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ABSTRACT As an effective feature selection technique, rough set theory plays an important part in machine
learning. However, it is only applicable to labeled data. In reality, there are massive partially labeled data
in machine learning tasks, such as webpage classification, speech recognition, and text categorization.
To effectively remove redundant features of partially labeled data, the neighborhood granulation measures
based on a neighborhood rough set model are put forward in this paper, which can be used to evaluate the
discernibility ability of feature subsets under both information systems and decision systems. Moreover,
a new definition of significance is introduced. Based on that, a semisupervised reduction algorithm is
presented for the feature selection of partially labeled data. Several datasets are chosen to verify its
effectiveness. The comparative experiments show that our proposed method is more effective and applicable

to the feature selection of partially labeled data.

INDEX TERMS Partially labeled data, feature selection, neighborhood rough set, granulation measures,

semisupervised learning.

I. INTRODUCTION

In recent years, since data gradually tends to be large-scale
and high-dimensional, feature selection, also called attribute
reduction, has attracted more and more attention. As an
important part of machine learning and data mining, feature
selection is a fundamental preprocessing method to eliminate
redundant features or attributes. The advantages of feature
selection are obvious. For example, it can effectively decrease
computation burden and reduce data storage space. Moreover,
the performance of learning algorithms can be improved by
removing irrelevant features. Up to now, many feature selec-
tion techniques have been proposed and applied to practical
applications [1]-[10], such as webpage classification [9],
fault diagnosis [10], and power system transient stability
assessment [6], etc.

As an important soft computing technique dealing with
uncertain and vague information, one of representative char-
acteristics of rough set model [11] is its powerful ability
to handle feature selection problems. Compared with other
techniques, rough set model is totally data-driven and doesn’t
need any other prior information [12]. However, the applica-
tions of rough set model are limited since it can only handle
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categorical data. Neighborhood rough set model, introduced
by Yao [13], provides a feasible way to solve this problem
by replacing the equivalence relation with neighborhood rela-
tion, which can avoid data discretization and directly handle
real data. Many feature selection methods based on neighbor-
hood rough set model have been proposed recently [14]-[17].
However, the current researches are mainly concentrated on
labeled data and relatively less attention has been paid to the
case of partially labeled data. Actually, in machine learn-
ing tasks, it’s fairly common to find that only one part of
sample data are labeled and the others are unlabeled, such
as webpage classification, speech recognition, and image
annotation, etc. [18]—[20]. This is because the labeled data
are quite hard to obtain sometimes, which will cost much
time or human effort. By contrast, it’s much easier to acquire
unlabeled data. For instance, in webpage classification, it’s
easy to gather the unlabeled data by a web crawler. However,
it’s quite expensive to obtain their decision labels since one
should label these webpages manually. The existing rough set
methods may be not well applicable to handle this situation
due to the insufficient of labeled data. For this reason, it’s
necessary to research on how to take full advantage of both
labeled and unlabeled data.

So far, there have been some pioneering work on the
study of feature selection for partially labeled data. In [21],
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Miao et al. transformed the partially labeled data into labeled
data by providing each unlabeled data with a pseudo-class
symbol and designed an attribute reduction algorithm using
markov blanket, but it has the weakness of poor efficiency
since each unlabeled instance marked with pseudo-class
symbol is required to be discernible. Similarly, Ren et al.
[24], developed a wrapper-based feature selection method by
transforming unlabeled data into labeled data. Zhu et al. [25]
also presented a multi-label feature selection method by
recovering missing data. In [22], the discernibility pair was
introduced to measure different features and two reduction
algorithms were proposed. In [23], an attribute reduction
method using co-training was developed. However, the above
methods can only handle categorical data, which have limita-
tions in practical applications. In virtue of the current situa-
tions of feature selection for partially labeled data, as well as
the need of practical applications, in this paper, we develop
a feature selection method for partially labeled data using
neighborhood granulation measures, which are based on
neighborhood rough set model.

The contributions of this paper are three-fold. (1)
Firstly, we propose the concept of neighborhood granulation
measures under the framework of neighborhood rough set
model, which provide a novel viewpoint to evaluate attribute
subsets in both information systems and decision systems.
(2) Secondly, the novel definition of significance proposed
by us considers the labeled and unlabeled data simultane-
ously, which integrates these two parts into one without any
change to original data. (3) Finally, a semisupervised feature
selection algorithm is developed to handle partially labeled
data. Moreover, some comparative experiments are provided
to verify the effectiveness of our proposed method.

The rest of this paper is organized as follows. Some basic
knowledge of partially labeled data and neighborhood rough
sets are introduced in the next section. In section III, we intro-
duce several neighborhood granulation measures and a new
definition of significance is developed to evaluate features in
partially labeled data. A semisupervised reduction algorithm
is also proposed in this section. Section IV provides the
comparative experiments and analysis. Finally, we conclude
this paper in section V.

Il. PRELIMINARIES

In this section, we review some basic knowledge of partially
labeled decision systems and neighborhood rough sets. More
details can be found in [12], [13], [21], and [22].

