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ABSTRACT Time-varying formation control protocol design and analysis problems for the second-order
discrete-time multi-agent systems with directed interaction topology and communication delay are investi-
gated. A local information-based distributed protocol is designed by utilizing the delayed state information
of neighbors. Through system decomposition and stability analysis, an explicit description of the feasible
time-varying formation set is given. Necessary and sufficient conditions for the systems with the directed
topology and communication delay to achieve time-varying formation are obtained, which are related to the
topology of the interaction graph and the feasibility of the predefined formation. Necessary constraints on
the gain parameters and the sampling period are proposed, so as to guide the design of parameters in the
protocol. The numerical simulation results indicate that the protocol can steer the agents to accomplish the
desired time-varying formation and effectively tolerate the relatively large bounded communication delay.
Outdoor experiment with quadrotors is presented to demonstrate the effectiveness of the obtained theoretical
results with one sampling period delay.

INDEX TERMS Multi-agent systems, consensus control, time-varying formation, directed topology,
communication delay.

I. INTRODUCTION
Through efficient coordination, many inexpensive, simple
individuals can emerge much better performance than a sin-
gle monolithic one. Formation control, as one of the most
fundamental distributed cooperative control problems for
multi-agent systems, is a critical step of cooperation among
agents [1], [2]. Therefore, cooperative formation control for
multi-agent systems has become a research hotspot and accu-
rate maintenance of a geometric formation between agents
has been studied extensively [3]–[5]. In general, the forma-
tion control problems for multi-agent systems are to find
distributed coordination schemes for networks of agents such
that they would reach and maintain some desired, possibly
time-varying formation or group configuration. The main
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challenge in formation control of multi-agent systems is that
each agent has to use local information to achieve the desired
formation, rather than rely on centralized coordination, espe-
cially when there are communication constraints such as time
delay and directed topology.

Recently, consensus control for multi-agent systems has
attracted great attention from various domains and great
advances have been derived already [6]–[8]. Following
the boom in the research of consensus control problems,
consensus-based formation control approaches are devel-
oped. It has been proved in [9] that the traditional leader-
follower, behavior and virtual structure based approaches can
be regarded as special cases of consensus-based ones, and
the weaknesses of the previous approaches can be overcame
to some extent. Consensus based time-invariant formation
control problems for first-, second- and high-order multi-
agent systems have been studied extensively [10]–[15].
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When the time-invariant formation is achieved, velocity
components of all agents must be identical. This is not
enough because in many practical applications, such as tar-
get surveillance and formation reconfiguration, the desired
formation requires the velocity components of agents to be
different. In these cases, only the time-varying formation
can be used. In [16], coherent formation control of multi-
agent systems in the presence of time-varying formation
was studied. In [17], decentralized time-varying formation
control for multi-robot systems with first-order dynamics
was presented. Reference [18] dealt with the cooperative
control for nonlinear multi-agent systems, whose objective
was to stabilize a group of agents to time-varying formation.
Formation control problems for second-order swarm systems
with general directed topology were addressed in [19]. The
time-varying formation problems were studied in [20] under
directed topology and an adaptive approach was utilized to
develop a fully distributed formation controller for general
linear multi-agent systems. Reference [21] studied the time-
varying formation tracking problems for multiple manip-
ulator systems under fixed and switching directed graphs
with a dynamic leader. Reference [22] considered the time-
varying formation control problems for a class of networked
systems with unknown parameters and non-identical nonlin-
ear dynamics. Time-varying formation analysis and design
problems for general high-order swarm systems with com-
munication constraints were investigated in [23].

Considering the fact that time delay often exists in practical
systems due to the limitation of bandwidth, abundant data
transmission and asymmetry of communication links, forma-
tion control problems with time delay have been investigated
in [24]–[26]. Reference [27] researched the distributed for-
mation control problems for multi-agent systems with ran-
domly switching topologies and time delay. Reference [28]
considered the problems on formation tracking control of
second-ordermulti-agent systemswith communication delay.
In [29], the containment control problems were considered
for nonlinear multi-agent systems with directed topology and
time-delay. Reference [30] investigated the leader-follower
formation control problems for a group of networked robots
that were subject to bounded time-varying communication
delays and an asynchronous clock.

