
Received February 19, 2019, accepted February 27, 2019, date of publication March 11, 2019, date of current version March 29, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2904083

Software Implementation of 10G-EPON
Downstream Physical-Layer Processing
Adopting CPU-GPU Cooperative Computing
for Flexible Access Systems
TAKAHIRO SUZUKI , SANG-YUEP KIM, JUN-ICHI KANI , AND JUN TERADA
NTT Access Network Service Systems Laboratories, NTT Corporation, Yokosuka 239-0847, Japan

Corresponding author: Takahiro Suzuki (suzuki.takahiro@lab.ntt.co.jp)

ABSTRACT The application of network function virtualization (NFV) and software-defined networks
(SDNs) to optical access systems continues to attract a lot of attention. Their use on general-purpose
hardware allows for cost-effective implementation and quick response to functional requirements. This
paper demonstrates the softwarization of the complete downstream physical (PHY)-layer functions of the
optical line terminal (OLT), including a scrambler, which uses a serial processing algorithm that cannot
be parallelized by a general-purpose graphics processing unit (GPU). We propose CPU-GPU cooperative
implementation architecture that softwarizes the complete 10G-EPON OLT downstream PHY. We achieve
10.3125-Gbps real-time performance through experiments for the first time.

INDEX TERMS SDN, NFV, access networks, GPU, PHY coding and scrambler.

I. INTRODUCTION
Network function virtualization (NFV) and software defined
networks (SDNs) are highly attractive as they support the
softwarization of network functions making flexible function
replacement and cost-effective implementation of network
equipment possible. The application of NFV/SDN to optical
access systems is seen as an urgent necessity.

For optical access systems, composing optical line ter-
minals (OLTs) on commercially-available general-purpose
hardware and software [1], [2], such as white-box switches
and open-source software, has been considered. Our contri-
bution is the flexible access system architecture (FASA) [3].
FASA modularizes OLTs into software functions, a general-
purpose server, and external modules. FASA combines these
components to realize a wide range of services and can
support the standardized 10G-EPON [4], NG-PON2 [5] and
XGS-PON [6]. Some related works on FASA have examined
the softwarization of PON systems [7], [8]. This approach
focuses on the upper-layer processing, and the external mod-
ule with the dedicated hardware is utilized for PHY process-
ing. Other works also focus on the upper-layer processing,

The associate editor coordinating the review of this manuscript and
approving it for publication was Walid Al-Hussaibi.

and the utilization of open-specification hardware and open
network operating system (ONOS) provides partial flexibility
to OLT implementation [9], [10]. However, no study has
described the realization of fully flexible OLTs. The final
goal of FASA is to fully softwarize OLT functions includ-
ing physical-layer (PHY) processing as this will enhance
the merits of SDN/NFV, which include maximizing system
programmability and eliminating the high costs imposed by
redesigning and fabricating PHY hardware.

The softwarization of all PHY processing is challenging
since PHY processes are computationally demanding and
general-purpose hardware is inferior to the application spe-
cific integrated circuits (ASICs) used by dedicated hard-
ware. Some other works [11]–[13] try to softwarize PHY
processing for wireless transmission. They focus on a single
function such as error correction, and do not have external
input / output ports for real data streams. Given that their
achieved throughput is Mbps class, the results are not valid
for access systems requiring more than Gbps throughput.
On the other hand, we have demonstrated real-time 10-Gbps
throughput for single PHY processing on general-purpose
graphic processing units (GPUs), which have large numbers
of computational cores and thus well support data paral-
lelism [14], [15]. The software implementation of forward

33888
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0001-5850-1172
https://orcid.org/0000-0003-2742-2935


T. Suzuki et al.: Software Implementation of 10G-EPON Downstream Physical-Layer Processing

FIGURE 1. Downstream PON system and OLT PHY coding. (RS:
reconciliation sublayer, PCS: physical coding sublayer, PMA: physical
medium attachment and PMD: physical medium dependent).

error correction (FEC) has been achieved for encoding [16]
and decoding [17] respectively. The burst-frame synchro-
nization for upstream signal was demonstrated using a novel
low-complexity algorithm [18] and OLT performance was
analyzed when our synchronization proposal was combined
with FEC [19]. We have demonstrated the softwarization of
upstream OLT PHY using these techniques [20]. Given that
PON upstream PHY functions are composed of just non-
serial processing algorithms, they were implemented on just
the GPU. However, PON downstream PHY functions consist
of serial and non-serial processing algorithms. In particular,
serial processing algorithms significantly hinder the full soft-
warization of the upstream and downstream PON PHY.

