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ABSTRACT Harmful gas leakage accidents in chemical plants have occurred from time to time. The
application of mobile robots to find odor source has become one of the hottest research topics. Compared
to traditional robots, unmanned aerial vehicle (UAV) is more flexible and safer. Therefore, using multi-UAV
to solve pollution source tracking is a meaningful study. In this paper, an air pollution source tracking
algorithm based on artificial potential field and particle swarm optimization is proposed. The particle swarm
optimization algorithm combined with artificial potential field method is used to guide the UAVs to track
the plume and avoid the collisions among them. At the same time, adaptive inertia weights are used to
help improve the convergence and the searchability of particles. We not only evaluated this algorithm in
simulation experiments but also designed a multi-UAV pollution source tracking platform for real-world
experiments. The experimental results show that the algorithm can accurately find the pollution source in a
short time.

INDEX TERMS Artificial potential field, multi-UAV, particle swarm optimization, odor source localization,
encrypted communication.

I. INTRODUCTION
While industrial civilization and urban development have
created enormous wealth for mankind, they have also brought
serious environmental problems. Air pollution has become
an inescapable reality in the lives of urban residents around
the world. In the real life and industrial production process,
toxic and harmful gas leakage accidents often occur, which
cause great harm to human health. Therefore, the accurate
localization of pollution sources is of great significance to
human life and production.

As early as the 1990s, researchers began to use mobile
robots for odor detection [1]–[5]. After more than two
decades of robot and sensor technology development, robotic
active olfaction has become one of the hot research top-
ics. Concentration gradient drive [2], bio-bionic algori-
thm [4]–[6], group intelligent optimization algorithm [7], [8],
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probability and information theory [9], [10] are the main
solutions to solve the odor source localization.

Compared with previous mobile robots, UAV has attracted
much attention due to its high mobility, flexibility, low
cost and ‘‘zero casualties’’, and researchs on UAV have
become more and more popular [11], [12]. Multi-UAV have
a greater advantage than a single UAV and they have a
huge improvement in task execution efficiency, endurance
and overall robustness. Therefore, Multi-UAV cooperate to
perform tasks has become a trend of development in the
future. Using Multi-UAV to solve the pollution source track-
ing problem can effectively reduce the tracking time and
improve the accuracy of pollution source localization. At the
same time, the application of Multi-UAV has brought new
challenges. How to solve the communication and data trans-
mission among UAVs has become the key to the problem.
VANET (Vehicular Ad-hoc NETwork) [13] is an emerg-
ing mobile ad hoc network that has been widely used
in intelligent transportation systems in recent years [14].
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Communication problems can be effectively solved by
VANET among UAVs.

Some works have used UAV to solve gas source
localization. Soares et al. [10] found the odor source
by integrating three behaviors-upwind movement, plume
centering, and Laplacian feedback formation control.
Neumann et al. [15] considered the influence of wind.
He proposed a pseudo-concentration gradient algorithm to
track plume and improved particle filter algorithm to con-
firm the odor source. But he only used a single UAV.
Scheutz et al. [16] proposed a simple heterogeneous UAV
proxy model that can locate and track target chemical clouds.
But the model is limited to simulation experiments.

In this paper, we propose a hybrid particle swarm optimiza-
tion algorithm to track the odor source. The main contribu-
tions of our works are as follows:

1. Based on the particle swarm optimization algorithm,
we introduce the artificial potential field method to solve
the problem of collision among particles when the particle
positions are updated. In addition, adaptive inertia weight
parameters are used to control the convergence and diver-
gence of the particle swarm.

2. We design and implement a Multi-UAV pollution source
location platform. Communication among UAVs and secure
data transmission are possible in real time.

3. We perform comparison experiments with other algo-
rithms in the simulation experiment and apply our algorithm
to the real environment. The results show that our algorithm
can accurately find the source of pollution and is suitable for
small-scale UAV group.

The structure of this paper is as follows. Section II intro-
duces the work related to odor source localization. Section III
explains our pollution source tracking algorithm. Section IV
describes the experiments we have done in the simula-
tion environment and analyzes the final results. Section V
describes the Multi-UAV pollution source tracking platform
and discusses the results of the actual experiments. SectionVI
summarizes our work and determines the direction of future
work.

II. RELATED WORK
In recent years, the olfactory source localization method
based on robot olfaction has been rapidly developed. Accord-
ing to the different search basis of the robot, the proposed
algorithm can be roughly divided into three categories. One
is bio-inspired algorithm, the second is engineering strategy
algorithm, and the last one is swarm intelligence optimization
algorithm.