It should be pointed out that in most recent literatures,
the systems were described by continuous-time dynamics,
such as theworksmentioned above. However, in practical for-
mation control applications via interaction networks, continu-
ous states of agents (such as position and velocity) are always
represented and updated by their sampled values at a cer-
tain interval, which results in discrete-time or sampled-data
formulation. The conclusions obtained in continuous-time
systems cannot be used to solve such problems directly. Thus,
the formation control protocol design and analysis problems
for multi-agent systems with discrete-time dynamics are nec-
essary and of practical significance. In [31], the formation
control problems without time delay were investigated for
discrete-time multi-agent systems with unknown nonlinear

dynamics by means of iterative learning approach. Refer-
ence [32] presented a distributed control law based on the
output regulation control framework to solve the formation
control problems of first-order discrete-time nonlinear multi-
agent systems without time delay. Reference [33] used a fault
tolerant approach to control a group of wheeled mobile robots
in a formation without time delay. In [34], the time-invariant
formation control for high-order discrete-time multi-agent
systems was achieved in the absence of time delay. The
time-invariant formation control problems of second-order
discrete-time systems with time delay and undirected topol-
ogy were investigated in [35]. Reference [36] established the
necessary and sufficient condition for designing formation
of discrete-time second-order multi-agent systems with only
one sampling period delay and the desired formation cannot
be time-varying. The asynchronous time-invariant formation
control problems of second-order discrete-time multi-agent
systems with time-varying delays were investigated in [37].

Although some important results and approaches have
been established in a few references, research on formation
control for discrete-time systems is not as sufficient as for
continuous systems, especially the time-varying formation
control under conditions with time delay and directed topol-
ogy. This paper mainly focuses on the time-varying formation
control problems for second-order discrete-time multi-agent
systems with relatively large bounded communication delay,
which is meaningful yet still unresolved. The multi-agent
systems in this paper are described by second-order discrete-
time dynamics, where agents are governed by both position
and velocity states. It is more complicated and conforms to
reality as the sampling period and gain parameters can be con-
sidered simultaneously. Furthermore, the desired formation
can be time-varying and the interaction topology is directed.
A distributed protocol is designed by utilizing the delayed
states of neighbors. Compared with the previous results, this
paper aims to solve the following three problems for second-
order discrete-time multi-agent systems with directed topol-
ogy and communication delay: (i) what are the conditions
that guarantee the time-varying formation can be achieved
with communication delay; (ii) how to determine whether a
desired time-varying formation is feasible; (iii) how to design
the parameters in the protocol to achieve the feasible time-
varying formation.

The remainder of this paper is organized as follows.
In section II, some necessary preliminary results and lemmas
are described together with problem description. Section III
considers the time-varying formation control analysis and
protocol design problems. Numerical examples and outdoor
flight experiment are provided in section IV to illustrate the
validity of the algorithm and section V summarizes this paper.

II. PRELIMINARY AND PROBLEM DESCRIPTION
A. GRAPH THEORY
LetG = (W ,E,A) be a weighted directed graph with vertices
set W = {1, · · · ,N }, edges set E ⊆ {(i, j) : i, j ∈ W }
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and adjacency matrix A = [aij]N×N , which describes the
interaction topology among vertices, N is the number of
vertices. If there exists a directed edge eij ∈ E from vertex
j to i, then vertex j is called a neighbor of vertex i , i.e., vertex
i has information of j . Ni = {j|j ∈ W : eij ∈ E} is defined as
the neighbor set of vertex i. The adjacency matrix A satisfies
aij > 0 if and only if j ∈ Ni(j 6= i), otherwise aij = 0.
A directed graph G is said to have a spanning tree if there is
at least one vertex has directed paths to all the other vertices.
Laplacian matrix L = [lij]N×N plays an important role in
the description of neighbor relationship of a graph and it is
defined by

lij =


∑N

k=1,k 6=i
aik , i = j,

−aij, i 6= j.

Before discussing the main problems to be addressed in
this paper, we also need some necessary preliminary results
and lemmas on graph and matrix theory first.
Lemma 1 [38]: Let L be the Laplacian matrix of a

directed graph G with eigenvalues denoted as λi, i =
1, · · · ,N, then: (1) L has at least one zero eigenvalue and
1N is the associated eigenvector, that is L1N = 0 . (2) If
G has a spanning tree, then 0 is a simple eigenvalue of L,
and all the other eigenvalues have positive real parts, that is
0 = λ1 < Re(λi), i = 2, · · · ,N.
Lemma 2 [38]: If matrix 3 is nonnegative and has the

same positive constant row sum µ > 0, then µ is an eigen-
value of 3 with an associated eigenvector 1 and ρ(3) = µ,
where ρ(3) is the spectral radius. Furthermore, the eigen-
value µ of 3 has algebraic multiplicity equal to one if and
only if the graph associated with 3 has a spanning tree.