A. PARTIALLY LABELED DECISION SYSTEMS

In the framework of rough set theory, the research data is typ-
ically described as an information system IS = (U, A, V, f),
where U = {x1,x2, ..., Xy} is the nonempty and finite set
of instances, A = {ai,ay,...,ay,} is the set of features
(attributes), V is the set of corresponding attribute values.
f : UxA — V is an information function, which deter-
mines the value of each instance under a certain feature. IS
is also called a decision system DS = (U,C U D,V, f),
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if A = C U D, where C is the set of condition attributes
and D is a decision attribute. Furthermore, DS is referred to
as a partially labeled decision system PDS =(X; U Xy, C U
D,V, f),if U = X; U Xy, where X is the set of labeled
instances and X is the set of unlabeled instances.

By distinguishing the three types of research data, a learn-
ing process can be further divided into supervised learning,
unsupervised learning, or semisupervised learning.

B. NEIGHBORHOOD ROUGH SET MODEL
Definition 1: Let IS = (U, C) be an information sys-
tem, where U = {x1,x2,...,x,} is the set of instances,
C ={cy,ca,...,cy} is the set of condition attributes, BCC.
§ is a nonnegative number ranging in [0, 1]. Then, the neigh-
borhood relation induced by B is defined as

NRY = {(i, ) € U x Ulagi, ) <8} ()

where § is a neighborhood threshold which controls the
neighborhood size of each instance, Ap is a distance function,
usually denoted by Minkowski Distance as follows:

1/pP
A= (Y, o —feal )" @

Vxi, xj, X € U, the distance function satisfies nonnega-
tivity (Ap(x;, xj) > 0), symmetry (Ag (x;, xj) = Ag (x;, x;))
and transitivity (Ag (xj, x¢) < Ag (x, xj) + Ap (xj, X))

For convenience, hereinafter, we denote NR% by NRp if
there is no confusion.

Definition 2: Let IS =(U, C) be an information system,
where U = {x1, x2, ..., x} is the set of instances, C is the
set of condition attributes, B C C. The neighborhood relation
determined by B is NR?,, then the neighborhood granulation
of U induced by NR% is denoted by

U/NRY = {n} (x1) , ny (x2) , ..., n (xm)} 3)

where n% (xi) = {xl(xi, xp) € NR‘SB} denotes the neighborhood
granule of x; in feature B.

It’s noted that the equivalence relation in traditional rough
sets constitutes a partition of U, whereas the neighborhood
relation in neighborhood rough sets forms a covering of U.
The neighborhood granulation of U induced by NRp is also
called a neighborhood granular structure. For convenience,
in what follows, we denote ng (x;) by np(x;), if no confusion
arises.

Theorem 1: Let IS =(U, C) be an information system,
B1,B2CC, By € Bj. § is a neighborhood threshold. Then
for any x; € U, there exists n‘SB2 (xi) < ”BBI (xi).

Theorem 2: Let IS =(U, C) be an information system,
B C C. 61,8, are two neighborhood thresholds satisfying
81 < 8. Then for any x; € U, there exists n‘SBl (x;) € n‘SB2 ().

Theorem 1 and theorem 2 show that adding new features
or decreasing the value of neighborhood threshold will lead
to the diminution of neighborhood granules.

Definition 3: Let DS =(U, C U D) be a decision system,
where U = {x1,xp,...,xy} is the set of instances, C =
{c1, ¢, ..., cn} is the set of condition attributes, BCC, D
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is the decision attribute. dy, da, ..., dy are the equivalence
classes obtained by D. Then the lower and upper approxima-
tions of D with regard to B are defined as follows:

N - N —
NRgD = Ui:l NRpd;; NRgD = Ui:l NRgd;

where ]&d, = {xj|nB (xj) - di,x]' S U} , and md, =
{xj|n3 (x]') Nd; # @,Xj e U}

The lower approximation of D with respect to B is also
called the positive region of D with respect to B, denoted by
POSB(D).

Definition 4: Let DS =(U, C U D) be a decision system,
B C C, then B is referred to as a reduct if B satis-
fies POSp (D) = POSc(D), and VB C B, there exists
POS (D) < POSg (D).

Ill. FEATURE SELECTION FOR PARTIALLY LABELED DATA
BASED ON NEIGHBORHOOD GRANULATION MEASURES
From the viewpoint of neighborhood rough sets, informa-
tion or knowledge is implied in attributes, which generate a
series of neighborhood granules of referential universe and
constitute a covering of the referential universe. Generally
speaking, adding new features will make the neighborhood
granules finer and the objects can be approximated more
accurately. Namely, the finer the granule is, the stronger
the discernibility power will be. Thus, knowledge can be
measured by studying the information granular structures
induced by corresponding attribute subsets. As one of impor-
tant uncertainty measures, granulation measures have been
thoroughly researched and applied to many applications in
recent years [26]-[29]. In particular, Liang and Qian [26]
introduced the information granulation for information sys-
tems. In [28], the combination information granulation was
researched. In this section, we will extend the granulation
measures into neighborhood granular structure. Based on
that, a novel concept of significance will be developed to
measure attributes in partially labeled decision system.

