
SPECIAL SECTION ON MOBILE SERVICE COMPUTING WITH INTERNET OF THINGS

Received February 17, 2019, accepted February 28, 2019, date of current version March 25, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2903095

Burst Hotspots Dynamic Detection and Tracking
on Large-Scale Text Stream
JIANYI HUANG 1,2, JIANJIANG LI1,2, YINGYING CHEN1,2, JIANKUN SUN1, AND PENG SHI 2,3
1School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing 100083, China
2Beijing Key Laboratory of Knowledge Engineering for Materials Science, Beijing 100083, China
3National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083, China

Corresponding author: Peng Shi (shipengustb@sina.com)

This work was supported in part by the National Key R&D Program of China under Grant 2017YFB0803302, in part by the National
Nature Science Foundation of China under Grant U1836106, and in part by the Fundamental Research Funds for the Central Universities
under Grant 06116104.

ABSTRACT The online social network has become an important communication tool for people and
forms a virtual society interacting with the real world. The numerous events rapidly spread through social
networks and may become hotspots in a short period of time. Especially, the negative events vibrate national
security and social stability, potentially causing a series of social problems. Therefore, detection and tracking
burst hotspots on social networks are of great significance. However, this problem is non-trivial because
of the challenges of massive noise, sparsity, high-dimensionality, and dynamic changing. To address these
challenges, this paper proposes a distributed method of burst hotspots dynamic detection and tracking based
on Map/Reduce. To judge the relevance of the current text and previous texts, the keyword similarity matrix
is calculated by using Word2Vec and context information. The keyword weights are modified according to
the association model to further reduce noise. The proposed method is not only robust to the sparsity of
short text but also overcomes the curse of dimensionality. Finally, it can dynamically detect and track burst
hotspots from large-scale short text stream on the Hadoop platform. The experiments have shown that the
proposed method outperforms state-of-the-art algorithms.

INDEX TERMS Dynamic detection and tracking, Map/Reduce, online social network, text clustering, text
stream.

I. INTRODUCTION
The vigorous development of online social networks has
gradually penetrated into all aspects of people’s life, includ-
ing politics, education, economy and culture. On the one
hand it makes people’s life more convenient, but on the other
hand it brings some negative effects to society. Negative
information such as violence and rumors on social networks
can cause panic and even affect social stability.

There are a large number of topics generated every day in
social networks, and the evolution of these topics presents
different characteristics [1]. Some topics gradually gain pop-
ularity and then slowly decline. And some other topics gain
a lot of popularity in a short period of time, reach the peak
and then decline quickly, called burst topics. Crane et al. [2]
defined a topic with peak popularity above 20% of its total

The associate editor coordinating the review of this manuscript and
approving it for publication was Wenbing Zhao.

popularity as burst topic. Burst topics are usually triggered
by breaking news, real world events, malicious rumors,
etc. [3], [4]. From a practical perspective, outbreak period [5]
would be an important quantity for many online problems.
There are some predicting applications in different areas [6],
but to predict the burst of Web contents is still a challenging
topic. How burst topics diffuse and what public opinions
are in the outbreak period are very important. Burst topics
detection and tracking is of great significance for emergency
monitoring.

However, in the era of mobile Internet, as the pace of
life continues to speed up, simple and fast interaction with
phrases are important to people with busy lifestyles. For
example, people often use simple keywords to query informa-
tion on search engines and communicate with friends by Twit-
ter, Facebook and others. Although Chen et al. [7] recognized
the human activity by multilayer extreme learning machine,
human activity online is hard to analyze. The paper only

VOLUME 7, 2019
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

30913

https://orcid.org/0000-0003-2094-1978
https://orcid.org/0000-0002-5349-6383


J. Huang et al.: BHDDT

focuses on the contents published on the Internet. Nowadays
enormous amounts of texts are constantly being produced.
According to the recent statistics [8], around 500 million
tweets created on Twitter every day. These texts are noisy, var-
ious, continuous, infinite and dynamic [9]. Their text content
and attention degree dynamically change [10]. The central
idea of topic also changes over time [11]. The correlation
of context is very strong. The timeliness of information is
getting higher and higher. These problems make it increas-
ingly difficult to detect and track topics timely and accurately.
TF-IDF (term frequency-inverse document frequency) mea-
sure, VSM (vector space model), and normal text clustering
methods may not work well when applied to short texts.

Based on the above problems, this paper proposes a dis-
tributed method of burst hotspots dynamic detection and
tracking on large-scale text stream (BHDDT). The texts are
processed one by one. Each topic is a sequence of texts which
are closely related. The latest text of each topic reflects the
latest developments of incident and public opinion. The latest
text set of existing topics is used as the context to process
the current text. First of all, the algorithm preprocesses the
short texts, then calculates the keyword similarity matrix by
using context information to judge the relevance of current
text and previous texts, overcoming the sparsity caused by
less keywords in short texts. Secondly, each new text does
not need to be compared with all existing texts, but only needs
to calculate the association degree with the latest text set of
existing topics, thereby avoiding the increasing complexity
caused by the ever-increasing data size. And then, the key-
word weights are adjusted to highlight important keywords
and suppress secondary keywords for the associated texts.
At the same time, to detect irrelevant information, a threshold
is set to adjust the deviation degree on each keyword, and
filter out a large amount of redundant information. Finally,
through these measures, the performance is guaranteed to be
stable, efficient and accurate. The contribution of this work is
mainly three-fold:

1) This paper calculates the keyword similarity matrix by
using Word2Vec and context information to judge the
relevance of current text and previous texts. It can cope
with the sparsity and high-dimensionality problems of
short texts, and can obtain the representative words of
each cluster.

2) This paper sets a threshold to adjust the deviation
degree on each keyword, highlights important key-
words and suppresses secondary keywords for associ-
ated texts. A large amount of redundant information is
further reduced.

3) Our proposed algorithm is parallelized based on
Map/Reduce, which greatly improves the efficiency of
the program operation and has good performance on
large-scale text stream, avoiding the increasing com-
plexity caused by the ever-increasing data size.

The rest of this paper proceeds as follows. Section II
describes related work. Section III presents preliminar-
ies. Section IV introduces our solution for burst hotspot

dynamic detection and tracking. Experiments are conducted
in Section V to evaluate our solution. Section VI concludes
the paper.

II. RELATED WORK
A. TRADITIONAL TEXT CLUSTERING METHODS
Traditional long-text clustering methods generally calculate
similarity by text feature vectors, such as typical partition-
based clustering methods [12], hierarchical-based clustering
methods [13], and density-based clustering methods [14].