A. BIO-INSPIRED ALGORITHM
Researchers are inspired by natural phenomena or processes
of the biological world during the research process to abstract
and simplify the methods of bio-tracking odor sources. Then,
they use robots to mimic biological search odor sources.

Neumann et al. [15] proposed a plume tracking algorithm
based on pseudo-concentration gradient. The UAV measures

the concentration data at two spatially separatedmeasurement
locations as a concentration gradient and adjusts the search
direction angle based on the real-time wind field.

Shigaki et al. [17] proposed a time-varying moth-inspired
algorithm. Silkworm is used as a model for chemical
plume tracing. The robot changes behavior adaptively or
time-varying depending on the environment. The response
of the silkworm moth to the stimulus was analyzed based on
the discrimination index and the estimator, and the behavioral
model was estimated using the support vector machine.

Ferri et al. [18] proposed a spiral algorithm. The robot
collects gas along a spiral path and calculates the Proximity
Index to assess the proximity of the odor source. The algo-
rithm does not rely on any information about the airflow.

B. ENGINEERED STRATEGIES ALGORITHM
Wu et al. [19] proposed a plume tracking method for mobile
sensor networks with fixed topologies. The direction of
motion of the robot is determined by the probability of
a concentration detection event and does not require an
anemometer.

Sinha et al. [20] proposed a heterogeneous multi-agent
system to solve the problem of unknown odor source localiza-
tion. The system uses a three-layer hierarchical collaborative
control scheme. The first layer obtains instantaneous plume
induction and population concentration and wind informa-
tion. The second layer is designed to manipulate agents
through traditional surging, casting, and searching methods.
The third layer is the collaborative control layer, which uses
the sliding mode control to pass the information obtained in
the first layer as a reference to the tracking controller.

C. SWARM INTELLIGENCE ALGORITHM
Marques et al. [21] proposed an odor source localization
method based on genetic algorithm. In this algorithm, the
odor concentration collected by the robot is taken as the
fitness value of the genetic algorithm individual, and the odor
source localization is completed by the crossover and mutat-
ing steps according to the target robot position. The method
can find the global optimal value without prior information of
the odor concentration region, and does not need to calculate
the odor concentration gradient.

Feng et al. [22] proposed an improved PSO (particle
swarm optimization) algorithm for identifying sources of
periodicity or decay in a room. The algorithm adds a new
headwind item to the standard PSO algorithm, which com-
bines the concentration with the airflow speed to improve
the search ability of the robot and prevent them from falling
into local optimum. Dadgar et al. [23] proposed an adaptive
robot PSO algorithm, which avoids falling into local optimum
by adjusting parameters, and uses a robot equipped with a
sensor to avoid obstacles. Compared with other methods, this
method is more significant in large environments and a small
number of robots.

Che et al. [24] proposed an improved ant colony algo-
rithm. The algorithm uses the gas concentration value as
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the value of the pheromone, and the update of pheromone
takes the historical pheromone value into account. The robot
shares the global pheromone distribution map and considers
the influence of the wind field on the plume and the obstacle
avoidance among the robots.

In general, odor sources can be found using different algo-
rithms. However, compared with the traditional single robot
biological heuristic calculation and engineering strategy algo-
rithm, the group intelligent optimization algorithm uses the
collective cooperation method to search. The search area is
larger, and it is not easy to fall into the local optimal position.
However, it is necessary to consider the coordination and
obstacle avoidance issues between group robots. In addition,
most of the research was limited to simulation experiments
and was not verified in the real-word.

III. POLLUTION SOURCE TRACKING ALGORITHM
In general, the odor source localization problem can be
divided into three sub-problems [25]. (1) Plume acquisition.
(2) Plume tracking. (3) Odor source declaration. Finally,
the odor source declaration refers to the use of some source
declaration algorithm to determine whether the location is
a true source of odor when the robot arrives at a location
that may be an odor source. This paper focuses on the plume
tracking phase.

A. PLUME ACQUISITION
The plume Acquisition is the beginning of the mission. The
robot quickly contacts the plume without any prior infor-
mation on the search area. Robot plume acquisition can be
divided into two modes, active mode and passive mode. Pas-
sive discovery means that the robot waits for the plume infor-
mation in place, which saves energy, but for high-powered
UAVs, the efficiency is very low, so an active search strat-
egy must be used. Active search strategies include random
search, system search, Zigzag search [26] andOutward Spiral
search [25].