This paper proposes CPU-GPU cooperative comput-
ing to softwarize the complete OLT-PHY of downstream
10G-EPON. Since CPUs are faster than GPUs for serial PHY
functions in general, our approach is to switch between CPU
and GPU depending on the function needed. Our proposal
includes a novel scheme to control data transfer and GPU
kernel, including a novel implementation method. We soft-
warize the complete OLT-PHY functions of downstream
10G-EPON for the first time. This paper is organized as fol-
lows. Section II details downstream PHY functions in PON.
Section III describes our control scheme and implementation
method, which are key advances in the CPU-GPU cooperative
architecture. Section IV introduces the optimum processor
allocation of PHY functions. Section V demonstrates the
complete downstream OLT-PHY as softwarized by our pro-
posal. Finally, Section VI concludes this paper.

II. PHY PROCESSING IN DOWNSTREAM PON
Figure 1 shows the downstream PON circuit. An OLT is
connected to multiple optical network units (ONUs) and
continuous signals are sent downstream from OLT to ONUs.
The 10G-EPON function layer [4] is divided into physical

FIGURE 2. 64B66B Header addition.

medium attachment (PMA), physical medium dependent
(PMD), physical coding sublayer (PCS), and reconciliation
sublayer (RS). PCS, which is our focus, is mainly composed
of FEC encoding, 64B66B header addition and scrambling,
all of which are PHY coding functions. FASA can use and
replace PMA and PMD with the standard pluggable external
module.

For FEC encoding, Reed-Solomon (255, 223) [21] is
standardized in 10G-EPON. It inserts redundancy into data
sequences in the transmitter side to allow errors to be cor-
rected in the receiver side.

64B66B header addition inserts 2 bit headers into the
data sequence on an 8-Byte cycle (64 bits). This adds 1-bit
header two times as shown in Fig. 1. The 1-bit header addi-
tion involves header input, bitshift, and data copy as shown
in Fig. 2. The data in input memory is copied to output
memory while shifting the data by 1 bit every 8 Bytes and
adding a 1-bit header.

Scrambling converts the input sequence into a random
sequence for clock recovery. In 10G-EPON, the scrambler
polynomial is written as

G(x) = 1+ x39 + x58. (1)

Scrambling is specified in the IEEE 802.3 standard [22], and
is executed continuously on all bits. The process is shown
in Fig. 3. The algorithm holds 57 bit blocks of the serial
input. The exclusive OR (XOR) operation is performed on
the 38-bit delayed data, S38, and the 57-bit delayed data,
S57. The calculation is performed serially and repeatedly.
Given that this is a serial processing algorithm, its parallel
implementation on one or more GPUs is impossible.

In order to softwarize the complete OLT-PHY function
including such serial processing algorithms, our approach is
to cooperatively use CPU and GPU.

III. CPU-GPU COOPERATIVE IMPLEMENTATION
We propose a CPU-GPU cooperative architecture enabling
high-speed execution for complete PON downstream
OLT-PHY coding.

A. SERVER ARCHITECTURE WITH
UNITARY-OPERATION PROCESSORS
To explain our CPU-GPU cooperative architecture, this sub-
section reviews the basic architecture for unitary processors.

VOLUME 7, 2019 33889



T. Suzuki et al.: Software Implementation of 10G-EPON Downstream Physical-Layer Processing

FIGURE 3. Scrambler.

FIGURE 4. Server architecture with unitary-operation processors.
(a) CPU-oriented system and (b) GPU-oriented system.

FIGURE 5. Proposed CPU-GPU cooperative architecture to softwarize OLT.

Figure 4 shows two architectures used for the softwarization
of FEC encoding and decoding for PON upstream and down-
stream.

Figure 4 (a) shows the CPU-oriented system [16] in which
the CPU is connected to the IF board via PCI express (PCIe).
In order to continuously transfer the main signal processed
by the CPU to the IF board, the CPU controls and manages
the direct memory access (DMA) transfer. Figure 4 (b) shows
to the GPU-oriented system of CPU, GPU and IF board [17].
Direct data transfer from IF board to GPUwithout CPU inter-
vention is essential to fully utilize the GPU’s superior calcu-
lation performance. Our system uses two kinds of control:
DMA transfer and GPU kernel. CPU controls and manages
the DMA to transfer the main signal from IF board to GPU,
while CPU controls the execution of GPU kernel.

FIGURE 6. Scheme to control data transfer and GPU kernel.

B. SCHEME TO CONTROL DMA TRANSFER AND GPU
KERNEL IN CPU-GPU COOPERATIVE ARCHITECTURE
The proposed CPU-GPU cooperative server architecture is
shown in Fig. 5. The server is mainly composed of CPU, GPU
and IF board. Our architecture is realized by extending the
two controls mentioned above.