The overall idea of partition-based clustering methods [15]
is finally dividing a text set (N records) into K (K << N)
packets, where each group representing a category. The eval-
uation standard of clustering results is that the correlation of
records within a group is as close as possible, and the correla-
tion of records between different groups is as far as possible.
Furthermore, each record must belongs to a unique group,
and each group contains at least one record. K-means [16],
K-medoids [17] and CLARANS [18] are based on partition-
ing ideas. The advantages of such algorithms are simple and
efficient. The disadvantages are described as follows. First,
the clustering effect has a great dependence on the initial
value selection; besides, there is no good way to choose the
appropriate initial value. These problems cause the clustering
time to be very unstable. Second, the noises and isolated
points are not well handled. Finally, when data set is large,
the processing time is difficult to be required, and the results
are easy to fall into the local optimum.

Hierarchical-based clustering methods determine the rel-
evance of the processed text set layer by layer until reach-
ing the exit condition [19]. According to different process-
ing orders, there are two ways of bottom-up and top-down.
The following takes bottom-up hierarchical clustering as an
example. It initially treats each element as a separate class,
then analyses the association between classes, combines the
classes that reach association threshold, and makes the same
decision on the newly obtained class until the exit condition
is reached [20]. There are many algorithms based on hier-
archical clustering [21], such as BIRCH [22], CURE [23]
and CHAMELEON [24]. Hierarchical clusteringmethods are
relatively more flexible than partition-based methods. How-
ever, hierarchical clustering methods have higher computa-
tion complexity and time complexity. As less characteristic
information, the cluster similarity is judged in large error,
which will affect the subsequent judgments.

Density-based clustering methods are not based on the
similarity between elements and classes, but on the density
of elements distributions. Therefore, it can avoid its over-
dependence on the shape of text distribution that determines
similarity based on distance. If the density of points in a
region is greater than the threshold, the point is assigned to the
cluster adjacent to it [25]. DBSCAN [26], OPTICS [27] and
DENCLUE [28] are all density-based clustering algorithms.
DBSCAN is extremely sensitive to the scan radius and the
minimum number of points included. Subtle changes in these

30914 VOLUME 7, 2019



J. Huang et al.: BHDDT

two parameters will have a great effect on clustering results.
Unfortunately, the choices of these two parameters do not
have a fixed rule to follow, and can only be artificially set
by experience.

These methods use TF-IDF (Term Frequency-Inverse Doc-
ument Frequency) to calculate the weights of keywords,
and calculate the distance or similarity of two texts based
on feature vector [29], [30]. A good clustering result can
be obtained for long texts because a long text generally
has many feature words. Even if the extracted feature vec-
tors have error, there is no significant effect on clustering
results. Short texts on social networks have the simplifi-
cation characteristic [31]. At the same time, the weights
of keywords calculated by TF-IDF are close to 0. As a
result, the similarity between texts is calculated with a big
error. Processing time and memory resource are wasted.
When topics are varied and text data is large-scale, perfor-
mance will drop rapidly and it will be difficult to complete
in a short time. Therefore, this global range of text vec-
tor representations is not suitable for social network short
texts.

B. SHORT TEXT CLUSTERING METHODS
In recent years, algorithms for short text clustering are emerg-
ing in an endless stream, but most of them are improved
on traditional clustering algorithms [32], [33], like WR-
Kmeans [12] and spherical K-means [34], which partly
improve the clustering results of short text. However, to solve
the problem of massive data processing, their precisions are
still low; and calculations cost lots of time.

Shen et al. [35] proposed five Single-Pass clustering
algorithms: SPB, SP-WC, SP-NN, SP-WNN, and SP-LF.
Single-Pass clustering algorithm is a classic method of data
stream clustering, processing datasets in real-time or offline.
It can effectively cope with dynamic changes of text content.
Single-Pass clustering algorithm is relatively sensitive to the
order of input text, but it has little effect on the clustering
results of datasets organized by time. For each new text,
the similarities between the text and existing texts are cal-
culated. The calculation complexity rapidly increases as data
size grows.

The clustering algorithms improved on traditional cluster-
ing algorithms have poor performance because of the sparsity
of short text. Some methods were proposed to solve the
sparsity problem from the theoretical encoding [36]. In this
paper, two new ways are proposed to solve the sparsity. One
way is to expand short texts to long texts by using external
knowledge sources such as Wikipedia [37], WordNet [20],
HowNet [38], peripheral information sources [39], etc. How-
ever, the creation and maintenance of such resources can be
very expensive and complex. The expanding methods signif-
icantly increase calculation. The other way is word embed-
ding such as Word2Vec [40] and Doc2Vec [41]. Word2Vec
analyzes semantic based on the dimensions of words, with-
out considering paragraphs and sentences. Doc2Vec adds a
paragraph vector based on Word2Vec. It can be used for text

clustering and text categorization. However, Doc2Vec sepa-
rately trains each local context windowwithout taking advan-
tage of the statistics contained in the global co-occurrence
matrix. Doc2Vec cannot represent and process polysemous
words.

Term co-occurrence clustering algorithms [42], [43] work
well on scientific literature dataset, but they are very sensitive
to the selected terms. The short texts on social networks have
various irregular terms, resulting in uncertainty issues. Word-
Com [44] combines K-means and co-occurrence clustering
for short text clustering by identifying word communities.
WordCom is robust to sparse short texts. But it has the prob-
lems of high dimensionality and difficulty dealing with long
texts.

C. TOPIC MODELS
The research on topic model was originally derived from
Latent Semantic Indexing (LSI) [45] proposed by Chris-
tos H. Papadimitriou et al. Compared with VSM, LSI has
smaller dimension and clearer semantic relationship. The dis-
advantages are that LSI lacks rigorous mathematical statistics
foundation; the complexity of SVD decomposition is high;
LSI cannot solve the problem of polysemous words; LSI
cannot calculate the relevance degree between topics on time
series.

Thomas Hofmann proposed Probabilistic Latent Semantic
Indexing (PLSI) [46]. PLSI can quantitatively analyze the
contribution of each word to the topic, so that the topics in dif-
ferent semantic spaces are connected. By means of the prob-
ability distribution of words within topics, PLSI can analyze
the relevance degree between topics. The disadvantages are
that PLSI is difficult to handle dynamically added documents;
overfitting can occur in some datasets; the parameters linearly
increase, and the performance of processing large-scale text
data is difficult to meet the requirements.

Blei et al. [47] proposed Latent Dirichlet Allocation
(LDA). LDA has been widely used and has derived many
improved versions, such as BTM [48], GSDMM [49].
By introducing Dirichlet distribution, LDA is a complete
probability generation model with strong mathematical the-
ory. The parameter settings are relatively fixed. LDA is
regardless with the size of training text dataset, and has good
generalization ability. So in the large-scale text dataset, LDA
performs better in target topic mining. However, LDA does
not consider the order of words, assumes that the number of
topics is fixed, and ignores topics’ declining, dividing, and
transferring.