Z-shaped search covers a large area in a short time. So in
our work, we use zigzag search in three-dimensional space
as a plume discovery strategy. The UAV group starts at a
certain starting position at the downwind, and starts to search
against the wind at different angles from the wind direction.
The UAVs continues to search when they reach the boundary.
When a UAV finds a plume, the plume discovery phase ends
and all UAVs enter the plume tracking phase.

B. PLUME TRACKING
Plume tracking is the act of using odor information and wind
field information to approximate the odor source along the
plume after the robot discovers the plume information.

1) ARTIFICIAL POTENTIAL FIELD ALGORITHM
In order to complete the multi-UAV odor source positioning
task, we must first solve the problem of obstacle avoidance
among UAVS. The APF (artificial potential field) method
has been widely used in the field of robot path plan because

of its simple implementation, high efficiency and smooth
generation path. The paths APF generated are not necessarily
the shortest, but is the safest and smoothest, especially for
UAVs which require high security.

The APF method is a virtual force method proposed by
Khatib [27] and has been widely used in robot path planning.
The basic idea is to abstract the motion of the robot into par-
ticles moving in a virtual artificial gravitational field. Robot
is attracted by the mission target, and the closer to the target,
the smaller the gravity. At the same time, the robot is repelled
by obstacles. The closer the obstacles are, the greater the
repulsive force. The resultant force of gravity and repulsion
will control the motion of the robot. However, this method
has the disadvantage that it is easy to fall into the local opti-
mum. In addition, when there are obstacles near the target,
the mobile robot may never reach the destination.

APF includes a gravitational field function and a repulsive
field function. The basic gravitational field function is:

Uatt (X) =
1
2
katt

(
X − Xg

)2 (1)

where katt is the gain factor, X is the current position of the
robot,Xg is the target point position, andX−Xg is the distance
between the robot and the target point.

The gravitational force generated by the gravitational field
on the robot is a negative gradient of gravitational potential
energy:

Fatt (X) = −OUatt (X) = −katt
∣∣X − Xg∣∣ (2)

The basic repulsion field function is:

Urep (X) =


1
2
krep

(
1

X − Xobs
−

1
ρ0

)2

X − Xobs ≤ ρ0

0 X − Xobs > ρ0

(3)

where krep is the gain factor, Xobs is the position of the
obstacle, X − Xobs is the distance between the robot and the
obstacle, and ρ0 is the distance of the obstacle. If the robot is
within the influence of the obstacle, the repulsion increases as
the distance between the robot and the target point decreases.
When the robot is outside the range of obstacles, the robot is
not affected by obstacles.

The repulsion of the robot generated by the repulsion field
is the negative gradient of the repulsion potential:
Frep (X)

= −OUrep (X)

=


krep

(
1

X − Xobs
−

1
ρ0

)
1

(X − Xobs)2
∂ (X − Xobs)

∂X
X − Xobs ≤ ρ0

0 X − Xobs > ρ0

(4)

The resultant force field and resultant force of the robot in
the virtual artificial force field are:

Utotal (X) = Uatt (X)+ Urep (X) (5)

Ftotal (X) = Fatt (X)+ Frep (X) (6)
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2) HYBRID PARTICLE SWARM OPTIMIZATION
This section first introduces the standard particle swarm
optimization algorithm, and then describes our proposed
APF-PSO algorithm.

a: STANDARD PARTICLE SWARM OPTIMIZATION
Particle Swarm Optimization is a biological heuristic algo-
rithm developed in 1995 by Kennedy [28]. PSO has attracted
the attention of the academic community because of its
advantages of easy implementation, high precision and fast
convergence. It performs well when applied to the robotics
field. Recently, many researchers have used PSO to solve the
odor source localization problem of multiple robots.