A. NEIGHBORHOOD GRANULATION MEASURES
Definition 5: Let IS =(U, C) be an information system,
B C C.U/NR‘S = {n% (x1), ng x2),... ,n% (x|U|)} is a
neighborhood granulation of U induced by B. § is a neighbor-
hood threshold. Then the neighborhood information granula-
tion of B is defined as follows:

1
NG B) = o YL ) @

If for any x; € U, there exists |n% (xi)| |U|, then
NG?® (B) = 1.1f for any x; € U, there exists |n} (x))| = 1,
then NG? (B) =1 / |U|. Since NG® (B) increases monotoni-
cally with |nB(x,)| we can obtain that 1/|U| < NG? (B) <1.
For convenience, in what follows, we denote NG® (B) by
NG (B), if there is no confusion.

Theorem 3: Let IS =(U, C) be an information system,
B1,ByCC, B C By, then NG (By) < NG (By).
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Proof: By theorem 1, we can obtain thatng, (x;) < np, (x;),
Wthh means that |ng,(x;)| < |np, (x,)l Hence, NG (By) =
o i) Ins, ()| < NG B1) = b Y7, I, ().

Theorem 4: Let IS =(U, C) be an information system,
B < C. é1, 87 are two neighborhood thresholds, §; < &2,
then NG®' (B) < NG% (B).

Proof: By theorem 2, we can obtam that n’. B ' (x) € nB (xi),
Wthh means that |nB x| < |nB (x,) |. Hence, NG (B) =
o XU g ()l < NG (B) = 3 S I ().

Theorem 3 shows that for a given feature set, the neigh-
borhood information granulation decreases monotonously as
new features are added into the feature set. Thus, the neigh-
borhood information granulation can be used to measure the
discernibility ability of different granular structures in an
information system. Theorem 4 shows that the neighborhood
threshold also has an impact on the neighborhood information
granulation. Based on definition 5 and theorem 3, the con-
cept of attribute reduct for an information system can be
developed.

Definition 6: Let IS =(U, C) be an information system,
B C C. Then B is called a reduct of IS, if there exist:

(1) NG (B) = NG (C);

() VB C B, NG (B’) ~ NG (B).

In the above definition, condition (1) guarantees that the
reduct owns identical discernibility power with the original
feature set. While condition (2) ensures that there is no redun-
dancy in the chosen reduct set.

The neighborhood information granulation provides us an
index for attribute evaluation. Further, we can use forward
or backward feature selection strategy to find the reduct set.
In the forward feature selection strategy, we start with an
empty set. In each round, the feature which maximizes the
decrement of neighborhood information granulation of the
current set will be added into reduct set and the algorithm will
keep running until the neighborhood information granulation
of the current set is equal to the one of full set. As to the
backward feature selection strategy, we first start with the full
feature set. In each round, we compute the significance of
each feature ¢; in the current set RED by NG (RED — ¢;) —
NG (RED), and the feature with minimum significance will
be removed from the current set. At last, the algorithm will
stop if the value of minimum significance is greater than zero.
Both of forward and backward feature selection strategies
can be utilized to find the reduct set. In this paper, the for-
ward feature selection is adopted. Then, we develop a feature
selection algorithm for information systems (unlabeled data)
based on neighborhood information granulation as shown in
algorithm 1.

It’s noted that neighborhood information granulation is
based on the assumption of single neighborhood relation.
To measure the neighborhood granular structure induced by
multiple neighborhood relations, the following concepts are
introduced.

Definition 7: Let DS =(U, C U D) be a decision system,
B|,BoCC.U/NRg, = {np, (x1),np, (x2),...,ns, (xu))
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Algorithm 1 Attribute Reduction for Information Systems
Based on Neighborhood Granulation Measures (NGU for
Short)
Input: an information system IS =(U, C), RED= 0.
Output: the reduct set RED.
Step 1: normalize the data by min-max normalization.
Step 2: for each a; € C — RED,
compute NG (RED U {a;}).
end for
Step 3: find g; satisfying
NG (RED U {a;}) = min;NG (RED U {a;}).
Step 4: RED = RED U q;.
Step 5: if NG (RED) # NG (C)
go to step 2.
else
go to step 6.
end if
Step 6: return the reduct set RED.

and U/NRB2 = {np, (x1),nB, (x2),...,np, (JC|U|) are
neighborhood granulations of U induced by B; and
By respectively. Then the neighborhood combination
information granulation of By and B, is defined as
follows:

1
NG BB = s 3 s ) Ol 9

Furthermore, let U/RD = {lx1lp, 2lps - - [xulp)s
where Rp is the equivalence relation induced by decision
attribute D and [x;]p is the equivalence class of x; generated
by Rp. Then, VB C C, the neighborhood combination infor-
mation granulation of D and B is defined as follows:

1
NGB = o 3 o sl (6)

Theorem 5: Let IS =(U, C) be an information system,
B, B,CC, then there exist NG (B1,B>) < NG (B;) and
NG (B, By) < NG (By) .

Proof: Since (ng, (x;) N np, (x;)) < np,(x;), it’s easy to
obtain that |ng, (x;) N ng,(x;)| < |np, (x;)|. Therefore, we can
conclude that NG (B1, By) = ﬁ lell |ng, (xi) N npg, (x;)|<

NG (By) = # Zlgll Inp, (x;)]. It’s similar to prove that

NG (B1, By) < NG (B).

Theorem 6: Let IS =(U, C) be an information system,
B < C. é1, 67 are two neighborhood thresholds, §; < &7,
then NG% (B, By) < NG (B, B»).