In our proposal, PHY functions involving serial processing
algorithms are performed on CPU; the other PHY functions
are parallelized on GPU. Thus, it is necessary to transfer
the main signal between CPU and GPU as well as between
CPU/GPU and IF board. In order to realize this, the proposal
sends control signals from CPU to GPU to manage GPU
kernel execution, as well as DMA transfer between CPU and
GPU. In addition, control signals are sent from CPU to IF
board to manage DMA transfer between CPU/GPU and IF
board.

Figure 6 shows the scheme that controls DMA transfer
and GPU kernel. IF board sends an interrupt signal to CPU
when input or output signal is ready. The CPU generates
an interrupt handler corresponding to the interrupt signal.
The interrupt handler invokes memory control to specify
the addresses of where the data is input to/output from the
different processors and the data input and output from and
to the IF board. The memory addresses for input and output
are determined so that the least recently used (LRU) address
is selected [17]. The kernel launch or function launch is
executed. The kernel launch is for GPU kernel execution

33890 VOLUME 7, 2019



T. Suzuki et al.: Software Implementation of 10G-EPON Downstream Physical-Layer Processing

FIGURE 7. Parallel implementation method on GPU.

while the function launch is for CPU execution. Memory
copy transfers the data having the specified memory address
from CPU to GPU or from GPU to CPU. The function/kernel
launch and memory copy are repeated until all PHY process-
ing is completed. The external transfer triggers the startup
of the DMA of the IF board; the data is transferred between
CPU or GPU and IF board as needed.

C. IMPLEMENTATION METHOD OF 10G-EPON
OLT-PHY FUNCTION
As shown in Fig. 7, we utilize data parallelism for functions
that have non-serial processing algorithms and execute them
on GPU in parallel. In the PCS of 10G-EPON, data is input in
multiples of 216 Bytes, and output in multiples of 2046 bits
due to the addition of 64B66B header and FEC redundancy.
These PHY functions should be run on the CPU and GPU on

a data type basis. The minimum unit is 1 Byte (i.e. unsigned
character data type).

The serial processing algorithm for scrambling is serially
implemented on CPU in units of 1 Byte (see. Fig. 3). Through
header addition and 0 padding, the 1-bit 64B66B header is
added in units of 8 Bytes and 29-bits of ‘‘0’’ are padded to
each input 216-Byte block. This uses 216 bitshifts and data
copies for the given input 216-Byte data. These bitshifts and
data copies are parallelized in units of 1 Byte. FEC encoding
is parallelized in the coding unit (i.e. 223 Byte) [16], [17]. In
0 suppression and header addition, the 1-bit 64B66B header
is added in units of 8 Bytes and 29-bits of ‘‘0’’ are dropped
to yield FEC encoded 248-Byte blocks without padding ‘‘0’’
and header. This uses 248 bitshifts and data copies for the
given FEC encoded 248-Byte data. These bitshifts and data
copies are also parallelized in units of 1 Byte.

VOLUME 7, 2019 33891



T. Suzuki et al.: Software Implementation of 10G-EPON Downstream Physical-Layer Processing

FIGURE 8. Configuration of the server.

IV. OPTIMUM PROCESSOR ALLOCATION
OF PHY FUNCTIONS
To allocate 10G-EPON PHY functions to the appropriate
processor (i.e. CPU or GPU), we measured the processing
times of each function on each processor.

A. EVALUATION ENVIRONMENT
Figure 8 shows the main components of CPU, GPU and
IF circuit. The two 2.20 GHz CPUs (Intel Broadwell Xeon
E5-2699v4, 22 core, 44 thread) of the server accessed
128 GB of DDR4 memory. GPU (NVIDIA Tesla P100),
with 3584 CUDA cores, was run at 1328 MHz using turbo-
boost technology. The GPU board included 16 GB of high
bandwidth memory (HBM) 2 and was connected to the server
via PCIe gen3 x16. As the IF circuit, we utilized Tokyo
Electron Device TB-7VX-690T-PCIEXP; it was connected
to the server via PCIe gen3 x8. PCIe gen3 x16 throughput
is 15.8 GB/s while that of PCIe gen3 x8 is 7.88 GB/s, with
the exception for 128B/130B line coding. The small form-
factor pluggable (SFP)+ optical module connected to the
IF circuit generated 10.3125-Gbps signals. A data stream
was generated using a 223 − 1 pseudo-random bit sequence
(PRBS).

B. ANALYSIS OF PROCESSING TIME PERFORMANCE
We measured the processing time of the three PHY functions
composing the downstream PCS of 10G-EPON (i.e., scram-
bling, header addition and FEC encoding) on the CPU and
GPU.

Fig. 9 shows scrambler processing times. Given that scram-
bling involves serial processing, it was processed by a single
thread on the CPU and GPU. The processing time was
1.62 ms and 761 ms for CPU and GPU, respectively. The
excellent result of CPU originates from the two reasons
given; the scrambler involves serial processing and the CPU
offers higher processing capability for a single thread than
GPU. CPU has higher clock frequency and its architecture is
optimized for serial functions, such as branch prediction and
super scalar arithmetic.