III. PRELIMINARIES
A. TEXT STREAM
A text sequence is a sequence of large, fast, and contiguous
data sequences that can be thought as a dynamic dataset grow-
ing indefinitely over time. The following firstly describes text
sequence in a formal way. On this basis, sliding time window
and the texts collected within it are defined. We summarize
all of our notations in Table 1.

VOLUME 7, 2019 30915



J. Huang et al.: BHDDT

FIGURE 1. Sliding time window.

1) TEXT SEQUENCE
In the time-series text data, temporally consecutive text
data items and their time windows form a text sequence
TS = {x1, x2, . . . , xk , . . . }, where xk is the kth arriving text.

2) MICRO-TEXT
A micro-text on social networks is a short text message
represented as

xk = (uk ,Wk , t) (1)

whereWk is the keywords set in xk , uk is the author of micro-
text xk , and t is its posting time.

3) SLIDING WINDOW TEXT
Sliding window text is defined as a set of text on (t, t + p]:

SW t = TS t+pt (2)

where t denotes time, p denotes time interval, time series is
divided by (t, t+ p]. The principle of slidingwindow is shown
in Figure 1.

Assuming that v is the speed of the text sequence, St is the
total amount of SWt , St can be calculated by (3):

St = v ∗ p (3)

When p = 1 (unit time interval), v = 1 (one text per unit
time), then St = 1, indicating that only one piece of text enters
the time window in the unit time interval, which is the classic
single-pass process. If p is a constant, SWt is a steady sliding
time window. If p is mutable, SWt is a dynamic window with
higher flexibility and complexity.

B. BURST TOPIC
1) BURST TOPIC
A burst topic is defined as a topic with peak popularity above
20% of its total popularity [2].

In this paper, Twitter dataset ‘‘tweet7’’ [50] collected by
Yang and Leskovec is tested. As shown in Figure 2, the hor-
izontal axis represents the total popularity obtained by the
hashtag, and the vertical axis represents the total number of
hashtags whose total popularity exceeds the corresponding
horizontal axis value. The total popularity of these hashtags
is subject to a power-rate distribution, with most hashtags get
a small total popularity, and only a few hashtags gain a lot of
popularity.

As shown in Figure 3, the horizontal axis represents the
peak amount, and the vertical axis represents the number

TABLE 1. Notations used in this paper.

FIGURE 2. Popularity distribution of hashtags in tweet7 dataset.

of hashtags whose peak amount exceeds the corresponding
horizontal axis value. Most burst hashtags peaked in the first
5 hours, and only a few burst hashtags peaked above 1000.

As shown in Figure 4, this paper logarithmically rescales
the horizontal axis in this figure due to the large variances
present among active periods of different hashtags (notice
that they range from one to several thousand hours). For each
observed value on the blue line, the empirical cumulative dis-
tribution tells the fraction of hashtags for which the durations
of active periods are shorter than this value. For more than
15% of hashtags, their durations of active periods are shorter
than 24 hours. For about 60% of hashtags, their durations
are shorter than 100 hours. For about 20% of hashtags, their
durations are longer than a week.

The number of texts on most topics is small, and these
topics are not popular. It can be said that they are noises.
In addition, the number of burst topics that are popular is

30916 VOLUME 7, 2019



J. Huang et al.: BHDDT

FIGURE 3. Distribution of burst hashtags.

FIGURE 4. The distribution of active periods.

small, but these burst topics have a great influence on the
public and society. Therefore, most topics that are not popular
can be ignored. Detection and tracking the few burst topics
are more important.

IV. MODEL
In order to detect and track burst hotspots on social net-
works, this paper first extracts keywords according to the
characteristics of short text. Then, according to the keywords,
the corpus is clustered to discover and track the topics. Finally
BHDDT (burst hotspots dynamic detection and tracking) is
implemented on Hadoop platform to improve efficiency.

A. KEYWORD EXTRACTION
The number of keywords in a short text is very small, so each
keyword has a great contribution to the description of the
text. If extracted keywords are not accurate enough, there
will be a large error, which will have a great effect on clus-
tering results. Therefore, extracted keywords should reflect
the relevant information contained in the text as much as

possible. Related keywords must be used to identify the event
features such as ‘‘What is it?’’, ‘‘Who are relevant?’’, ‘‘When
does it happen?’’, and ‘‘Where is it?’’. Consequently, relevant
characters, places and event description are extracted as the
keywords of a text.

A typical microblog text generally contains nickname of
microblog author, @someone, and specific content (related
event information and involved people). Word segmentation
methods do not deal with nicknames in texts very well, so this
paper extracts character information of the text with ‘‘@’’
followed by ‘‘space’’ or ‘‘@’’ followed by ‘‘:’’ as dividing line
(identifier). Geographical names can be extracted directly
according to the part of speech provided by word segmen-
tation method. Since event keyword is after verb, this paper
takes verb-like word in each sentence as the beginning of
event keyword, and then uses noun-like word within certain
distance as event keyword. The length in this algorithm is
the distance between the verb-like word and the noun-like
word. To ensure they are a group and avoid other situations,
the upper limit of length is set to 3. The details of keyword
extraction algorithm are shown in Algorithm 1.

Algorithm 1 Keyword Extraction Algorithm
Input:WS //WS is the list of xk after word segmentation
Output:Wk = {wk1,w

k
2, . . . ,w

k
M}

1 for w in WS
2 if the part of speech of w is nr/nr2/nrj/nrf/nz
3 add w to Wk ; // w is the real name
4 else if w behind @
5 add w to Wk ; // w is the nickname
6 else if the part of speech of w is ns/nsf
7 add w to Wk ; // w is the place name
8 else if w is noun after verb and length <= 3

//length is the distance to the verb
9 add w to Wk ; // w is the event keyword
8 end if
9 end for
10 returnWk ;

B. ASSOCIATION MODEL
Texts belonging to the same topic have very strong correla-
tion on content. In order to overcome the sparsity problem
existing in short texts processing on social networks, this
paper constructs similarity matrix through two texts of the
temporally nearest neighbors and determines the correlation
between each other by proposed association model.

Assuming current processing text is xk = (uk ,Wk , t),
Wk = {wk1 : m

k
1, w

k
2 : m

k
2, . . . ,w

k
M: mkM}, where wki is

ith keyword of xk and mki is the frequency of wki , L is the
set of latest text in all topic sequences and sorted by the
time in descending order, x ′ = (u′,W ′, t), W ′ = {w′1 :
m′1,w

′

2 : m′2, . . . ,w
′

N : m′N}, and x ′ ∈ L. Here, each
keyword is represented with word vector (100 dimensions) by

VOLUME 7, 2019 30917



J. Huang et al.: BHDDT

FIGURE 5. Clustering process of texts.