Proof: By theorem 2, we can obtain that (ng' (x) N
ny (xi)) S(ny (1) N (x;)). which means that |n (x;) N
ny ()| < Iny (%) N nj () |. Hence, NG (By, By) <
NG® (By, By).

The above theorems show that the neighborhood combina-
tion information granulation of two attribute subsets is less
than the single one. Moreover, the smaller the neighborhood
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threshold is, the smaller the neighborhood combination infor-
mation granulation will be.

Definition 8: Let DS =(U, C U D) be a decision system,
B|,BoSC.U/NRg, = {np, (x1),np, (x2),...,ng xw)}
and U/NRg, = {np, (x1),np, (x2),...,np,(xjy))} are
neighborhood granulations of U induced by B; and B>
respectively. Then the conditional neighborhood informa-
tion granulation of B, with respect to By is defined as
follows:

1
NG (B 1B) = o 3 (s 5| = o, (0 1, ()
™

Furthermore, let U/RD = {lx1lp, x2lps - - [xu)1p)-
Then, VBCC, the conditional neighborhood information
granulation of D with respect to B is defined as follows:

1
NGDIB) = o 30, (s o)l = b () O xlol) - (8)

Theorem 7: Let DS =(U, C U D) be a decision system,
B1,By C C.Then NG (B | Bi) = NG (B1) — NG (By, By).

Proof: Tt follows directly from definitions 5-7.

Theorem 8: Let DS =(U, C U D) be a decision system,
Bi,B>CC, By € By. Then NG (B | B) = 0.

Proof: By theorem 1, we can obtain that np, (x;) <

np, (x;), which means that |ng, (xz-/)| = |ng, (x;) N np, (x;) |.
Hence, NG (B1|B2) = o Yoiy(ns, ()| — Ins, (i) 0
ng, (x;) ) = 0.

Theorem 9: Let DS =(U, C U D) be a decision system,
B1,B,CC, B; € By. Then NG (D | By) < NG (D | By).
Proof: By theorem 1, we can obtain thatng, (x;) € np, (x;),
which means that |np, (x;)| < |np,(x;)|. Hence, NG (D | By) =
U
o iy (nsy )| = Ing, () N Lxilpl) < NG (D|B1) =

o it (nsy G| = g, () O Lalp)):

Theorem 7 shows that the conditional neighborhood infor-
mation granulation is the information increment between
neighborhood information granulation and combination
information granulation, which reflects correlations between
different attribute subsets. Theorem 8 shows that for a
given attribute set, the information increment provided by
its arbitrary subset is zero. Theorem 9 shows that adding
new condition attributes will not increase the conditional
information granulation of decision attribute with respect to
the condition attribute subset. Namely, the more attributes
there are, the lower the conditional information granula-
tion is and the stronger the discernibility ability of an
attribute subset will be. Thus, the concept of attribute reduct
for a decision system (labeled data) can be defined as
follows.

Definition 9: Let DS =(U, C U D) be a decision sys-
tem, B C C. Then B is called a reduct of DS, if there
exist:

(1) NG(D|B) =NG (D] C);
() VB C B, NG (D|B’) ~ NG (D| B).
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Further, we develop a feature selection algorithm
for decision system (labeled data) based on condi-
tional neighborhood information granulation as shown in
algorithm 2.

Algorithm 2 Attribute Reduction for Decision Systems
Based on Neighborhood Granulation Measures (NGL for
Short).
Input: a decision system DS =(U, C U D), RED= (.
Output: the reduct set RED.
Step 1: normalize the data by min-max normalization.
Step 2: for each a; € C — RED
compute NG (D|RED U {a;}).
end for
Step 3: find the attribute a; satisfying
NG (DIRED U {a;}) = min;NG (D|RED U {a;}).
Step 4: RED = RED U q;.
Step 5: if NG (D|RED) # NG (D|C)
turn to Step 2
else
turn to Step 6
end if
Step 6: return the reduct set RED.

B. ATTRIBUTE REDUCTION FOR PARTIALLY LABELED DATA
In the previous subsection, we introduce two feature selection
algorithms for labeled data (decision systems) and unlabeled
data (information systems) respectively, which are actually
under the framework of supervised learning and unsuper-
vised learning respectively. In practice, there usually exist
massive partially labeled data in semisupervised learning
tasks. However, most current studies of rough set theory
about feature selection techniques mainly concentrate on
labeled data and there is little discussion with regard to
partially labeled data. Therefore, in this subsection, we pro-
pose a feature selection method to handle partially labeled
data.

At present, there are usually two strategies for handling
partially labeled data. One is transforming partially labeled
data into labeled data. However, this method has the weakness
of poor efficiency. Moreover, the process of transformation
may increase the computation complexity. The other one
directly uses the supervised or unsupervised methods to han-
dle partially labeled data. Whereas this strategy may lead
to poor performance due to the lack of effective learning
samples. To ensure the learning performance, we should
fully use both unlabeled and labeled data. From the previous
discussion, we know that the neighborhood granulation mea-
sures could deal with both supervised and unsupervised data.
Thus, we could use the neighborhood granulation measures
to evaluate the labeled part and unlabeled part simultane-
ously. Based on the above analysis, we develop the following
concept.
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Definition 10: Let PDS = (X; U Xy, C U D) be a partially
labeled decision system, where X; is the set of labeled
instances and Xy is the set of unlabeled instances. VB C C,
the significance of condition attribute set B with respect to
PDS is defined as follows:

SIG (B)
NGy (C) | 1+NGL(DIO) |
NGo B T T+NGop) TR TP XD
NGy (€)

={—- if Xp =0,X
+ NG .
_ X Xy =
[T NG, (DIB)’ if Xp #90, Xy =0
)

where NGy (B) denotes the neighborhood information gran-
ulation of B computed by the part of unlabeled data X;; and
NG (D|B) denotes the conditional neighborhood information

granulation of D with respect to B computed by the part of
labeled data X7 .