FIGURE 9. Scrambler processing time on CPU and GPU. Scrambling was
executed using a single thread.

FIGURE 10. The processing times for header addition, 0 padding and
0 suppression on CPU and GPU. All were implemented in parallel on each
processor.

Next, we evaluated the functions that can be parallelized.
In order to realize parallel implementation on CPU, Intel
Threading Building Blocks (TBB) was used. As shown
in Fig. 10, the processing time for header addition, 0 padding
and 0 suppression was 3.24 ms and 0.561 ms for CPU and
GPU, respectively. Fig. 11 shows the processing time for
FEC, Reed Solomon (n = 255, k) encoding in this paper.
For all redundancies, defined by n− k , GPU was faster than
CPU. For Reed Solomon (255, 223), i.e. redundancy of 32,
specified in the 10G-EPON standard, the processing time was
6.57 ms and 1.30 ms for CPU and GPU, respectively. These
results prove that the GPU’s many cores can maximize the
processing capability.

In order to softwarize the complete PCS of 10G-EPON,
wemust consider the total of the processing times required for
the aforementioned PCS functions. The total value should be
within the time constraint, which is a primary factor limiting
softwarization. The time constraint is given by 3.25 ms;
for the throughput target of 10.3125 Gbps, the buffer data
of 4.19 MByte, determined by our hardware setup, should

33892 VOLUME 7, 2019



T. Suzuki et al.: Software Implementation of 10G-EPON Downstream Physical-Layer Processing

FIGURE 11. The processing times for FEC encoding on CPU and GPU. This
function was implemented in parallel on each processor.

FIGURE 12. Summed processing time of PCS function achieved by a
single type processor.

be processed within the time constraint. Fig. 12 shows the
summation of each processing time achieved by a single type
processor, i.e. CPU and GPU (see Fig. 9, 10 and 11). We
can clearly see that the use of just a single type of processor
cannot match the time constraint, i.e. 11.4 ms (i.e. 1.62 +
3.24 + 6.57) and 763 ms (i.e. 761 + 0.561 + 1.30) for CPU
and GPU, respectively. For the CPU, the processing times of
FEC encode of RS(255,223) and header addition exceeds the
constraint time individually, while the scrambler processing
time exceeds the constraint time for the GPU case. In our
related work [20], the upstream PCS of PON (i.e. FEC decod-
ing, PON frame synchronization, descrambler and header
suppression) was implemented on just the GPU. Given its
total processing time was within 2.55 ms, the softwarization
of downstream PCS is significantly more challenging than
that of upstream PCS.

FIGURE 13. Processing time measured when all functions of 10 G-EPON
is optimally allocated.

Figure 12 also shows that each PCS function has different
processing time for processor type; the scrambler has smaller
processing time on CPU than GPU. Header addition and FEC
encode have smaller processing times on GPU than CPU.
Our approach is to utilize CPU and GPU cooperatively, and
we allocate scrambler to CPU while allocating the header
addition, 0 padding, 0 suppression and FEC encoding toGPU.
This is the best design to handle all PCS functions.

C. PROCESSOR ALLOCATION OF 10G-EPON
DOWNSTREAM PHY FUNCTIONS
When all 10G-EPON PHY functions were optimally
allocated and implemented on the proposed CPU-GPU coop-
erative architecture, Fig. 13 shows the processing time mea-
sured for the CPU section and the GPU section, and includes
the data transfer section. This result shows that with coop-
eration the processing times meet the constraint time for
10.3125 Gbps; the processing time was 1.27 ms and 1.16 ms
for scrambler and FEC/header addition, respectively. The
results show slightly better performance, compared to that
of the single PHY softwarization mentioned in subsection B
(i.e. 1.62 ms for scrambler on CPU and 1.86 ms (0.561 +
1.30) for FEC/header addition on GPU). The reason may be
because the cache hit ratio is improved by repeating the same
processing in the given experimental setup where the signal
flow is continuous.

All 10G-EPON PHY functions were optimally allocated
and implemented on the proposed CPU-GPU cooperative
architecture as shown in Fig. 14. The input (i.e. d_input) and
output GPU memory regions (i.e. d_output) were allocated
in advance to support the continuous input and output of the
main signal. Memory assignment created N regions, each
was L Bytes long. First, memory control is performed in
interruption handler. Function launch activates the function
that includes scrambler for the main signal which is held in
CPU h_output. After that, the scrambled signal is transferred
to GPU memory by memory copy. When the GPU kernel is

VOLUME 7, 2019 33893



T. Suzuki et al.: Software Implementation of 10G-EPON Downstream Physical-Layer Processing

FIGURE 14. Complete 10G-EPON PHY implemented on CPU-GPU
cooperative architecture. Thick arrows show the main signal and thin
arrows show the control flows.

launched, header addition, FEC, 0 padding and 0 suppression
are executed for d_input and the encoded data is written into
d_output. Finally, IF board directly receives the encoded data
from GPU and outputs the data to the SFP+ optical module.