B. PROBLEM FORMULATION
Consider a multi-agent system with N nodes, labeled from
1 to N arbitrarily, define F = {2, · · · ,N }. The interaction
topology among the N agents can be described by graph
G, with each agent being a vertex and the interaction from
agent j to agent i is represented by the edge eij, where j is
called a neighbor of i. The purpose of this paper is to design
a protocol to steer the agents to form a predefined time-
varying formationwith directed topology and communication
delay. In the discrete-time case, using the forward difference
approximation as that employed in [39], the dynamics of
each agent is described by{

xi(t + δ) = xi(t)+ δvi(t),
vi(t + δ) = vi(t)+ δui(t),

(1)

where xi(t) ∈ Rn, vi(t) ∈ Rn and ui(t) ∈ Rn are the position,
velocity and control input vectors of agent i, i = 1, · · · ,N .
δ > 0 is analogous to the sampling period, in the following
we will refer to it as such. The update time instants t ≥ 0 will
be the form t = t0 + qδ, t0 ≥ 0 is the initial moment, q =
1, 2, · · · . n ≥ 1 is the dimension of the state. In the following,
for the sake of convenience in description, let n = 1 if not
otherwise specified. However, all the conclusions hereafter

can be extended to higher dimensional cases directly by using
Kronecker product.

The bounded time-varying formation set to be achieved
is specified by hx(t) = [h1x(t),hTFx(t)]

T , hv(t) =

[h1v(t),hTFv(t)]
T and ha(t) = [h1a(t),hTFa(t)]

T ,
where hFx(t) = [h2x(t), · · · ,hNx(t)]T , hFv(t) = [h2v(t),
· · · ,hNv(t)]T and hFa(t) = [h2a(t), · · · ,hNa(t)]T . hx(t),
hv(t) and ha(t) are so called formation reference vectors
with hix(t), hiv(t) and hia(t) being the components of posi-
tion, velocity and acceleration for agent i, respectively.
Define hi(t) = [hix(t),hiv(t)]T , ξ i(t) = [xi(t), vi(t)]T and
h(t) = [hTx (t),h

T
v (t)]

T .
Definition 1: Multi-agent system (1) is said to achieve the

desired time-varying formation specified by h(t) if and only
if for any given bounded initial states and i, j ∈ {1, · · · ,N },
i 6= j,

lim
t→∞

{(
ξ i(t)− hi(t)

)
−
(
ξj(t)− hj(t)

)}
= 0. (2)

Remark 1: It should be noted that h(t) only gives the
desired time-varying formation rather than the reference tra-
jectory for each agent to follow, that is hi(t) only gives the
relative offset vector of ξ i(t). In the case h(t) = 0, Defini-
tion 1 becomes a consensus seeking problem for discrete-time
multi-agent systems.

Due to the limitation of bandwidth, abundant data trans-
mission, motion of agents and congestion of network links,
time delay often exists in practical communication networks.
Assume that the communication delay only exists in the
actually transmitted information and every agent can use
its own instantaneous state information. Other constraints
such as packet loss and external disturbance are ignored to
simplify the problem and for convenience in description and
analysis. Each agent’s sampled state is encapsulated into a
data packet along with its time stamp. The communication
delay from agent j to agent i is denoted by τij and let h̄ =
max{τij : i = 1, · · · ,N , j ∈ Ni}. By introducing an informa-
tion storer (Fig. 1(a)) to temporarily store the received data
packets and each agent runs with a long enough waiting time
τ (τ ≥ h̄), such that all the data packets can be fully received
and updated. In the discrete-time case, it is reasonable to set
the value of the waiting time as τ = pδ, where p is the
smallest integer greater than or equal to h̄

δ
. It should be noted

that for discrete-time systems, although the communication
delay can be reduced by improving the bandwidth or event
triggered strategy [40], there exists at least one sampling
period delay when the states are exchanged among agents,
as shown in Fig. 1(b).

To solve the time-varying formation control problems
with directed topology and communication delay, the con-
trol protocol using local velocity and position information is
designed as follows,

ui(t) =
K∑
j∈Ni aij

N∑
j=1

aij
{
ξ i(t)− hi(t)

− [ξ j(t − τ )− hj(t − τ )]
}
+ hia(t), (3)

VOLUME 7, 2019 33519



L. He et al.: Time-Varying Formation Control for Second-Order Discrete-Time Multi-Agent Systems

FIGURE 1. A distributed communication delay processing scheme and
communication delay in discrete-time systems. (a) A distributed scheme
to uniform the communication delay. (b) Communication delay in
discrete-time systems.

where K = [−α,−β] (α, β > 0) is a constant gain matrix,
τ ≥ 0 is the bounded communication delay.

III. TIME-VARYING FORMATION ANALYSIS AND
CONTROL PROTOCOL DESIGN
In this section, necessary and sufficient conditions for system
(1) with directed interaction topology and communication
delay to achieve the desired time-varying formation h(t)
are presented. Then some necessary constraints on the gain
parameters and sampling period in the protocol are deduced.