Word2Vec [51]. vecki is word vector of wki , and vec′j is word
vector of w′j. The similarity is calculated by cosine distance.
C = (cij) M×N is the similarity matrix of Wk and W ′. cij can
be calculated by (4).

cij = vecki • vec
′
j (4)

According to the similarity matrix C, the offset of each key-
word within xk can be known. In order to quantify the offset
of each keyword, if some elements of C exceed threshold λ,
these elements are set to 1, and other elements are set to 0.
Keyword offset matrix D = (dij)M×N can be calculated
by (5).

dij =

{
1, if cij=max(C[i][∗])≥λ
0, if cij=max(C[i][∗])<λ or cij<max(C[i][∗])

(5)

where C[i][*] denotes the ith row of C, and threshold λ ∈
(0, 1] is used to measure deviation degree of each keyword.

If all elements in one line are 0, it means that the keyword
has small similarity with all keywords of previous text, and
the keyword can be judged as a noise. By multiplying associ-
ated topic text weight vector, primary keywords are retained,
and noise is removed. Then the weights of primary keywords
are reassigned, which enhances the primary keywords and
reduces the effect of noise.

In order to judge the relevance of current text and existing
topics, the relevance degree of xk and x ′ can be calculated
by (6).

simk = nk/M (6)

where nk is the number of non-zero lines in D.
The clustering process is shown in Figure 5. If there is

more than half of keywords in one text are similar with the
keywords of another text and these similarities exceed the
threshold, the two texts are associated; otherwise the two
texts are not associated. If simk ≥ 0.5, xk is associated with
x ′.x ′ in L is replaced with xk and added to the topic that
contains x ′. Here, two main factors are considered. The first
factor is time. We select the temporal nearest topic whose
similarity is greater than the threshold. The second is to

reduce computation and improve performance. Otherwise, xk
and x ′ will not be associated. According to the principle of
temporal nearest neighbors, x ′ traverses L in time sequence
until all texts in L are traversed. If xk is not correlated with
any text in L, xk is used as the initial text of new candi-
date topic. The details of algorithm clustering are shown
in Algorithm 2.

Algorithm 2 Clustering algorithm
Input: TS = {x1, x2, . . . , xk , . . . },L
Output: Z // topics set Z

1 keywords of TS are converted into word vectors by
Word2Vec;
2 for each xk in TS
3 sort(L); //Sort L in descending order of time
4 flag = 0; //Mark the result after traversing L
5 for x ′ in L
6 Calculate matrix C by (4);
7 Calculate matrix D is by (5);
8 Calculate nk is;
9 simk = nk/M ;
10 if simk >= 0.5
11 flag = 1;
12 Add xk to the topic that contains x ′ in Z;
13 x ′ is replaced with xk in L;
14 break;
15 end if
16 end for
17 if flag = 0
18 add xk to L;
19 xk is used as the initial text of new topic in Z;
20 end if
21 end for
22 return Z;

C. DYNAMIC UPDATE
In the massive social networks short texts, there are many
types and numbers of topics. The text size of each topic is
unevenly distributed, and there are a large number of isolated
texts and noise words. In order to eliminate isolated points
in the topics set Z, prevent the scale of L from increasing
indefinitely, and ensure algorithm’s stability, efficiency and
accuracy, Z and L are regularly updated. The topic sequence
TPk ⊆ Z, TPk is all related texts set of zk , lifetk is life-
time of zk , and lk is total number of texts in TPk . If lifetk
> τ hour and lk < η, delete TPk from Z and xk from
L, where xk is the latest text in TPk . L ′ is the copy of L
before the t-G×p time, t is the time of current processing
text and G is a positive integer. To control the time interval,
we set p = 1 minute and G = 5, that is, every 5 minutes
detect whether topics have new text. If L ∩ L ′ is not empty,
it means that some texts in L are not updated continuously,
that is, some topics have no new text coming. Then update

30918 VOLUME 7, 2019



J. Huang et al.: BHDDT

L = L − L ∩ L ′, move these topics out of TP, and save them
in the external storage. The details of updating algorithm are
shown in Algorithm 3.

Algorithm 3 Updating Algorithm
Input: Z, TPk , L, L ′, zk
Output: Updated Z, L

1 for TPk in TP
2 if lifetk > 1 hour and lk < 10

//candidate topic has too little text in a long time
3 delete TPk in Z; // TPk is noise or isolated point
4 delete xk in L; // xk ∈ TPk and xk ∈ L
5 end if
6 if L ∩ L ′ != 8
//some topics have no new text coming continuously
7 L = L − L ∩ L ′; //Update L
8 for xk in L ∩ L ′

9 save TPk to the external file zk .txt;
10 delete TPk from Z; //Update Z
11 end for
12 end if
13end for
14 return Z and L;

D. NOISE REDUCTION
Any text that is unrelated to context and final output can
be considered as noise. Text is unstructured data and has a
variety of noise. Noise will increase time and memory cost,
and more seriously, precision will decrease. Therefore, it is
very important to eliminate noise and minimize the adverse
effects of noise.

In this paper, stopwords and irrelevant characters are fil-
tered out by stopword list (1900 stopwords) in preprocessing,
and noise is further filtered by the associationmodel proposed
in section IV-B.

Current processing text is xk = (uk ,Wk , t),Wk = {w1
k
:

m1
k ,w2

k
: m2

k , . . . ,wM
k
: mM

k
}, where wki is ith keyword

of xk and mki is the frequency of w
k
i . The initial weight vector

of xk is αk = [α1
k ,α2

k , . . . ,αM
k ], and the initial weight αki

of wki can be calculated by (7).

αki =
mki∑M
i=1m

k
i

, and αki ∈ [0, 1],
∑M

i=1
αki = 1 (7)

The updated weight vector of xk is βk = [β1
k ,β2

k ,

. . . ,βkM ], and the updated weight vector of x ′ is β ′ =

[β ′1,β
′

2, . . . ,β
′
N ], D

T is the transposed matrix of D and
DT [*][i] represents the ith column ofDT . The updated weight
βki of w

k
i in xk can be calculated by (8).

βki =
αki × [β

′

1, β
′

2, . . . , β
′

N ]× D
T [∗][i]∑M

j=1 α
k
j × [β

′

1, β
′

2, . . . , β
′

N ]× D
T [∗][i]

(8)

In order to highlight important keywords and suppress
secondary keywords, the keyword weight of xk is adjusted

FIGURE 6. Distributed processing mode.

by the keyword weight of x ′. In addition, if all the elements
of D[i][*] are equal to zero, where D[i][*] is the ith row of D,
wki of xk is noise. Then delete w

k
i from xk and renormalize all

keyword weights of xk .