In PSO, each UAV is abstracted into a single particle.
In a D-dimensional target search space, N particles form a
population. The position of the i-th particle is represented
as a D-dimensional vector Xi = (xi1, xi2, · · · , xiD), i =
1, 2, · · · ,N , And its flight speed is also expressed as
a D-dimensional vector Vi = (vi1, vi2, · · · , viD), i =
1, 2, · · · ,N . The fitness values of all particles are calculated
from the fitness function. Each particle has a memory func-
tion that records the optimal position searched so far, called
the individual extremum Pbest = (pi1, pi2, · · · , piD), i =
1, 2, · · · ,N , representing the individual experience. In addi-
tion, the optimal position searched by the entire population
is called the global extremum gbest = (pg1, pg2, · · · , pgD),
representing the population experience. The speed update
for each particle consists of three parts: the first part is the
inertia speed, which represents the tendency of the particle
to maintain its previous speed. The second part is the speed
of cognition, which represents particles tend to the individual
optimal position. The third is the social speed, which repre-
sents the trend of particles close to the optimal position of the
group. The speed and position update formula is as follows:

vid = ωvid + c1r1 (pid − xid )+ c2r2
(
pgd − xid

)
(7)

xid = xid + vid (8)

where ω is the inertia weight, c1 and c2 are learning fac-
tors, r1 and r2 are random numbers in the range [0, 1], i =
1, 2, · · · ,N . The particle will follow the current optimal
particle to search optimal solution in the target search space.

b: APF-PSO ALGORITHM
When the UAV is used as a particle of PSO, the number of
UAVs will inevitably affect the accuracy of the PSO. In prac-
tical applications, the use of large-scale UAVs to search for
pollution sources is high cost, so it is necessary to improve
the algorithm for small-scale UAV clusters.

The inertia weight w needs to be adjusted to improve the
convergence of the basic particle swarm optimization algo-
rithm and the global search ability of the particles. The inertia
weight adjustment methods mainly include linear decrement,
nonlinear decrement and adaptive adjustment. In order to
reduce the running time of PSO and increase the search effi-
ciency, the population ends the iteration when it reaches the

global optimum. Therefore, linear decrement and nonlinear
decrement strategies according to the number of iterations are
not suitable. We use adaptive dynamic adjustment of inertia
weights. The adaptive value of particle i is fi at the kth iteration
and the optimal particle fitness value is fbest . The average
fitness value of the population is favg = 1

n

∑i=1
n fi. Adaptive

inertia weight adjustment is as follows:

ω =


ωmax − k1 ·

fi
favg

fi ≤ favg

1− k2

(
fi − favg
fbest − favg

)
fi > favg

(9)

where ωmax is the maximum inertia weight, and k1 and k2
are the algorithm parameters. It can be seen from (9) that
the particles with higher fitness values will reduce the inertia
weight and improve the local search ability of the particles.
Particles with lower fitness values need to increase the inertia
weight to improve the global search ability of the particles
and ensure the diversity of the particles.

When the standard PSO algorithm is applied to odor source
localization, the particles tend to fall into local optimum in the
later stage of the algorithm, resulting in the failure to find the
correct target. In order to avoid the algorithm falling into local
optimum, the concept of forbidden area is introduced. When
the particle reaches the local optimal position, the algorithm
determines whether the location is the target location, and if
not, the location is set to the exclusion zone and is added to
the forbidden zone list. Then the direction of particle search
should be far from the forbidden area.

In addition to the disadvantages of the PSO algorithm
itself, the problem of collisions among particles should also
be consideredwhen usingUAVs as particles. Therefore, when
the PSO algorithm particle velocity is updated, it is neces-
sary to combine APF to control the particle speed update to
avoid collisions among particles and improve the security of
the system. The new APF-PSO algorithm is affected by the
resultant force of gravity and repulsive force when particle
velocity is updated. Among them, gravity is the attraction of
the next iteration update position calculated by the particle,
and the repulsive force is the repulsive force among the
particles and the forbidden area.

When the distance among particles or the distance from the
forbidden areas is within the radius of influence, the particles
are repulsive. Moreover, the particles are not affected by
the repulsion when they are outside the radius of influence.
Gravity and repulsive force are calculated by (6). The particle
velocity and position update formula for APF-PSO is:

vi = Ftotal (xi) (10)

xi = xi + vi (11)

Particles are affected by both gravitational and repulsive
forces of APF as they are updated. Therefore, the particles
will move away from the forbidden area and other particles,
achieving the function of avoiding obstacles and moving
away from the local optimal position.
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At the same time, because of the randomness of the particle
swarm algorithm, the position of each update of the particles
is different, so even if the resultant force is zero, the posi-
tion will change in the next iteration. In addition, as long
as one UAV in the UAV group finds a source of pollution,
the mission is completed. Therefore, there is no case where
the repulsion in the standard APF algorithm is much larger
than the target gravity and the target cannot be reached. The
steps of our proposed algorithm are described as follows:

Step 1. Set the position of each UAV as the starting posi-
tion, and initialize the position and speed of each individual
in the population.