Denote ψ ix(t) = xi(t) − hix(t), ψ iv(t) = vi(t) − hiv(t)
, ψ i(t) = [ψ ix(t),ψ iv(t)]

T , ς ix(t) = ψ ix(t) − ψ1x(t),
ς iv(t) = ψ iv(t) − ψ1v(t), ςFx(t) = [ς2x(t), · · · , ςNx(t)]

T ,
ςFv(t) = [ς2v(t), · · · , ςNv(t)]

T , ς (t) = [ςTFx(t), ς
T
Fv(t)]

T .
Then protocol (3) has the following form

ui(t) =
K∑

j∈Ni
aij

N∑
j=1

aij[ψ i(t)− ψ j(t − τ )]+ hia(t)

= −
1∑

j∈Ni
aij

N∑
j=1

aij
{
α[ψ ix(t)− ψ jx(t − τ )]

+ β[ψ iv(t)− ψ jv(t − τ )]
}
+ hia(t). (4)

Theorem 1: Multi-agent system (1) with directed topology
and communication delay achieves time-varying formation

h(t) under protocol (3) if and only if for any i ∈ {1, · · · ,N } ,
the formation feasibility condition

lim
t→∞

[hix(t)+ δhiv(t)− hix(t + δ)]

−
[
hjx(t)+ δhjv(t)− hjx(t + δ)

]
= 0

lim
t→∞

[hiv(t)+ δhia(t)− hiv(t + δ)]

−
[
hjv(t)+ δhja(t)− hjv(t + δ)

]
= 0

(5)

is satisfied and the delayed discrete-time system described by

ς (t + δ) =
[

IN−1 δIN−1
−αδIN−1 (1− βδ)IN−1

]
ς (t)

+

[
0 0
αδC βδC

]
ς (t − τ ) (6)

is asymptotically stable, where C = A′
11 − 1N−1A′

01, A′
=

[a′ij]N×N , a
′
ij = aij

/∑
j∈Ni aij, A

′
11 is a (N − 1) × (N − 1)

matrix formed by the last N − 1 rows and columns of matrix
A′, A′

01 is a row vector formed by the last N − 1 elements of
the first row of matrix A′.

Proof:
Substitute (4) into (1), the closed-loop dynamics of multi-

agent system can be written in a compact form as

ψx(t + δ) = ψx(t)+ δψv(t)+ hx(t)

−hx(t + δ)+ δhv(t)

ψv(t + δ) = −αδψx(t)+ αδA
′ψx(t − τ )

+ (1− βδ)ψv(t)+ βδA
′ψv(t − τ )

+hv(t)− hv(t + δ)+ δha(t). (7)

Define E =
[

1 0
1N−1 IN−1

]
, ē = 1N , Ē =

[
0

IN−1

]
,

E−1 =
[

1 0
−1N−1 IN−1

]
, ẽ = [ 1 0 ], Ẽ = [−1N−1 IN−1 ].

Let ζ x(t) = E−1ψx(t), ζ v(t) = E−1ψv(t), that is ψx(t) =
Eζ x(t),ψv(t) = Eζ v(t). Therefore, from (7), one obtains that

Eζ x(t + δ) = Eζ x(t)+ δEζ v(t)+ hx(t)

−hx(t + δ)+ δhv(t)

Eζ v(t + δ) = −αδEζ x(t)+ αδA
′Eζ x(t − τ )

+ (1− βδ)Eζ v(t)+ βδA
′Eζ v(t − τ )

+hv(h)− hv(t + δ)+ δha(t). (8)

Pre-multiplying both sides of (8) by E−1 leads to

ζ x(t + δ) = ζ x(t)+ δζ v(t)

+E−1[hx(t)− hx(t + δ)+ δhv(t)]

ζ v(t + δ) = −αδζ x(t)+ αδE
−1A′Eζ x(t − τ )

+ (1− βδ)ζ v(t)+ βδE
−1A′Eζ v(t − τ )

+E−1[hv(t)− hv(t + δ)+ δha(t)]. (9)

Note that

E−1A′E =
[
1 A′

01
0 A′

11 − 1N−1A′
01

]
(10)
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and C = A′
11 − 1N−1A′

01, it follows from (9) and (10) that

ςFx(t + δ) = ςFx(t)+ δςFv(t)

+ Ẽ[hx(t)− hx(t + δ)+ δhv(t)]

ςFv(t + δ) = −αδςFx(t)+ (1− βδ)ςv(t)

+αδCςx(t − τ )+ βδCςFv(t − τ )

+ Ẽ[hv(t)− hv(t + δ)+ δha(t)], (11)

which means that

ς (t + δ) =
[

IN−1 δIN−1
−αδIN−1 (1− βδ)IN−1

]
ς (t)

+

[
0 0
αδC βδC

]
ς (t − τ )

+

(
I2 ⊗ Ẽ

) [ hx(t)− hx(t + δ)+ δhv(t)
hv(t)− hv(t + δ)+ δha(t)

]
.