E. DISTRIBUTED PROCESSING
In this paper, Hadoop distributed platform and Map/Reduce
mode are used to preprocess massive short texts. The text
data is assigned to each distributed node for preprocessing.
As shown in Figure 6, the text sequence is divided into N
blocks; NameNode and JobTracker are deployed in Master
node; DataNode and TaskTracker are deployed in worker
nodes. The key value of Map output is set to be the same,
and all Map output is controlled in a Reduce function. Get
the keywords from each text first, and then cluster the texts.
The algorithm is implemented as follows:

1) JobTrack is responsible for the assignment of tasks and
equalization scheduling. The text sequence is divided
into N pieces of SWt data according to the time inter-
val p, and the task data is distributed to each node
(TaskTracker);

2) The Map function obtains the key value pairs of <line
number, line content>, extracts keywords of line con-
tent, obtains keywords of the texts, and outputs the key
value pair of <keyword, text ID_ keyword>;

3) The combine process merges the key-value pairs that
have the same key. Since all keys of the map output
are keyword, all the map output will be merged into
the key-value pairs like <keyword, <text1 keyword,
text2 keyword, . . .>>, and obtains N key-value pair
sequences of <key, list<value>>;

4) In the Reduce process, a reduce function gets all the
map output and merges them into a text sequence. The
text xk = (uk ,Wk , t),Wk = {w1

k
: m1

k ,w2
k
:

m2
k , . . . ,wM

k
: mM

k
},TS = {x1, x2, . . . , xk , . . . }.

Then the hotspots are detected and tracked in the text
sequence.

V. EXPERIMENTS
Experiments in this paper comprehensively evaluate the
performance of BHDDT both in stand-alone mode and
Map/Reduce mode from running time, speed-up ratio,

VOLUME 7, 2019 30919



J. Huang et al.: BHDDT

precision, recall, F1-score and NMI. Experimental environ-
ment is a Hadoop platform with 11 nodes. Each server has
16*Intel(R) Xeon(R) CPU E7320 @ 2.13GHz, 16GB mem-
ory, 1GB cache and 2GB swap area. The operating system is
64-bit Linux operating system (Red Hat 4.1.2-42).

A. METRICS FOR EVALUATING ALGORITHM QUALITY
Precision P, recall R, F1-score and NMI are used to evalu-
ate the performance, as shown in (9), (10), (11) and (12),
respectively. The precision rate and recall rate are taken as
the average of precision rate and recall rate under each topic
category.

P = TP/ (TP+FP) (9)

R = TP/ (TP+FN) (10)

F1 = 2 ∗ P ∗ R/(P+ R) (11)

where TP is the number of the true positives, FP is the number
of the false positives, and FN is the number of the false
negatives.

1) NMI
Suppose A = {A1,A2, . . . ,Ak} is a set of k clusters contained
in a dataset and B = {B1,B2, . . . ,Bk} is a set of k clusters
obtained by a specific algorithm. NMI is defined as

NMI (A,B) =
−2

∑k
i=1

∑k
j=1 nij log

n·nij
nAi ·n

B
j∑k

i=1 n
A
i log

nAi
n +

∑k
j=1 n

B
j log

nBj
n

(12)

where n denotes the total number of texts, nij is the number
of data points in the ground truth cluster Ai that are assigned
to the computed cluster Bj, nAi is the number of data points
in the ground truth cluster Ai, and nBj is the number of data
points in the computed cluster Bj.

B. PRELIMINARIES TEST
Short texts in social networks have the characteristics of fast
update and large quantity. If they are processed in stand-
alone mode, it cannot meet the demand when the amount of
data is large, because of CPU processing power and memory
size limitations. The clustering program in stand-alone mode
is tested and the results are shown in Figure 7. 60%-70%
of the running time is consumed in preprocessing such as
word segmentation, denoising, feature extraction, etc. The
time involved in the specific clustering operation is only a
small part.

We test 434 topics, and the results are shown in Figure 8.
It can be seen that most of the topics can reach 10 within 1
hour. Compared with the initial stage of topics, we pay more
attention to the outbreak stage. Although it will miss a few
scattered texts from initial to outbreak, all texts can be col-
lected and analyzed after topics burst. As a result, we set
the parameters of BHDDT as follow, λ = 0.5, τ = 1,
η = 10.

FIGURE 7. Pretreatment time test in stand-alone mode.

FIGURE 8. The distribution of the topics reaching the threshold.

C. PERFORMANCE EVALUATIONS
We compared our proposed method BHDDT with existing
state-of-the-art algorithms including spherical K-means (spk
-means) [34], K-means [16], SP-WC [35], SP-NN [35], LDA
[47], GSDMM [49] and WordCom [44].

1) DATASETS
Experimental datasets for evaluation include Sina microblogs
dataset (including 10 topic categories and 6000 texts that have
been labeled), DBLP titles dataset (including 5 labels Data
Mining, Affective Computing, Database, NLP and Parallel
Computing) and Twitter_30 (30 classes and each class con-
tains at least 50 short texts).

2) PARAMETER SETTINGS
First of all, the parameter settings are set for Sina dataset.
For LDA, we used the same parameter settings as in [48],
where parameters were tuned via grid search for short text
corpora, α = 0.05 and β = 0.01. For GSDMM, we set α
= 0.1 and β = 0.1 as was done in [49]. For WordCom,
we set α = 0.5 and β = 0.05 as in [44]. For SP-NN and SP-
WC, the similarity threshold is fixed as 0.53, tsim is fixed as
0.53 and the window size is fixed at 7 as was done in [35]. For
K-means and spk-means, we set K = 10, and initial centers

30920 VOLUME 7, 2019



J. Huang et al.: BHDDT

TABLE 2. Result evaluation on sina microblogs dataset.

are randomly selected. For BHDDT in stand-alone mode,
we set the parameters of BHDDT as described in section V-B
and select 10 initial texts as the initial centers from 10 topic
categories respectively.

Secondly, the parameter settings are set for Twitter_30.
The parameters of LDA, SP-WC, SP-NN, GSDMM and
WordCom remain the same. In addition, for K-means and
spk-means, we set K = 30 and initial centers are randomly
selected. For BHDDT in stand-alone mode, we set the param-
eters of BHDDT as described in section V-B and select
30 initial texts as the initial centers separately from 30 topics.

Thirdly, the parameter settings are set for DBLP titles
dataset. The parameters remain the same for LDA, SP-WC,
SP-NN, GSDMM and WordCom. In addition, for K-means
and spk-means, we set K = 5 and initial centers are ran-
domly selected. For BHDDT in stand-alone mode, we set
the parameters of BHDDT as described in section V-B and
select 5 initial titles as the initial centers separately from the
5 labels’ titles.