Step 2. All particles perform a zigzag search within the
target search area until a plume is found and then all particles
proceed to Step 3.

Step 3. Every particle takes the concentration value of the
current position as its fitness value.

Step 4. The particle calculates the next position according
to the PSO algorithm.

Step 5.Update the particle velocity and position according
to (10) and (11) and update the local optimum and global
optimal until the particle finds the local optimal value.

Step 6. Determine whether the local optimum position is
a pollution source. If it is the source of pollution, the posi-
tion is output and the algorithm is terminated. Otherwise,
the algorithm puts the position into the forbidden area list and
continues with Step 3.

The algorithm flow chart is shown in Fig. 1.

C. SOURCE DECLARARION
There have been many related studies on odor source state-
ments in previous work. We use the method of [11], which
uses a particle-based filter source declaration algorithm to
locate the odor source. This method uses gas and wind
measurements to reconstruct the trajectory of a gas patch
and creates a patch path envelope instead of a single patch
trajectory. If the position estimate is consistent for multiple
iterations, the source is considered to have been found.

IV. SIMULATION EXPERIMENT
A. EXPERIMENTAL SET
In order to verify the credibility of the algorithm, we use
matlab2014a to do the simulation experiment. Our imple-
mentation platform is Core i5-3330S CPU 2.70GHz Win-
dows 10 desktop computer. The Gaussian plume diffusion
model is one of the most widely used models for describ-
ing the diffusion concentration of pollutants continuously
leaking into the atmosphere along the downwind direc-
tion. Therefore, the Gaussian plume diffusion model is used
to evaluate the robustness of the algorithm in simulation
experiments. The simulation environment is a search space
of 200m×200m×50m, with the wind direction as the positive
direction and the wind speed being 2m/s. The takeoff point is
50m away from the source of pollution. In our experiments,
it was assumed that the UAV had found the plume and only
considered the plume tracking phase.

FIGURE 1. Flow chart of APF-PSO.

Related parameters are as follows. c1 = 2, c2 = 2,
maximum number of iterations = 500, vmax = 10 and safety
distance = 10.
We use the following two indicators to evaluate the perfor-

mance of the algorithm. One is the success rate (SR), defined
by the ratio of the number of successful odor sources to the
total number of runs. The other is the average length (AL),
which is the distance traveled by all UAVs when any UAV
confirms the source of the scent.

B. NFLUENCE OF INERTIA WEIGHT PARAMETER
The inertia weight parameters of the particles in our proposed
algorithm play an important role in the algorithm. Therefore,
the effects of different ωmax , k1 and k2 on the performance
of different population sizes of the algorithm are analyzed
experimentally. Table 1 shows the statistical results of the
success rate and average length collected by the algorithm
independently running 1000 times under different population
sizes and different parameters.

Table 1 shows the results of the algorithm for different
population sizes in different parameters. Fig. 2 shows the
effect of different parameters on SR and Fig. 3 shows the
effect of different parameters on AL. It can be seen from
the results that the population size has a great influence on
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TABLE 1. SR and ANI of different algorithms.

FIGURE 2. The effect of different parameters on SR.

FIGURE 3. The effect of different parameters on AL.

the SR and AL of the algorithm. The larger the population
size, the higher the SR and the smaller the AL. When the
population size is large, choosing a larger k2 can reduce
the AL. When the population size is small, the larger k2 will
reduce the SR and increase the AL. In general, when the
population size is large, a larger k2 should be chosen. When
the population size is small, we should choose a smaller k2,
ωmax and k1 have little effect on the algorithm.

C. EXPERIMENTAL RESULTS AND ANALYSIS
The proposed method is an improved algorithm based on
particle swarm optimization algorithm. Therefore, we choose

TABLE 2. SR and ANI of different algorithms.

FIGURE 4. UAV platform.

FIGURE 5. Ground station platform.

several classical group intelligence algorithms as comparison
algorithms. In this paper, we compare the success rates and
the average length of different algorithms with proposed
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FIGURE 6. The flight path of the UAVs.

method for different population sizes of the algorithm. The
simulation experiments use the same model environment
and parameters for comparison experiments. The parameter
selection is ωmax = 1.2, k1 = 0.2 and k1 = 0.2. Table 2
shows the experimental results.