Algorithm 1 Control Scheme of the Architecture Shown
in Fig. 14
1: // Initialization
2: i← 0
3: // Interruption handler
4: if DMA of output signal is ready then
5: i← (i+ 1) mod N
6: Function(h_output[i])
7: Memcpy(d_input[i], h_output[i], L)
8: GPU_kernel(d_output[i], d_input[i])
9: DMA(d_output[i])
10: end if

Algorithm 1 shows details of our implemented control
scheme. First, index i for assigning GPUmemory addresses is
initialized. Index i is incremented up to the maximum num-
ber (i.e. N ) supported by the buffers, and used by memory
control to access the LRU memory addresses in proper order.
Function(·) executes scrambling on CPU for h_output[i].
After that, memory copy (i.e. Memcpy) from h_output[i]

on CPU to d_input[i] on GPU is executed. For the received
d_input[i], GPU kernel is activated and the calculated data is
written into d_output[i]. Finally, the external transfer instruc-
tion is sent to IF board (i.e. DMA and external output) and
executed for d_output[i]. The IF board hosts a DMA engine
that executes DMA transfer and its DMA controller. The CPU
sequentially assigns the source memory address on the GPU
to the DMA controller, and the CPU then sends the instruc-
tion, which starts the DMA transfer, from the CPU to the IF
board. The DMA transfer copies an area of a constant size of
the GPUmemory to the memory on the IF board via the PCIe
bus. Finally, the data stored in the memory on the IF board
is serialized and output to the outside external port. These
processes are repeated for each data output timing of the IF
board.

V. DEMONSTRATION
To demonstrate the 10.3125-Gbps performance of the imple-
mentation proposal shown in Section III and the processor
allocation shown in Section IV, we implemented the complete
10G-EPON PHY on a general-purpose server and its real-
time performance was measured. In addition, the bit error
rate (BER) of the processed signal output by the server was
measured.

A. TRANSFER PERFORMANCE
First, we evaluated the transfer performance between each
device in the proposed implementation. Transfer throughput
is defined by

Throughput =
Transfer size
Transfer time

. (2)

Transfer size is the length transferred by DMA. Transfer
time is the time taken to transfer the data having the transfer
size. For CPU to GPU transfer, time is estimated from the
processing time of ‘‘cudaMemcpyAsync’’ from the CUDA
application programming interface (API). For GPU to IF
board transfer, time is calculated by counting the number
of clocks taken for the transfer at the given PCIe operating
frequency in our utilized DMA IP (SYSTEC SYPCIE).

Figure 15 shows the performance of the CPU-GPU cooper-
ative architecture for two transfer routes: ‘‘CPU to GPU’’ and
‘‘GPU to IF board’’. For both routes, the proposal achieved
the 10.3125-Gbps throughput required by 10G-EPON PHY.
This means that the signals processed in and output the CPU
and GPU could be transferred at 10.3125 Gbps with no
throughput degradation from CPU to GPU and from GPU
to IF board, respectively. For the case of data transfer from
GPU to IF board, although the maximum PCIe (gen3x8)
bandwidth is 64Gbps including line coding [23], the achieved
throughput of fixed 10.3125 Gbps is reasonable since our
DMA controller was designed for the 10.3125-Gbps limit.

B. PROCESSING PERFORMANCE
Figure 16 shows CPU and GPU throughputs confirming
complete 10G-EPON PHY softwarization. The throughput is

33894 VOLUME 7, 2019



T. Suzuki et al.: Software Implementation of 10G-EPON Downstream Physical-Layer Processing

FIGURE 15. Transfer performance for ‘‘CPU to GPU’’ and ‘‘GPU to IF
board’’.

FIGURE 16. Throughput performance of CPU and GPU section when
running the complete 10G-EPON PHY.

defined by

Throughput =
Processing data size
Processing time

. (3)

When running the complete 10G-EPON PHY, we measured
the processing times of scrambling in CPU, and of FEC
encoding and header addition, 0 padding and 0 suppression
in GPU. As both CPU and GPU achieved the throughput
of 10.3125 Gbps, the whole system is capable of processing
a 10.3125 Gbps signal.

Figure 17 shows a time profile of GPU processing as
measured by the NVIDIA Visual Profiler. All functions are
processed within one interrupt cycle of 3.25 ms for 4.19-
MByte data, which confirms the realization of 10.3125-Gbps
real-time processing (i.e. 8 × 4.19 MByte/3.25 ms).