(12)

Based on Definition 1, ς (t) represents the time-varying
formation error, that is the formation is achieved if and only
if ς (t) → 0 as t → +∞ for any initial condition ς (t),
t ∈ [t0−τ, t0]. From (12), it holds that ς (t) converges to zero
if and only if the system described by (6) is asymptotically
stable and

lim
t→∞

(
I2 ⊗ Ẽ

)([ hx(t)+ δhv(t)
hv(t)

]
−

[
hx(t + δ)
hv(t + δ)

]
+

[
0N+1
δha(t)

])
= 0 (13)

is satisfied. By substitute Ẽ into (13), it can be obtained that
lim
t→∞

[hix(t)+ δhiv(t)− hix(t + δ)]

− [h1x(t)+ δh1v(t)− h1x(t + δ)] = 0

lim
t→∞

[hiv(t)+ δhia(t)− hiv(t + δ)]

− [h1v(t)+ δh1a(t)− h1v(t + δ)] = 0.

(14)

As the agent numbered 1 is arbitrarily chosen, it can be eas-
ily verified that (14) is equivalent to (5). Thus the conclusion
of Theorem 1 can be obtained. �
Remark 2: Theorem 1 solves the problems (i) and (ii)

raised in the Introduction. Equation (5) in Theorem 1 is a
description of the feasible time-varying formation set. It indi-
cates that not all desired formation can be achieved. The for-
mation which can be accomplished must meet the constraints
that the components of position, velocity and acceleration are
compatible without any conflicts. In fact, it is intuitive that
a group of agents cannot achieve any formation due to their
dynamic limitations. Asymptotically stable of condition (6)
ensures the formation error converges to zero and guarantees
the time-varying formation can be achieved with communi-
cation delay.

Denote H =

[
IN−1 δIN−1
−αδIN−1 (1− βδ)IN−1

]
, P =[

0 0
αδC βδC

]
.

The following lemmas are introduced, which will be useful
in the subsequent analysis.
Lemma 3: If α, β, δ > 0 satisfy at least one of the follow-

ing three sets of inequalities,{
β2 − 4α ≥ 0
0 < βδ ≤ 2

(a),
β2 − 4α ≥ 0
2 < βδ < 4
αδ2 − 2βδ + 4 > 0

(b),

{
β2 − 4α < 0
αδ − β < 0

(c), (15)

then ρ(H) < 1, where ρ(H) represents the spectral radius of
matrix H .

Proof: Let λ be the eigenvalue of H , that is,∣∣λI2(N−1) −H∣∣= ∣∣∣∣ (λ− 1)IN−1 −δIN−1
αδIN−1 (λ− 1+βδ)IN−1

∣∣∣∣=0.
(16)

Case 1: If λ = 1, then it follows that

det
(
λI2(N−1) −H

)
= αδ2 = 0, (17)

which is a contradiction.
Case 2: If λ 6= 1, one can derive from (16) that∣∣λI2(N−1) −H∣∣ = λ2 + (βδ − 2)λ+ αδ2 − βδ + 1 = 0,

(18)

then λ1,2 =
2−βδ±

√
(β2−4α)δ2

2 .
(1) If β2−4α ≥ 0, on the basis of the definition of spectral

radius of matrix, ρ(H) < 1 if and only if

max

(∣∣∣∣∣2− βδ ±
√
(β2 − 4α)δ2

2

∣∣∣∣∣
)
< 1. (19)

It’s easy to know that (19) is equivalent to2− βδ ≥ 0
2− βδ +

√
(β2 − 4α)δ
2

< 1

or 2− βδ < 0
2− βδ −

√
(β2 − 4α)δ
2

> −1.

After some calculation, it can be obtained that ρ(H) < 1
if and only if α, β, δ > 0 satisfy (a) or (b) in (15).

(2) If β2 − 4α < 0, it’s easy to know that ρ2(H) =
αδ2 − βδ + 1 and one can obtain thatρ(H) < 1 if and only
if α, β, δ > 0 satisfy (c) in (15). The proof of Lemma 3 is
completed �
Lemma 4: If ρ(H) < 1, then there exist positive constants

M ≥ 1 and γ ∈ (0, 1) such that ||H||t−t0 ≤ Mγ t−t0 , t ≥ t0.
Lemma 5: Inequality θ τ+δ − γ θ τ − l > 0 exists at least

one solution θ ∈ (γ, 1) if 1− γ − l > 0.
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Lemma 6: Equation (6) has a unique equilibrium 0 as t →
+∞ if the interaction graph of agents G has a spanning tree.