The results of experiment on Sina microblogs dataset are
shown in Table 2 We marked the best performing algorithm
in bold. First, when there is no noise, BHDDT has the highest
precision, and recall is lower than GSDMM. It is because
BHDDT filters out some texts that have low popularity and
edge points. GSDMM has the highest recall and F1, but
could not converge at the exact number of clusters. Secondly,
as shown in Table 1 and Figure 9, when add 1000, 2000 and
3000 noise texts to the Sina microblogs dataset, BHDDT has
higher stability, because BHDDT only pay attention to the
10 topics, ignoring the noise. On the contrary, the perfor-
mance of SP-WC, SP-NN, K-means and spk-means decline
quickly, because they are very sensitive to the noise texts and
hardly work.

The results of experiment on Twitter_30 dataset are shown
in Table 3 It can be seen that BHDDT has the best per-
formance. There are a lot of internet slangs, polysemy and
approximation terms in Twitter_30, which are the shortcom-
ings of term co-occurrence methods. And each short text
within Twitter_30 contains few words and the vast majority
occurs only once. Therefore, WordCom hardly works and
the performance of GSDMM is not so good. In addition,
SP-WC, SP-NN, K-means, spk-means and LDA have poor

FIGURE 9. The performance affected by noise texts.

TABLE 3. Result evaluation on Twitter_30 dataset.

performance on Twitter_30 dataset. BHDDT is specially
designed to handle large-scale short text stream on social
networks, where BHDDT has the best performance.

The results of experiment on DBLP titles dataset are shown
in Table 4. DBLP is an academic paper dataset that use
normative terms, so the performance of all methods is quite
good. The performance of BHDDT, WordCom and GSDMM
is good. Especially, BHDDT has the best performance.

D. PROCESSING TIME TEST
The processing time of BHDDT in stand-alone mode
and Map/Reduce mode (6 distributed nodes) is tested.
The time-consuming of stand-alone BHDDT, Map/Reduce

VOLUME 7, 2019 30921



J. Huang et al.: BHDDT

TABLE 4. Result evaluation on dblp titles dataset.

FIGURE 10. Processing time of different methods.

FIGURE 11. Scalability performance test on Hadoop.

BHDDT and K-means to process different sizes of data are
compared as shown in Figure 10.

In the case of small amount of data, BHDDT takes less
time in stand-alone mode than in Map/Reduce mode. This
is because Hadoop platform itself is designed to handle big
data, but it cannot take advantage of it when the amount of
data is small. On the contrary, the consumption of network
transmission and task scheduling increases time-consuming.
However, as the size of data increases, the time-consuming
of BHDDT increases linearly, while the time-consuming of

K-means grows in an unstable state. This is mainly because
the performance of K-means has a great relationship with the
selection of initial points.

In the case of large-scale data, the time-consuming of
K-means increases sharply. Compared with K-means,
the time-consuming of BHDDT is low, especially Map/
Reduce BHDDT. This shows that K-means cannot solve the
problem of big data clustering well, and the time-consuming
of BHDDT increases linearly as the amount of data increases,
which indicates that BHDDT has better stability and scala-
bility. In the case of large-scale data, Hadoop platform takes
advantage of its potential and has a high throughput rate for
big data.

E. SCALABILITY TEST
The scalability of Map/Reduce BHDDT is tested. The
speedup ratio is the ratio of the time it takes for the same task
to run in a single-processor system and a parallel processor
system, measuring the performance and effectiveness of par-
allel system or program parallelization. Time-consuming and
speedup experiments of Map/Reduce BHDDT for processing
150MB text sets (approximately 400,000 microblogs) using
different number of nodes, shown in Figure 11.

It can be seen that time-consuming decreases with
the increasing of the number of nodes, and speedup
ratio increases with the number of nodes, indicating that
Map/Reduce BHDDT has good scalability.

VI. CONCLUSIONS
This paper proposes a distributed method of dynamic detec-
tion and tracking burst hotspots on social networks. The
problem of sparsity is solved by judging the relevance of
current text between previous texts by the keyword similarity
matrix of adjacent text. The topic detection and tracking
technology is integrated into the same system. By analyzing
the algorithm’s bottleneck, BHDDT algorithm is parallelized
based on Map/Reduce, which greatly improves the efficiency
of the program operation and solves the problem that the
clustering algorithm degrades with the increase of data vol-
ume. According to our comparison experiments, BHDDT has
better performance in terms of running time, precision, recall
rate, NMI and scalability than other algorithms. In this paper,
BHDDT only implements partial parallelization. Although
the clustering part is still handled by a singlemachine, the per-
formance of BHDDT is greatly improved. The processing
power of each node of Hadoop is not well utilized, and there
is room for further improvement. Therefore, BHDDT will be
further improved and optimized. In future work we will carry
out evolutionary prediction analysis on short text sequences
of social networks.

REFERENCES

[1] Y. Hu, C. Hu, S. Fu, M. Fang, and W. Xu, ‘‘Predicting key events in the
popularity evolution of online information,’’PLoS one, vol. 12, no. 1, 2017,
Art. no. e0168749.

30922 VOLUME 7, 2019



J. Huang et al.: BHDDT

[2] R. Crane and D. Sornette, ‘‘Robust dynamic classes revealed by measuring
the response function of a social system,’’ Proc. Nat. Acad. Sci. USA,
vol. 105, no. 41, pp. 15649–15653, 2008.

[3] S. Kong et al., ‘‘Predicting bursts and popularity of hashtags in real-
time,’’ in Proc. 37th Int. ACM SIGIR Conf. Res. Develop. Inf. Retr., 2014,
pp. 927–930.

[4] S. Kong, Q. Mei, L. Feng, and Z. Zhao, ‘‘Real-time predicting bursting
hashtags on Twitter,’’ in Proc. Int. Conf. Web-Age Inf. Manage. Cham,
Switzerland: Springer, 2014, pp. 268–271.

[5] H. Kwak, C. Lee, H. Park, and S. Moon, ‘‘What is Twitter, a social
network or a news media?’’ in Proc. 19th Int. Conf. World Wide Web, 2010,
pp. 591–600.

[6] X. Luo et al., ‘‘Short-term wind speed forecasting via stacked extreme
learning machine with generalized correntropy,’’ IEEE Trans. Ind. Infor-
mat., vol. 14, no. 11, pp. 4963–4971, Nov. 2018.

[7] M. Chen, Y. Li, X. Luo, W. Wang, L. Wang, and W. Zhao, ‘‘A novel
human activity recognition scheme for smart health using multilayer
extreme learning machine,’’ IEEE Internet Things J., to be published.
doi: 10.1109/JIOT.2018.2856241.