FIGURE 17. Time profile for GPU processing.

FIGURE 18. Experimental setup for demonstrating downstream
10G-EPON PHY. (O/E: optical/electrical converter).

In order to verify the softwarization of complete
10G-EPON OLT-PHY, real-time BER measurements were
performed by connecting IF board output to an error detector
(ED), as shown in Fig. 18. To check for bit errors, the ED
(Agilent technologies serial BERT N4906B) held the 10G-
EPON OLT-PHY encoded pattern. This experiment con-
firmed that no bit error occurred in processing the 1014-bit
received data. This means our proposal was successfully
implemented and yielded the throughput of 10.3125 Gbps.

Although our implementation achieves the target through-
put, there are two major challenges posed by commer-
cial deployment. The first challenge is delay performance.
The implemented 10G-EPON downstream has a large delay
of 3.25 ms due to data buffering in our server configura-
tion. The delay can be reduced by shortening the amount of
buffer, which increases the load of CPU due to the increased
number of interrupts for data input/output. Given that the
interrupts trigger context switching with large loads, it is
necessary to utilize a new technique for data input/output,
such as the polling method. The second challenge is power
consumption. The total power consumption of the server we
used (see Section IV , Subsection A) is 153 W (as measured),
while the power consumption of commercial ASIC-based
products, which were developed for large-scale deployments,
is 20 W per PON port [24]. For the given system throughput
of 10.3125-Gbps, the energy per bit of our platform (cur-
rent state) is 14.8 (nJ) whereas the ASIC-based products is
1.9 (nJ). Therefore, more power efficient versions are needed
to encourage commercialization. There have been significant
advances in semiconductor technology allowing CPUs and
GPUs to be widely deployed to data centers and Internet
of Things (IoT) devices. Promising technologies include the
dynamic frequency and voltage optimization of processors
tailored to programs [25] and power consumption control

VOLUME 7, 2019 33895



T. Suzuki et al.: Software Implementation of 10G-EPON Downstream Physical-Layer Processing

technologies such as power gating [26]. These technologies
have reduced CPU power consumption at the rate of about
23% per year, and thus it is expected that our system can,
in 5 years, be realized with energy per bit values that will
permit large-scale deployment.

VI. CONCLUSION
Our aim is to fully realize the merits of SDN/NFV as applied
to optical access systems. This paper proposed CPU-GPU
cooperative implementation architecture to softwarize the
complete OLT-PHY for downstream 10G-EPON function-
ality. Our contributions also included a scheme to control
DMA data transfer and GPU kernel for the CPU-GPU coop-
erative computing. We performed the analysis on the pro-
cessing time of each downstream function composing the
complete downstreamOLT-PHY, having serial and non-serial
processing algorithms. All OLT-PHY functions were success-
fully implemented on our CPU-GPU cooperative architec-
ture. In experiments, real-time BER measurements showed
that no error occurred in processing 10G-EPON-compliant
signals of 10.3125-Gbps. These results confirmed that the
proposed CPU-GPU cooperative implementation can achieve
the throughput of 10.3125 Gbps.

REFERENCES
[1] L. Peterson, ‘‘Cord: Central office re-architected as a datacenter,’’ IEEE

Softw. Defined Netw. Newslett., Nov. 2015.
[2] T. Anschutz, L. Peterson, S. Das, and A. Al-Shabibi, ‘‘CORD: Central

office re-architected as a datacenter,’’ ONS Inspire! Webinars, Nov. 2015.
[3] J.-I. Kani et al., ‘‘Flexible access system architecture (FASA) to support

diverse requirements and agile service creation,’’ J. Lightw. Technol.,
vol. 36, no. 8, pp. 1510–1515, Apr. 15, 2018.

[4] IEEE Standard for Information Technology—Telecommunications and
Information Exchange Between Systems—Local and Metropolitan Area
Networks—Specific Requirements—Part 3: Carrier Sense Multiple Access
with Collision Detection (CSMA/CD) Access Method and Physical Layer
Specifications, IEEE Standard 802.3av, 2009.

[5] 40-Gigabit-Capable Passive Optical Networks (NG-PON2), document
ITU-T Rec. G.989, 2015.

[6] 10-Gigabit-Capable Symmetric Passive Optical Network (XGS-PON),
document ITU-T Rec. G.9807.1, Jun. 2016.

[7] K. Nishimoto, M. Tadokoro, T. Mochida, A. Takeda, T. Tanaka, and
T. Inoue, ‘‘Virtualization of EPON OLT functions and collision suppres-
sion techniques for multi-point MAC control,’’ in Proc. Opt. Fiber Com-
mun. Conf. (OFC), Mar. 2016, pp. 1–3.