Proof: It is equivalent to verify

lim
t→∞

{
(I2(N−1) −H − P)ς (t)

}
= 0, (20)

that is

lim
t→∞

[
0 −δIN−1

αδ(IN−1 − C) βδIN−1 − C

](
ςFx(t)
ςFv(t)

)
= 0. (21)

has a unique solution 0 if the interconnection graph has a
spanning tree.

It is easy to obtain that lim
t→∞

ςFv(t) = 0 from (21), then we

only need to prove that lim
t→∞

{
(IN−1 − C)ςFx(t)

}
= 0 if and

only if lim
t→∞

ςFx(t) = 0, that is C has no eigenvalue 1. Since
the interaction graphG associated with A has a spanning tree,
it indicates that matrix A′ has the eigenvalue 1 with algebraic
multiplicity 1 based on the definition of A′ and Lemma 2.
Thus 1 is not the eigenvalue of C by its definition and some
simple matrix operation. The proof of Lemma 6 is completed.

�
Theorem 2: Under control protocol (3), for any bounded

time delay, there exist α, β and δ such that the time-varying
formation of system (1) is reached asymptotically if and only
if the interconnection graph G has a directed spanning tree.

Proof: (Sufficiency) By (6), one can derive that

ς (t) = Hqς (t0)+
q−1∑
s=0

Hq−1−sPς (t0 + sδ − τ ), (22)

where t = t0 + qδ, q = 1, 2, · · · .
By Lemma 3, if α, β, δ > 0 satisfy (15), then ρ(H) < 1.

Noticing from Lemma 4 that there exist constants 0 < γ < 1
and M ≥ 1 such that ‖H‖t−t0 ≤ Mγ t−t0 , t ≥ t0. Therefore
by (22), we have

‖ς (t)‖ ≤ Mγ q ‖ς (t0)‖

+

q−1∑
s=0

Mγ q−1−s ‖P‖ ‖ς (t0 + sδ − τ )‖. (23)

For 1−γ−M ‖P‖ > 0, by Lemma 5, there exists a positive
constant θ ∈ (γ, 1) such that

θ τ+δ − γ θ τ −M ‖P‖ > 0.

In the following, we will show that

‖ς (t)‖ ≤ M ‖f ‖ θ t−t0 , t ≥ t0, (24)

where ‖f ‖ = supt∈[t0−τ,t0] ‖ς (t)‖.
It is obvious that ‖ς (t)‖ ≤ ‖f ‖ ≤ M ‖f ‖ θ t−t0 for t ∈

[t0 − τ, t0].
Next, we need to show for any η > 1,

‖ς (t)‖ ≤ ηM ‖f ‖ θ t−t0 1
= ϕ(t), t ≥ t0. (25)

If (25) is not true, then there must exist t∗ = t0 + q∗δ,
q∗ > 0, such that ‖ς (t)‖ < ϕ(t) for t ∈ [0, t∗) and
‖ς (t∗)‖ = ϕ(t∗).

Then by (23), one can obtain that

ϕ(t∗) =
∥∥ς (t∗)∥∥

≤ Mγ q
∗

‖ς (t0)‖

+

q∗−1∑
s=0

Mγ q
∗
−s−1
‖P‖ · ‖ς (t0 + sδ − τ )‖

≤ Mγ q
∗

‖f ‖

+

q∗−1∑
s=0

Mγ q
∗
−s−1
‖P‖ · (ηM ‖f ‖ θ sδ−τ )

< ηMγ q
∗

‖f ‖

+

q∗−1∑
s=0

Mγ q
∗
−s−1
‖P‖ · (ηM ‖f ‖ θ sδ−τ )

= ηMγ q
∗

‖f ‖

+
ηM2 ‖P‖ ‖f ‖ γ q

∗

γ θ τ

q∗−1∑
s=0

(
θ δ

γ

)s

= ηM ‖f ‖

(
γ q
∗

+
M ‖P‖
θ τ

·
γ q
∗

−
(
θ δ
)q∗

γ − θ δ

)
. (26)

Based on Lemma 5, for 1− γ −M ‖P‖ > 0, there exists a
positive constant θ ∈ (γ, 1) such that θ τ+δ−γ θ τ −M ‖P‖ >
0, substitute into (26), it follows that

ϕ(t∗) < ηM ‖f ‖

(
γ q
∗

+
M ‖P‖
θ τ

·
γ q
∗

−
(
θ δ
)q∗

γ − θ δ

)

< ηM ‖f ‖

(
γ q
∗

+
θ τ+δ − γ θ τ

θ τ
·
γ q
∗

−
(
θ δ
)q∗

γ − θ δ

)
= ηM ‖f ‖ θq

∗δ

= ϕ(t∗), (27)

which is a contradiction, therefore the assumption is invalid.
That is if α, β, δ > 0 satisfy (15) and 1 − γ − M ‖P‖ > 0,
(25) is true. Thus, for any η > 1, (25) holds. Let η→ 1, (24)
holds. That is ς (t)→ 0 as t →+∞ for any initial condition
ς (t), t ∈ [t0 − τ, t0]. Since there has a globally reachable
node in graph G, then based on Lemma 6, the 0 equilibrium
is unique. That is the error system converges to zero and the
time-varying formation is achieved.