In definition 10, the unlabeled part is measured by the
neighborhood information granulation and the labeled part
is measured by the conditional neighborhood information
granulation. The significance measure integrates these two
parts into one. Actually, it’s quite clear to use the con-
cept of significance. If one feature subset has the same
significance with the original feature set, then it has the
same discernibility power since the neighborhood granular
structure is not changed. Hence, we can use the proposed
significance to design attribute reduct for partially labeled
data.

Definition 11: Let PDS = (X U Xy, C U D) be a partially
labeled decision system, where X; is the set of labeled
instances and Xy is the set of unlabeled instances. B C C.
Then B is called a reduct of PDS, if there exist:

(1) SIG (B) = SIG (C):
() VB C B, SIG (B’) < SIG (B).

As mentioned above, the significance reflects the discerni-
bility power of one condition attribute subset. The greater
the significance is, the stronger the discernibility power of
the attribute subset is. Thus, we could start with an empty
reduct set and pick up the attribute with maximum increment
of significance of the present reduct set in each round. Based
on the above analysis, we further construct a feature selec-
tion algorithm for partially labeled decision system (partially
labeled data) based on the proposed significance measure
which is shown in algorithm 3.

In algorithm 3, the computation complexity mainly deter-
mined by Step 2-Step 4. Suppose that there are n condition
attributes, m; labeled instances, and m,, unlabeled instances.
my; + my, = m. Then the computation complexity of comput-
ing significance of attribute set is equal to O(mlzn + mﬁn).
In a worst case, the computation complexity of updating
reduct set (i.e. Step 2-Step 5) is O(mlzn2 + minz). Thus, the
overall computation complexity of algorithm 3 is equal to
O(mlzn2 + mﬁnz).
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Algorithm 3 Attribute Reduction for Partially Labeled Deci-
sion Systems Based on Neighborhood Granulation Measures
(NGAR for Short).

Input: partially labeled decision system PDS =(X; U
Xy, CUD), RED= .
Output: reduct set RED.
Step 1: normalize the data by min-max normalization.
Step 2: for each ¢; € C — RED
compute SIG (RED U {a;}).
end for
Step 3: find the attribute g; satisfying
SIG (RED U {a;}) = max;SIG (RED U {a;}).
Step 4: RED = RED U q;.
Step 5: If SIG (RED) # SIG (C),
turn to Step 2.
else
turn to Step 6.
end if
Step 6: Return the reduct set RED.

TABLE 1. A partially labeled decision system.

U ¢ cy C3 Cy Cs
x; 0 0.73 025 093 0.18
x3 0 0.77 0.08 096 0.15
x3 028 073 1 095 0.16
xs 054 085 0 072 0

xs 077 085 050 1 0.12
xs 0.66 0.88 0.83 099 022
x; 094 1 0.25 048 047
xg 1 0 0.50 0 1

W XN % %= =g

C. AN ILLUSTRATIVE EXAMPLE

In this subsection, an illustrative example is employed here
to show the rationale and main steps of our proposed feature
selection method for partially labeled data.

Consider a partially labeled decision system PDS =
(X UXy,CUD) shown in Table 1, where X; =
{x1, x2, x5, x6, x8}, Xu = {x3, x4, x7}, C = c1, 2, €3, ¢4, ¢5}.
Assume § = 0.35. The Euclidean distance is adopted here.

1) First, by NGAR, we have n¢ (x1) = {x1, x2}, nc (x2) =
{x1, x2}, nc (x3) = {x3}, nc (xa) = {xa}, nc (x5) = {xs}
Thus, by definition 5 and 8, we can obtain that NGy, (D|C) =
0, NGy (C) = 0.33. In the first loop, SIG (¢;) = 23

p 056 T
120 — 1.46, SIG (¢2) = %32 + 0 — 1.09, SIG (c3) =

(1> 9'16 B 140 ] 1+0.32 0.33 1+0
056 T 703 = 136, SIG(cs) = G + 503 =
1.19, SIG (cs) = 933 + 1% = 1.19. Thus, c; is put

into reduct set, namely, RED = {c}. In the second loop,
SIG (RED U {c3}) = 32 + 128 = 1.6, SIG (RED U {c3}) =

140
0.33 140 __ _ 033 140 __
033 T 11008 = 1.93, SIG (RED U {c4}) = m-}-ﬁ = 1.6,
SIG(REDU {cs}) = §32 + 123 = 1.6. Thus, c3 is put

into reduct set, namely, RED = {ci, c3}. In the third loop,

SIG (RED U{c2}) = §33 + 129 = 2. SIG (RED U {cs}) =
033 |, 140

— _ 033 | 140 _
053 T 10 = 22 SIGREDU{cs}) = 353 + 150 = 2
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Thus, ¢ is put into reduct set and the final reduct set is
RED = {cy, c3, c2}.