[8] M. Tadokoro et al., ‘‘Design of softwarized EPON OLT and its trans-
mission jitter suppression techniques over MPCP,’’ in Proc. Opt. Fiber
Commun. Conf. (OFC), Mar. 2017, pp. 1–2.

[9] T. Anschutz, ‘‘Open GPON OLT—An open disaggregated broadband
access device,’’ OCP, San Jose, CA, USA, Tech. Rep., Mar. 2016.

[10] Introducing ONOS—A SDN Network Operating System for Service
Providers, ON. LAB, Nov. 2014.

[11] C.-C. Chang, Y.-L. Chang, M.-Y. Huang, and B. Huang, ‘‘Accelerating
regular LDPC code decoders on GPUs,’’ IEEE J. Sel. Topics Appl. Earth
Observ. Remote Sens., vol. 4, no. 3, pp. 653–659, Sep. 2011.

[12] Y. Lin and W. Niu, ‘‘High throughput LDPC decoder on GPU,’’ IEEE
Commun. Lett., vol. 18, no. 2, pp. 344–347, Feb. 2014.

[13] R. Li, J. Zhou, Y. Dou, S. Guo, D. Zou, and S. Wang, ‘‘A multi-standard
efficient column-layered LDPC decoder for software defined radio on
GPUs,’’ in Proc. IEEE 14th Workshop Signal Process. Adv. Wireless Com-
mun., Jun. 2013, pp. 724–728.

[14] T. Suzuki, S. Kim, J. Kani, K. I. Suzuki, A. Otaka, and T. Hanawa,
‘‘Parallelization of cipher algorithm on CPU/GPU for real-time software-
defined access network,’’ in Proc. Asia–Pacific Signal Inf. Process. Assoc.
Annu. Summit Conf. (APSIPA), Dec. 2015, pp. 484–487.

[15] B. Shinde and S. T. Singh, ‘‘Data parallelism for distributed streaming
applications,’’ in Proc. Int. Conf. Comput. Commun. Control Automat.
(ICCUBEA), Aug. 2016, pp. 1–4.

[16] T. Suzuki, S.-Y. Kim, J.-I. Kani, K.-I. Suzuki, and A. Otaka, ‘‘Real-
time demonstration of PHY processing on CPU for programmable opti-
cal access systems,’’ in Proc. Global Commun. Conf. (GLOBECOM),
Dec. 2016, pp. 1–6.

[17] T. Suzuki, S.-Y. Kim, J.-I. Kani, T. Hanawa, K.-I. Suzuki, and A. Otaka,
‘‘Demonstration of 10-Gbps real-time Reed–Solomon decoding using
GPU direct transfer and kernel scheduling for flexible access systems,’’
J. Lightw. Technol., vol. 36, no. 10, pp. 1875–1881, May 15, 2018.

[18] T. Suzuki et al., ‘‘10-Gbps real-time burst-frame synchronization using
dual-stage detection for full-software optical access systems,’’ inProc. Opt.
Fiber Commun. Conf. (OFC), Mar. 2018, pp. 1–3.

[19] T. Suzuki, S. Kim, J. Kani, A. Otaka, and T. Hanawa, ‘‘10-Gb/s soft-
ware implementation of burst-frame synchronization using array-access
bitshift and dual-stage detection for flexible access systems,’’ J. Lightw.
Technol., vol. 36, no. 23, pp. 5656–5662, Dec. 1, 2018. doi: 10.1109/
JLT.2018.2870912.

[20] T. Suzuki, S.-Y. Kim, J.-I. Kani, and J. Terada, ‘‘Software implemen-
tation of 10G-EPON upstream physical-layer processing for flexible
access systems,’’ J. Lightw. Technol., to be published. doi: 10.1109/
JLT.2018.2883912.

[21] C. K. P. Clarke, ‘‘Reed–Solomon error correction,’’ BBC Res. Develop.,
Salford, U.K., White Paper WHP 031, Jul. 2002.

[22] IEEE Standard for Information Technology—Telecommunications and
Information Exchange Between Systems—Local and Metropolitan Area
Networks—Specific Requirements—Part 3: Carrier Sense Multiple Access
With Collision Detection (CSMA/CD) Access Method and Physical Layer
Specifications, IEEE Standard 802.3, 2005.

[23] PCI Express Base Specification Revision 3.0, PCI-SIG, Beaverton, OR,
USA, Nov. 2010.

[24] S. Oogushi, S. Satou, and N. Saeki, ‘‘Development of 10G-EPON to better
handle increased traffic,’’ NEC Tech. J., vol. 10, no. 3, pp. 58–61, 2015.