(Necessity) By way of contradiction, suppose that the
graph G has no spanning tree, and then there are at least two
disconnected subgraphs. Without loss of generality, we con-
sider the special case, that is τ = 0 and there are exactly
two disconnected agents in graph, denoted as w1 and w2.
Given the initial condition satisfies x1 (t0) = v1 (t0) = e1,
x2 (t0) = v2 (t0) = e2, the desired formation is set as h1(t) =
h2(t) = 0. Simple calculation indicates that v1 (t) = e1,
x1 (t) = (1+ pδ)e1, v2 (t) = e2, x2 (t) = (1+ pδ)e2. If e1 6=
e2, then the time-varying formation cannot be achieved, it is
in contradiction with the assumption that the formation can be
achieved. That is the graph G has a spanning tree. The proof
of Theorem 2 is completed. �
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FIGURE 2. Directed interaction topology and desired formation.
(a) Interaction topology among agents. (b) Desired time-varying
formation.

Remark 3: Theorem 2 solves the problem (iii) raised in the
Introduction. Some necessary constraints on the gain param-
eters and sampling period are obtained, which give a practical
way to design the parameters in the proposed protocol to
achieve the feasible time-varying formation.

IV. SIMULATION STUDY AND OUTDOOR EXPERIMENT
In this section, numerical simulations and outdoor experiment
with quadrotors are given to illustrate the effectiveness and
validity of the theoretical results.

A. SIMULATION STUDY
Consider a system consists of 5 agents and the interac-
tion topology G with 0-1 weights is shown in Fig. 2(a).
Clearly, G is directed and has a spanning tree. The initial
positions and velocities of all the agents are set as ξ i(t) =
[12 cos( 2π (i−1)5 ), 12 sin( 2π (i−1)5 ), 0, 0]T , i = 1, · · · , 5,
t ∈ [t0 − τ, t0].
These five agents are supposed to approach a pen-

tagonal formation and at the same time keep rota-
tion around the formation reference point, as shown
in Fig. 2(b). The time-varying formation is described by
hix(0) = [10 cos( 2π (i−1)5 ), 10 sin( 2π (i−1)5 )]T , hiv(t) =

[−π3 sin( 2π t60 +
2π (i−1)

5 ), π3 cos( 2π t60 +
2π (i−1)

5 )]T , i = 1, · · · ,
5. On the basis of Theorem 1, let{

hix(t + δ)− hix(t)− δhiv(t) = 0
hiv(t + δ)− hiv(t)− δhia(t) = 0, i = 1, · · · , 5.

which satisfies (5), thus hix(t) and hia(t) for all t > 0 can be
calculated.

Let α = 0.2, β = 0.5 and δ = 0.5s, after some calcu-
lation, we know that these parameters satisfy the constraints
given in Lemma 3. In order to compare the performance of
the algorithm under different time delays, simulations are
carried out with τ = 0.5s and τ = 1.0s, respectively.
The trajectories of positions and velocities of all the agents
are shown in Fig. 3 and Fig. 4. The squares and circles
in Fig. 3 represent the initial and final positions of agents,
respectively. It can be seen from Fig. 3 and Fig. 4 that the
designed control protocol (3) steers all the agents to approach
the desired time-varying formation successfully. Through the
comparison and analysis of Fig. 3 and Fig. 4, we can find

FIGURE 3. Positions of agents in simulation. (a) τ = 0.5s. (b) τ = 1.0s.

that the formation is accomplished within about 15s when
τ = 0.5s and 30s when τ = 1.0s, respectively. Increas-
ing the communication delay to 1.5s and 2.0s, by simula-
tion experiments, we also find that the formation is finally
accomplished within about 80s and 200s, respectively. This
shows that our designed protocol is valid and can effectively
tolerate relatively large bounded communication delay. But
with the increasing of communication delay, the convergence
rate decreases and the convergence time gets appreciably
longer.
Remark 4: Compared with existing technology, the pro-

posed method can adapt to longer sampling period (More
energy efficient and lower requirements for communica-
tion system) and larger communication delay (larger than
one sampling period) while achieving the desired time-
varying formation. For example, the method proposed in
works by Xu et al. [36] only solves the problem with
one sampling period delay and the desired formation is
time-invariant.
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FIGURE 4. Velocities of agents in simulation. (a) τ = 0.5s. (b) τ = 1.0s.