2) On the other hand, if we use NGU to find reduct
set, then in the first loop, NGy (c1) = 0.56, NGy (c2) =
1, NGy (c3) = 0.56, NGy (c4) = 0.78, NGy (¢5) =
0.78. Thus, c; is put into reduct set, namely, RED =
{c1}. In the second loop, NGy (RED U {c2}) = 0.56,
NGy (RED U {c3}) = 0.33, NGy (RED U {c4}) = 0.56,
NGy (RED U {c5}) = 0.56. Since NGy (RED U {c3}) =
NGy (C), c3 is put into reduct set and the final reduct set is
RED = {cy, c3}.

3) If we further use NGL to find reduct set, then in the
first loop, NGr (D|c1) = 0.16, NG (D|cz) = 0.32,
NG (D|c3) = 032, NG1 (D |cq) = 0.32, NG, (D|cs5) =
0.32. Thus, c¢; is put into reduct set, namely, RED =
{c1. In the second loop, since NG (D |RED U {c;}) = O,
NG (D|RED U {c3}) = 0.08, NG (D|REDU {c;}) =
0, NG, (D | RED U {c5}) = 0, ¢ is put into reduct set and
the final reduct set is RED = {c1, c3}.

It can be seen that the results obtained by these three
methods are quite different. The underlying reason is that
NGU and NGL only consider particular part of instances,
which may sacrifice the learning performance due to the lack
of sample knowledge. Whereas NGAR takes full advantage
of both labeled and unlabeled instances, which may be more
effective to deal with partially labeled data.

IV. EXPERIMENTAL ANALYSIS

In this section, to verify the effectiveness of our proposed
method, a series of experiments are conducted on several
datasets chosen from UCI Machine Learning Repository [30],
which are shown in Table 2. There are totally three parts con-
sidered in this section. In part I, we analyze the performance
of our proposed method by comparing with several super-
vised and unsupervised methods. In the second part, the clas-
sification performance and reduction rate of our proposed
feature selection method are compared with several existing
feature selection methods designed for partially labeled data.
Finally, in part III, we discuss the impact of neighborhood
threshold on the performance of our proposed method.

TABLE 2. Data description.

ID Data Features Class Instances
1 Wine 13 3 178
2 Tono 34 2 351
3 Glass 10 7 214
4 Wpbc 33 2 198
5 Wdbc 31 2 569
6 ILPD 10 2 583
7 Sonar 60 2 208
8 Climate 18 2 540

In the following experiments, all the numerical attributes
are normalized by min-max normalization to eliminate the
influence caused by the difference of units of measures. Three
typical classifiers including classification and regression tree
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FIGURE 1. Classification performance with different label rates (CART).

(CART), radius basis function-based support vector machine
(RBF-SVM) and Naive Bayes (NB) are utilized to evalu-
ate the classification performance of corresponding reduct
sets with 10-fold cross validation scheme. For each dataset,
we generate the partially labeled data by randomly selecting
part of instances and removing their decision labels. The
above experiments are all carried out in MATLAB 2013b.

A. COMPARISONS WITH SUPERVISED AND
UNSUPERVISED FEATURE SELECTION METHODS

As mentioned above, when handling partially labeled data,
one widely used strategy is to directly use supervised methods
or unsupervised methods. To illustrate the necessity of our
work, in this subsection, we first compare our method
with several supervised and unsupervised methods, including
NGU, NGL and the forward feature selection method based
on positive region [31] (FPR for short).

In the above-mentioned methods, NGU is unsupervised
method, which is applicable to information systems (unla-
beled data). Whereas NGL and FPR are supervised meth-
ods, which are designed for decision systems (labeled data).
In NGL, the conditional neighborhood information granula-
tion is used to measure the discernibility power of different
attribute sets. As to FPR, the positive region is utilized to
evaluate the discernibility power of one attribute set and
the attribute which can maximum the increment of positive
region will be added into the reduct set until it has the same
positive region with the original attribute set.

In order to test the performance of our proposed method
on partially labeled data, we conduct experiments on each
dataset with different ratios of unlabeled instances, where the
ratio of unlabeled instances is set as 0.05 to 0.95 with the
step of 0.05. Since different classifiers learn data from distinct
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ways, they usually need different attribute subsets to achieve
the optimal classification performance. Thus, we change the
value of neighborhood threshold and choose the reduct set
with optimal classification performance in CART, RBF-SVM
and NB respectively as the final reduct set. Figs 1-3. present
the classification performance of four algorithms with differ-
ent ratios of unlabeled instances. The average classification
accuracies of these algorithms in different ratios of unlabeled
instances are reported in Tables 3-5.

TABLE 3. Average classification performance (CART).

Data NGAR NGU NGL FPR

Wine 0.9140 0.8591 0.8910 0.8819
Iono 0.8910 0.8543 0.8411 0.8626
Glass 0.9819 09812 0.9814 0.9807
Wpbc 0.7220  0.6918 0.6880  0.6919
Wdbc 0.9362 09131 09145 0.9169
ILPD 0.6651 0.6528 0.6475 0.6494
Sonar 0.7322  0.6231 0.6733  0.6949
Climate 0.9179 0.8685 0.9073  0.9080
average 0.8450 0.8055 0.8180 0.8233

TABLE 4. Average classification performance (RBF-SVM).