[8] S. Aslam. Twitter by the Numbers: Stats, Demographics and Fun
Facts. Accessed: Nov. 31, 2017. [Online]. Available: https://www.
omnicoreagency.com/twitter-statistics

[9] H. L. Nguyen, Y.-K. Woon, and W.-K. Ng, ‘‘A survey on data
stream clustering and classification,’’ Knowl. Inf. Syst., vol. 45, no. 3,
pp. 535–569, 2015.

[10] J. Huang, M. Peng, H. Wang, J. Cao, W. Gao, and X. Zhang, ‘‘A proba-
bilistic method for emerging topic tracking in microblog stream,’’ World
Wide Web, vol. 20, no. 2, pp. 325–350, 2017.

[11] W. Xie, F. Zhu, J. Jiang, E.-P. Lim, and K. Wang, ‘‘TopicSketch: Real-time
bursty topic detection from Twitter,’’ in Proc. 13th Int. Conf. Data Mining,
Dec. 2013, pp. 837–846.

[12] X. H. Li, T. He, H. Ran, and X. Lu, ‘‘A novel graph partitioning criterion
based short text clustering method,’’ in Proc. Int. Conf. Intell. Comput.
Cham, Switzerland: Springer, 2016, pp. 338–348.

[13] F. Beil, M. Ester, and X. Xu, ‘‘Frequent term-based text clustering,’’ in
Proc. 8th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2002,
pp. 436–442.

[14] S. A. Salloum, M. Al-Emran, A. A. Monem, and K. Shaalan, ‘‘A survey of
text mining in social media: Facebook and Twitter perspectives,’’ Adv. Sci.
Technol. Eng. Syst. J, vol. 2, no. 1, pp. 127–133, 2017.

[15] A. Ali, J. Qadir, R. U. Rasool, A. Sathiaseelan, and A. Zwitter, ‘‘Big data
for development: Applications and techniques,’’Comput. Soc., vol. 1, no. 2,
pp. 1–24, 2016.

[16] M. Capó, A. Pérez, and J. A. Lozano, ‘‘An efficient approximation to
the K-means clustering for massive data,’’ Knowl. Based Syst., vol. 117,
pp. 56–69, Feb. 2017.

[17] P. Arora and S. Varshney, ‘‘Analysis of K-means and K-medoids algorithm
for big data,’’ in Proc. 1st Int. Conf. Inf. Secur. Privacy (ICISP), vol. 78,
Dec. 2015, pp. 507–512.

[18] R. T. Ng and J. Han, ‘‘CLARANS: A method for clustering objects for
spatial data mining,’’ IEEE Trans. Knowl. Data Eng., vol. 14, no. 5,
pp. 1003–1016, Sep. 2002.

[19] L. M. Abualigah and A. T. Khader, ‘‘Unsupervised text feature selection
technique based on hybrid particle swarm optimization algorithm with
genetic operators for the text clustering,’’ J. Supercomputing, vol. 73,
no. 11, pp. 4773–4795, 2017.

[20] X. Hu, N. Sun, C. Zhang, and T. S. Chua, ‘‘Exploiting internal and external
semantics for the clustering of short texts using world knowledge,’’ inProc.
18th ACM Conf. Inf. Knowl. Manage., 2009, pp. 919–928.

[21] M. Steinbach, M. S. G. Karypis, and V. Kumar, ‘‘A comparison of
document clustering techniques,’’ in Proc. KDD Workshop Text Mining,
vol. 400, no. 1, 2000, pp. 525–526.

[22] R. E. Thomas and S. S. Khan, ‘‘Co-Clustering with side information for
text mining,’’ in Proc. Int. Conf. Data Mining, Mar. 2016, pp. 105–108.

[23] S. S. Bhanuse, S. D. Kamble, and S. M. Kakde, ‘‘Text mining using
metadata for generation of side information,’’ Procedia Comput. Sci.,
vol. 78, pp. 807–814, 2016.

[24] M. Hahsler and M. Bolaños, ‘‘Clustering data streams based on shared
density between micro-clusters,’’ IEEE Trans. Knowl. Data Eng., vol. 28,
no. 6, pp. 1449–1461, Jun. 2016.

[25] G. Karypis, E.-H. Han, and V. Kumar, ‘‘Chameleon: Hierarchical clus-
tering using dynamic modeling,’’ Computer, vol. 32, no. 8, pp. 68–75,
Aug. 1999.

[26] E. Schubert, J. Sander, M. Ester, H. P. Kriegel, and X. Xu, ‘‘DBSCAN
revisited, revisited: Why and how you should (still) use DBSCAN,’’ ACM
Trans. Database Syst., vol. 42, no. 3, p. 19, 2017.

[27] T. Gao, A. Li, and F. Meng, ‘‘Research on data stream clustering based
on FCM algorithm,’’ in Proc. 5th Int. Conf. Inf. Technol. Quant. Manage.
(ITQM), vol. 122, Dec. 2017, pp. 595–602.

[28] H. Rehioui, A. Idrissi, M. Abourezq, and F. Zegrari, ‘‘DENCLUE-IM:
A new approach for big data clustering,’’ in Proc. 7th Int. Conf. Ambient
Syst., Netw. Technol. (ANT), vol. 83, pp. 560–567, May 2016.

[29] K. S. Jones, ‘‘A statistical interpretation of term specificity and its
application in retrieval,’’ J. Documentation, vol. 28, no. 1, pp. 11–21,
1972.

[30] Y. Cong, Y.-B. Chan, and M. A. Ragan, ‘‘A novel alignment-free method
for detection of lateral genetic transfer based on TF-IDF,’’ Sci. Rep., vol. 6,
Jul. 2016, Art. no. 30308.

[31] L. Guo, C. J. Vargo, Z. Pan, W. Ding, and P. Ishwar, ‘‘Big social data
analytics in journalism and mass communication: Comparing dictionary-
based text analysis and unsupervised topic modeling,’’ J. Mass Commun.
Quart., vol. 93, no. 2, pp. 332–359, 2016.

[32] M. Allahyari et al. (2017). ‘‘A brief survey of text mining: Clas-
sification, clustering and extraction techniques.’’ [Online]. Available:
https://arxiv.org/abs/1707.02919

[33] J. Xu et al., ‘‘Self-taught convolutional neural networks for short text
clustering,’’ Neural Netw., vol. 88, pp. 22–31, Apr. 2017.

[34] I. S. Dhillon and D. S. Modha, ‘‘Concept decompositions for large sparse
text data using clustering,’’ Mach. Learn., vol. 42, nos. 1–2, pp. 143–175,
2001.

[35] D. Shen, Q. Yang, J. T. Sun, and Z. Chen, ‘‘Thread detection in dynamic
text message streams,’’ in Proc. 29th Annu. Int. ACM SIGIR Conf. Res.
Develop. Inf. Retr., 2006, pp. 35–42.