B. OUTDOOR EXPERIMENT WITH QUADROTORS
Outdoor experiment with quadrotors is presented to demon-
strate the effectiveness of the obtained theoretical results with
each UAV being regarded as an agent. Based on the hierarchi-
cal control architecture, a demonstration and verification sys-
tem for formation control is constructed. Fig. 5(a) shows the
experimental platform which includes one ground command
center (GCC) and five quadrotors. Each of the quadrotors has
been equippedwith a flight control system (FCS), a formation
control coordinator (FCC) and a 4G-based ad hoc networking
module (ANETM), as shown in Fig. 5(b). The GCC can fly
and land the quadrotors one after another or at the same time
as required, hence no remote controller is needed. The FCS
implements the attitude and altitude controllers and has an
embedded SD card to record the key flight parameters at a
rate of 10 Hz. The 4G-based ANETM is connected to FCC
and used for wireless communication among quadrotors and
theGCC. Through thewirelessmesh network, commands and
mission information can be sent to a specified quadrotor or to
all quadrotors as needed, and the states of each quadrotor can
be monitored by GCC in real time. Based on the commands
sent by GCC and the state information received from neigh-
bors, the control input is calculated by FCC and sent to FCS
through serial port. The tip-to-tip wingspan of each quadrotor
is 1200 mm. The quadrotors are powered by lithium battery

FIGURE 5. The formation flying experimental system. (a) Outdoor
experimental platform. (b) Hardware structure of the system.

and the duration is about 15 minutes. The maximum take-off
weight and payload is about 3500 g and 500 g, respectively.
The position and velocity in the horizontal plane (XY plane)
of each quadrotor are measured by a GPS module at a rate
of 10 Hz with accuracy of 1.2 m CEP.

The experimental procedure for the formation flying is as
follows. First, the GCC gives TAKEOFF command to the
quadrotors. The vehicles take off automatically and hover at
the initial positions. Then, the GCC gives START command
to the vehicles and the quadrotors start to perform the for-
mation approaching process. The supervisor can monitor the
parameters in real time through the GCC in case of emer-
gency.When the flight test is accomplished or any unexpected
situation happens, GCC gives the RETURN command to the
vehicles and the quadrotors return to their respective launch
positions automatically.

Due to the limitation of flying space, consider a system
with 5 quadrotors. For the purpose of comparison and ver-
ification, all the initial conditions and parameters are kept
the same as section 4.1. According to network conditions,
the average delay of the ANETM is about 50ms-180ms, that
is h̄ = 180ms. Thus, it can be obtained that τ = δ = 0.5s,
which means only one sampling period communication delay
needs to be considered. Fig. 6(a) and Fig. 6(b) depict the
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FIGURE 6. Positions and velocities of UAVs in experiment(τ = 0.5s).
(a) Evolution of positions. (b) Evolution of velocities.

FIGURE 7. Captured image of the quadrotors in experiment.

trajectories and velocities of the quadrotors in experiment,
respectively. The initial and final positions of the five quadro-
tors are marked by squares and circles. It can be observed that
the time-varying formation is asymptotically approached.

Fig. 7 shows a captured image of the formation in the outdoor
flying experiment. Due to the sensor errors and external dis-
turbances, etc., there are some errors between the experimen-
tal results and the simulation results, which are acceptable for
practical applications.

V. CONCLUSIONS
Time-varying formation control problems for second-order
discrete-time multi-agent systems with communication delay
are investigated, where the interaction topology is directed
and the desired formation is time-varying. By utilizing the
delayed state of neighbors, a local state information based dis-
tributed formation control protocol is proposed. An explicit
description of the feasible time-varying formation set is
given. Necessary and sufficient conditions for the systems
with directed topology and uniformed communication delay
to achieve time-varying formation are obtained, which are
related to the topology of the interaction graph and the fea-
sibility of the predefined formation. Necessary constraints
on the gain parameters and sampling period are proposed as
guidance to the design of parameters in the protocol. Numer-
ical simulations show that the proposed protocol can steer
the agents to accomplish the desired time-varying formation
and effectively tolerate relatively large bounded communica-
tion delay. But with the increasing of communication delay,
the convergence rate decreases and the convergence time gets
appreciably longer. Finally, outdoor experiment with quadro-
tors is presented to verify the effectiveness of the obtained
theoretical results with one sampling period delay.

There are still a number of issues need to be further inves-
tigated and extensions to systems with switching topologies
and time-varying delays are currently under investigation.
Another thing needs to be discussed in the future is that other
constraints such as measurement error, external disturbance
and input saturation should be taken into account.
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