Data NGAR NGU NGL FPR

Wine 0.9509 0.8921 0.9083  0.9001
Iono 0.9232 0.8885 0.8267 0.8615
Glass 0.9223 09190 09117 0.9143
Wpbc 0.7175 0.6808 0.6466 0.6367
Wdbc 0.9625 0.9371 0.9420 0.9477
ILPD 0.6445 0.6215 0.6145 0.6136
Sonar 0.7849  0.6926 0.7083  0.7557
Climate 0.9271 0.8280 0.8912  0.8630
average 0.8541 0.8075 0.8062 0.8116
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FIGURE 3. Classification performance with different label rates (Naive Bayes).

The results in Figs 1-3. show that our proposed method has
better classification performance. Moreover, compared with
other methods, the classification performance of NGAR is
more stable, which means that our reduction method is more
reliable. As to NGU, we can find that the classification perfor-
mance is poor as a relatively low percentage of unlabeled data
is adopted. Although the classification performance tends to
increase with the percentage of unlabeled data, the classi-
fication performance of NGU is quite unstable in general.
The underlying reason is that it fails to associate condition
attributes with the decision information. As to NGL and FPR,
we can observe that the classification accuracies decrease

VOLUME 7, 2019

with the grow of ratio of unlabeled data, especially when
it is greater than 0.6. As we mentioned above, since NGL
and FPR can only measure labeled data, the unlabeled data
would be discarded, which will lead to the waste of unlabeled
data and the lack of training data. Thus, they are not well
applicable to handling partially labeled data. In contrast, our
proposed method considers both labeled data and unlabeled
data. On the one hand, it can take full advantage of deci-
sion information, which avoids the drawback of unsupervised
methods. On the other hand, the unlabeled information can
provide more useful knowledge, which avoids the problem
of sacrifice of training data in supervised methods. From the
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FIGURE 4. Comparisons of classification performance with existing reduction methods for partially labeled data (CART).

TABLE 5. Average classification performance (NB). ratios of unlabeled instances, where the ratio of unlabeled
instances is set as 0.05 to 0.95 with the step of 0.05. CART,
Data NGAR NGU NGL _ FPR RBF-SVM and NB are used to evaluate the classification

Wine 0.9688 0.9348 0.9337  0.9466
Iono 0.9205 0.8882 0.8273 0.8717
Glass 0.9706 09708 0.9710 0.9223

performance of different reduct sets. It’s noted that since
the feature subsets with best classification performance for

Wpbe 07642 07495 0.7540  0.7509 these three classifiers are chosen respectively in NGAR,

Wdbc 09514  0.9395 0.9347  0.9448 the obtained reduct sets may be different. Figs. 4-6 show

;LPD g;ggg 82133 822;? 8%;3 the variations of classification accuracy with ratio of unla-
onar . B B . . .

Climate 09337 09154 09245 09294 beleq .data% in CART,.RBF-SVM.a.nd NB .respectlvely. The
average  0.8698  0.8420 0.8421  0.8458 classification accuracies of the original attribute sets are also

given in the figures. Fig. 7 presents the variation of reduction
rates with ratio of unlabeled data. The average classification
accuracies and reduction rate of these four algorithms in dif-

above analysis, it can be seen that compared with supervised  ferent ratios of unlabeled instances are given in Tables 6 to 9
and unsupervised reduction methods, our proposed method is respectively.

more applicable to handling partially labeled data. From the above figures and tables, it can be seen that

in terms of classification performance, all the above meth-
B. COMPARISONS WITH OTHER REDUCTION METHODS ods can find effective reduct sets. However, as shown
FOR PARTIALLY LABELED DATA in Tables 6 and 8, the average classification accuracies of
In this subsection, we compare the effectiveness of our pro- NGAR are higher. Moreover, we can see that NGAR has
posed method with some existing reduction methods for par- a distinct advantage over the other three methods when
tially labeled data, including semi-D [22], which are based RBF-SVM and NB are used as the classifier. In terms of
on discernibility matrix and discernibility pairs, semi-P [22], ~ reduction rate, NGAR has higher reduction rates. Namely,

which uses dependency degree and discernibility pairs to the reduct set obtained by NGAR owns less attributes and
evaluate attributes in partially labeled data, and markov higher classification accuracy. Moreover, as to Semi-P, Semi-
blanket-based attribute reduction method (MBAR) [21], D, and MBAR, as the ratio of unlabeled data increases,
which uses markov blanket to find optimal reduct set. Since the reduction rate turns worse. In contrast, the reduction

the above three methods are only applicable to categorical ~ rate of NGAR is more robust. The underlying reason is that
values, the equal frequency discretization is adopted to pre- they have different granular structures and evaluation indica-
process the above datasets in the experiments. tors. As to Semi-P and Semi-D, the basic granular structure

Two aspects including classification accuracy and is equivalence class, which is only applicable to categori-
reduction rate are considered in this comparative experiment. ~ cal data. Thus, data discretization is required for numerical
Similarly, we perform experiments in the case of different data, which will unavoidably lead to the loss of information.
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FIGURE 6. Comparisons of classification performance with existing reduction methods for partially labeled data (Naive Bayes).