[25] X. Mei, L. S. Yung, K. Zhao, and X. Chu, ‘‘A measurement study of GPU
DVFS on energy conservation,’’ in Proc. Workshop Power-Aware Comput.
Syst., 2013, pp. 1–10.

[26] S. Kaxiras, Z. Hu, and M. Martonosi, ‘‘Cache decay: Exploiting genera-
tional behavior to reduce cache leakage power,’’ in Proc. 28th Annu. Int.
Symp. Comput. Archit., Jun./Jul. 2001, pp. 240–251.

TAKAHIRO SUZUKI received the B.E., M.E., and
Ph.D. degrees in engineering from Waseda Uni-
versity, Tokyo, Japan, in 2012, 2014, and 2017,
respectively. In 2014, he joined NTT Access Net-
work Service Systems Laboratories, NTT Corpo-
ration, Kanagawa, Japan. His research interests
include signal processing for optical communica-
tion systems and image/video systems. He is a
member of the Institute of Electronics, Informa-
tion and Communication Engineers (IEICE), and

serving as an IEICE technical committee member on smart info-media sys-
tems (SIS). He received the Best Paper Awards at GLOBECOM 2016 from
IEEE ComSoc TAOS TC, and at IARIA MMEDIA 2014.

SANG-YUEP KIM received the Ph.D. degree in
electronics engineering from Kwangwoon Univer-
sity, Seoul, South Korea, in 2004. From 2004 to
2007, he was with the University of Tokyo, Japan,
under a Postdoctoral Foreign Researcher Fellow-
ship. In 2008, he joined NTT Access Network
Service Systems Laboratories, NTT Corporation,
Chiba, Japan, where he is currently research-
ing DSP technologies for future optical access
systems.

33896 VOLUME 7, 2019

http://dx.doi.org/10.1109/JLT.2018.2870912
http://dx.doi.org/10.1109/JLT.2018.2870912
http://dx.doi.org/10.1109/JLT.2018.2883912
http://dx.doi.org/10.1109/JLT.2018.2883912


T. Suzuki et al.: Software Implementation of 10G-EPON Downstream Physical-Layer Processing

JUN-ICHI KANI received the B.E., M.E., and
Ph.D. degrees from Waseda University, Tokyo,
Japan, in 1994, 1996, and 2005, respectively, all
in applied physics. In 1996, he joined NTT Opti-
cal Network Systems Laboratories, where he is
involved in researching optical multiplexing and
transmission technologies. Since 2003, he has
been with NTT Access Network Service Systems
Laboratories, where he is involved in the research
and development of optical communication sys-

tems for metro and access applications, and currently heads the Access
Systems Technology Group. He has been participating in ITU-T and the Full
Service Access Network initiative (FSAN), since 2003.

JUN TERADA received the B.E. degree in science
and engineering and the M.E. degree in computer
science from Keio University, Kanagawa, Japan,
in 1993 and 1995, respectively. In 1995, he joined
NTT LSI Laboratories, where he was involved in
the research and development of low-voltage ana-
log circuits, especially, A/D and D/A converters.
From 1999, he was involved in developing small
and low-power wireless systems for sensor net-
works. From 2006, he was involved in high-speed

front-end circuits for optical transceivers. He is currently a Senior Research
Engineer and a Supervisor with NTT Access Network Service Systems
Laboratories, where he is responsible for Research and Development man-
agement of optical access networks, including fixed-wireless convergence
and virtualization technology. He is a Senior Member of the Institute of
Electronics, Information and Communication Engineers (IEICE) of Japan,
and serving as a Technical CommitteeMember onAsian Solid- State Circuits
Conference (A-SSCC). He is serving as the Vice Chair of IEICE Technical
Committee on Communication Systems (CS).

VOLUME 7, 2019 33897


	INTRODUCTION
	PHY PROCESSING IN DOWNSTREAM PON 
	CPU-GPU COOPERATIVE IMPLEMENTATION
	SERVER ARCHITECTURE WITH UNITARY-OPERATION PROCESSORS
	 SCHEME TO CONTROL DMA TRANSFER AND GPU KERNEL IN CPU-GPU COOPERATIVE ARCHITECTURE
	IMPLEMENTATION METHOD OF 10G-EPON OLT-PHY FUNCTION

	OPTIMUM PROCESSOR ALLOCATION OF PHY FUNCTIONS
	EVALUATION ENVIRONMENT
	ANALYSIS OF PROCESSING TIME PERFORMANCE
	PROCESSOR ALLOCATION OF 10G-EPON DOWNSTREAM PHY FUNCTIONS

	DEMONSTRATION
	TRANSFER PERFORMANCE
	PROCESSING PERFORMANCE

	CONCLUSION
	REFERENCES
	Biographies
	TAKAHIRO SUZUKI
	SANG-YUEP KIM
	JUN-ICHI KANI
	JUN TERADA


