial optimization problem, and then a mathe-
matical model proposed. Our purpose is to find an optimal
method to ensure that multi-UAV with many constraints can
finish the whole task efficiently at lower cost. We propose the
framework of multi-UAV task allocation, in addition, an opti-
mal k which equals to the Ns is presented to optimize the task
allocation algorithm further. We also propose the method of
real-time path planning and task re-allocation to deal with
the sudden problem such as new emergency targets. Finally,
serval simulations verify the effectiveness of our presented
algorithm.

Since the task allocation problem can be described as an
m-TSP problem and NP-hard problem, meanwhile, the pre-
sented algorithm for multi-UAV task allocation is also an
effective method, which can be extended to other similar
issues. Next, in order to solve NP-hard problem effectively,
we attempt to find a better method to satisfy the demand that
the task allocation between more targets at lower cost.
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