[36] X. Luo et al., ‘‘Towards enhancing stacked extreme learning machine with
sparse autoencoder by correntropy,’’ J. Franklin Inst., vol. 355, no. 4,
pp. 1945–1966, Mar. 2018, doi: 10.1016/j.jfranklin.2017.08.014.

[37] S. Banerjee, K. Ramanathan, and A. Gupta, ‘‘Clustering short texts using
Wikipedia,’’ in Proc. Int. ACM SIGIR Conf. Res. Develop. Inf. Retr., 2007,
pp. 787–788.

[38] L. Wang, Y. Jia, and W. Han, ‘‘Instant message clustering based on
extended vector space model,’’ in Proc. Int. Symp. Intell. Comput. Appl.,
vol. 4683, in Lecture Notes in Computer Science, 2007, pp. 435–443.

[39] J. Tang, X. Wang, H. Gao, X. Hu, and H. Liu, ‘‘Enriching short text
representation in microblog for clustering,’’ Frontiers Comput. Sci., vol. 6,
no. 1, pp. 88–101, 2012.

[40] T. Mikolov, K. Chen, G. Corrado, and J. Dean. (2013). ‘‘Efficient esti-
mation of word representations in vector space.’’ [Online]. Available:
https://arxiv.org/abs/1301.3781

[41] Q. Le and T. Mikolov, ‘‘Distributed representations of sentences
and documents,’’ in Proc. Int. Conf. Mach. Learn., 2014,
pp. 1188–1196.

[42] T. Kenter and R. M. De, ‘‘Short text similarity with word embeddings,’’ in
Proc. 24th ACM Int. Conf. Inf. Knowl. Manage., 2015, pp. 1411–1420.

[43] C. Akimushkin, D. R. Amancio, and J. O. N. Oliveira, Jr., ‘‘Text authorship
identified using the dynamics of word co-occurrence networks,’’ PLoS
ONE, vol. 12, no. 1, 2017, Art. no. e0170527.

[44] C. Jia, M. B. Carson, X. Wang, and J. Yu, ‘‘Concept decompositions for
short text clustering by identifying word communities,’’ Pattern Recognit.,
vol. 76, pp. 691–703, Apr. 2018.

[45] S. Deerwester, S. T. Dumais, G. W. Fumas, T. K. Landauer, and
R. Harshman, ‘‘Indexing by latent semantic analysis,’’ J. Amer. Soc. Inf.
Sci., vol. 41, no. 6, pp. 391–407, 1990.

[46] T. Hofmann, ‘‘Probabilistic latent semantic indexing,’’ ACM SIGIR
Forum., vol. 51, no. 2, pp. 211–218, 2017.

[47] D. M. Blei, A. Y. Ng, and M. I. Jordan, ‘‘Latent Dirichlet allocation,’’
J. Mach. Learn. Res., vol. 3, pp. 993–1022, Jan. 2003.

[48] X. Yan, J. Guo, Y. Lan, and X. Cheng, ‘‘A biterm topic model for short
texts,’’ in Proc. Int. World Wide Web Conf. Steering Committee, 2013,
pp. 1445–1456.

[49] J. Yin and J. Wang, ‘‘A Dirichlet multinomial mixture model-based
approach for short text clustering,’’ in Proc. ACM SIGKDD Int. Conf.
Knowl. Discovery Data Mining, 2014, pp. 233–242.

[50] J. Yang and J. Leskovec, ‘‘Patterns of temporal variation in online media,’’
in Proc. 4th ACM Int. Conf. Web Search Data Mining, 2011, pp. 177–186.

[51] T.Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, ‘‘Distributed
representations of words and phrases and their compositionality,’’ in Proc.
Adv. Neural Inf. Process. Syst., 2013, pp. 3111–3119.

VOLUME 7, 2019 30923



J. Huang et al.: BHDDT

JIANYI HUANG received the B.S. degree in
School of Computer and Communication Engi-
neering, University of Science and Technology
Beijing and is working toward the Ph.D. degree in
the same department. He is also working in Bei-
jing Key Laboratory of Knowledge Engineering
for Materials Science. His main research interests
are online social network analysis and artificial
intelligence.

JIANJIANG LI is currently an Associate Professor
at School of Computer and Communication Engi-
neering, University of Science and Technology
Beijing, China. He is also working in Beijing Key
Laboratory of Knowledge Engineering for Mate-
rials Science. He received his Ph.D. degree in
computer science and technology from Tsinghua
University, in 2005. He was a Visiting Scholar at
Temple University, from 2014 to 2015. His cur-
rent research interests include parallel computing,

cloud computing, parallel compilation, and big data.

YINGYING CHEN is a master student at School of
Computer and Communication Engineering, Uni-
versity of Science and Technology Beijing, China.
She is also working in Beijing Key Laboratory
of Knowledge Engineering for Materials Science.
She received her B.S. degree in Shandong Univer-
sity of Science and Technology. Her main research
interest is deep learning.

JIANKUN SUN is currently pursuing the Ph.D.
degreewith theUniversity of Science and Technol-
ogy Beijing, Beijing, China. His current research
interests include machine learning and computa-
tional intelligence.

PENG SHI is an Associate Professor at National
Center for Materials Service Safety, University
of Science and Technology Beijing, China. He is
also working in Beijing Key Laboratory of Knowl-
edge Engineering for Materials Science. He got
his Ph.D. from Institute of Computing Technol-
ogy, Chinese Academy of Science, in 2007. His
interests are mainly in social network analysis,
knowledge engineering, and big data application
in materials science.

30924 VOLUME 7, 2019


	INTRODUCTION
	RELATED WORK
	TRADITIONAL TEXT CLUSTERING METHODS
	SHORT TEXT CLUSTERING METHODS
	TOPIC MODELS

	PRELIMINARIES
	TEXT STREAM
	TEXT SEQUENCE
	MICRO-TEXT
	SLIDING WINDOW TEXT

	BURST TOPIC
	BURST TOPIC


	MODEL
	KEYWORD EXTRACTION
	ASSOCIATION MODEL
	DYNAMIC UPDATE
	NOISE REDUCTION
	DISTRIBUTED PROCESSING

	EXPERIMENTS
	METRICS FOR EVALUATING ALGORITHM QUALITY
	NMI

	PRELIMINARIES TEST
	PERFORMANCE EVALUATIONS
	DATASETS
	PARAMETER SETTINGS

	PROCESSING TIME TEST
	SCALABILITY TEST

	CONCLUSIONS
	REFERENCES
	Biographies
	JIANYI HUANG
	JIANJIANG LI
	YINGYING CHEN
	JIANKUN SUN
	PENG SHI