It can be seen from Table 2 that APF-PSO has a higher
success rate in locating odor sources for different sizes
of populations, which is much higher than standard PSO
and GA. At the same time, in any population size, APF-PSO
takes fewer steps than other two algorithms, which greatly
saves search time and improves search efficiency. In addition,
it is clear that the success rate of all algorithms is higher as
the number of particles increases, but our method has a higher
success rate even when the number of particles is small.

V. MULTI-UAV POLLUTION SOURCE
TRACKING PLATFORM
A. EXPERIMENTAL PLATFORM
Multi-UAV pollution source tracking system consists of two
parts: the UAV platform and the ground station platform. The
UAV platform is mainly composed of three quadrotor UAVs
(DJI-M100, DJI-In-novations Inc.). Each UAV is equipped
with an onboard computer named ‘‘MANIFOLD’’. This com-
puter uses a Linux system, and can connect more sensors
through the USB port or serial port, including gas sensors
and wireless network cards. A fully loaded UAV can fly for
about 20 minutes. The Fig. 4 shows our UAV platform. The
main functions of the UAV platform include real-time data
acquisition, data fusion, data processing, task assignment,

communication among UAVs, and communication among
UAVs and ground stations.

The ground station platform consists of a mobile phone
mobile terminal and a server. The mobile terminal is con-
nected to the remote controller and can receive the data col-
lected on the UAV in real time. The received data is forwarded
directly to the server. The server processes and stores the
received data, and displays the current flight trajectory and
data information of all UAVs. The ground station platform is
shown in the Fig. 5.

The UAVs communicate based on the configured vehicle
ad hoc network. Because the obstacle avoidance of UAVs
requires high communication quality, we refer to an effi-
cient emergency-aware packet scheduling algorithm, which
is called EARS [29] and a time synchronization scheme [30].
In addition, the transmitted data must be authenticated and
need to be transferred quickly. Reference [31] proposed an
effective VANET communication protocol, which can send
encrypted data anonymously to other UAVs, and can quickly
verify the transmitted information.

B. EXPERIMENTAL SET
Our experimental environment is a playground of approx-
imately 50m×100m. Three UAVs were deployed on the
ground at a distance of 3m each. The takeoff point is located
at the center of the right boundary of the area, and the
coordinates are (0, 0, 0), where the wind direction is the
positive direction of the x-axis. Considering that it is diffi-
cult to achieve high-emission pollution sources in an open
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environment, and to ensure the safety of the experiment,
the coordinates of the pollution source points are simulated
(−55, −5, 20). All UAVs take off to a certain height at the
takeoff point and then execute the algorithm. Each UAV step
is set to a maximum of 3m. At least one UAV finds a source
of pollution and stops the algorithm.

C. EXPERIMENTAL RESULTS AND ANALYSIS
Fig. 7 shows the position when UAVs are finding the odor
source. Fig. 6 shows the flight path of the UAVs. In ten flight
experiments, one experiment could not find the source of pol-
lution within 20 minutes, and the accuracy of the experiment
was 90%. In nine successful experiments, the average time
cost from taking off the UAV to find a source of pollution was
5 minutes and 53 seconds, with an average length of 196. The
average error of positioning odor source is 2.03m. Consider-
ing the error of the UAV GPS signal and the threshold of the
algorithm, the error is within an acceptable range. In addition,
we also notice that wind speed has a greater impact on the
position of UAVs. Faster wind speeds can cause the position
of the UAV to shift, affecting the results of the experiment.
In general, the experimental results of actual flight are basi-
cally consistent with the simulation experiments, which prove
the feasibility and accuracy of our algorithm.

FIGURE 7. UAVs are finding the odor source.

VI. CONCLUSION
In this paper, we propose an odor source tracking algorithm
based on hybrid particle swarm optimization. We prevent
PSO particles into local optimization through adaptive inertia
weight and forbidden area. In addition, we introduce APF
to avoid particle collisions when updating particle positions,
which greatly improves the security of the system. In order to
verify the feasibility of the proposed algorithm, a simulation
experiment is carried out. The experimental results show that
the APF-PSO algorithm has a significant effect on search
success rate and efficiency. At the same time, our method is
also applicable to small-scale UAV groups, which can also
effectively reduce costs in practical applications. Moreover,
we design a multi-UAV pollution source tracking platform
for managing UAVs, displaying and storing data. Our next
work will consider applying the APF-PSO algorithm to a
more complex multi-pollution environment.
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