Whereas the neighborhood granulation is based on neighbor- C. THE INFLUENCE OF NEIGHBORHOOD THRESHOLD

hood relation, which can directly handle numerical data. The In the framework of neighborhood rough set, the neigh-
same problem can also be found in MBAR. Moreover, as to borhood threshold plays a major role in controlling the
MBAR, each unlabeled data will be assigned with a pseudo- granularity levels of sample space. As mentioned above,

class symbol. Since each unlabeled data with pseudo-class different settings of neighborhood threshold will lead to the
symbol is required to be discernible, there may exist more  change of neighborhood granulation structure, which may
redundant attributes in the obtained reduct set. In contrast, further influence the significances of attribute sets. Accord-
the significance introduced by us can measure the labeled ingly, different reduct sets will be chosen by NGAR. Thus,
and unlabeled parts simultaneously, which can fully use the in this subsection, we study the impact of neighborhood
original data without any change to it. Thus, our proposed threshold on the performance of reduct set. Four datasets are
method performs better. considered in the experiments with three different percent
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FIGURE 7. Comparisons of reduction rate with existing reduction methods for partially labeled data.
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FIGURE 8. Variations of classification accuracies and feature numbers of reduct set with neighborhood

threshold.

of unlabeled data, where the ratio of unlabeled data is set
as 30%, 60%, and 90% respectively. In each ratio of unla-
beled data, the neighborhood threshold & ranges from 0 to
0.5 with step 0.02. Similarly, CART, RBF-SVM and NB
are utilized to evaluate the classification accuracies of the
obtained reduct sets. In the meanwhile, we report the number
N of features in the corresponding reduct set. The variations
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of classification performance and the number N of selected
features with neighborhood threshold are shown in Fig. 8.
Broadly speaking, the classification accuracies increase at
first, and then keep stable. Whereas the number of selected
features increases with the threshold overall. There is also
some small difference among the results obtained by CART,
RBF-SVM and NB. Rough speaking, we can find that
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TABLE 6. Average classification performance (CART).

Data NGAR Semi-P Semi-D MBAR
Wine 0.9140 0.9095 0.9006  0.9059
Tono 0.8910 0.8798  0.8771 0.8701
Glass 0.9818 09817 09813 09775
Wpbc 0.7220 0.6948  0.6903  0.6862
Wdbce 0.9362 0.9300 0.9305  0.9265
ILPD 0.6651 0.6542  0.6556  0.6557
Sonar 0.7322  0.6955 0.6924  0.6966
Climate  0.9179  0.9050 0.8948  0.8991
average 0.8450 0.8313 0.8278  0.8272

TABLE 7. Average classification performance (RBF-SVM).

Data NGAR Semi-P  Semi-D MBAR

Wine 0.9509 0.9466  0.9311 0.9456

ITono 09232 09189 09188  0.9140

Glass 09223 0.8864 0.8820  0.8793

Wpbc 0.7175  0.6985  0.6865  0.7015

Wdbc 0.9625 0.9607 09617  0.9288

ILPD 0.6445 0.6370  0.6361 0.6372

Sonar 0.7849 0.7546  0.7506  0.7688

Climate 0.9271 0.9024 0.8819  0.8753

average 0.8541 0.8381 0.8311 0.8313
TABLE 8. Average classification performance (NB).

Data NGAR Semi-P Semi-D MBAR

Wine 0.9688 0.9696 0.9556  0.9692

Iono 09205 0.8979 0.8978  0.8928

Glass 09706 0.8991 0.8957  0.8933

Wpbc 0.7642 0.7142  0.7089  0.6994

Wdbc 09514 09398  0.9415  0.9431

ILPD 0.7004 0.6650  0.6651  0.6689

Sonar 0.7490 0.7144 0.7213  0.7318

Climate 0.9337 0.9259 0.9233  0.9204

average 0.8698 0.8407 0.8387  0.8399
TABLE 9. Average reduction rate.
Data NGAR NGAR NGAR Semi- Semi-  MBA

-C -S -N P D R
Wine 0.6275 0.5789 0.4899 0.2995 03198  0.2632
Tono 0.7719  0.8038 0.6396 0.5805 0.5949  0.5199
Glass 0.7105  0.7579  0.9000 0.0889 0.0889  0.0521
Wpbc 0.8788  0.8501 0.9187 0.7528 0.7576  0.7193
Wdbc 0.8561  0.8333  0.8912 0.5579 0.5667 0.5228
ILPD 03158 0.3474  0.4000 0.1579 0.1632 0.1316
Sonar 0.9000 0.8939  0.9307 0.8746 0.8772  0.8447
Climate  0.6637  0.5029 0.7047 0.5146  0.5234  0.5205
average 0.7155 0.6960 0.7343  0.4783 0.4865 0.4468

[0.05,0.15] is an ideal interval for threshold, when we use
CART and NB to evaluate the classification performance.
As to RBF-SVM, [0.15, 0.3] is an appropriate interval for the
neighborhood threshold to find a relatively optimal reduct set
with minimum number of features and maximum classifica-
tion accuracy.

V. CONCLUSIONS

Rough set theory is an important feature selection tech-
nique. However, most existing researches on it mainly focus
on labeled data. To overcome such problem, in this paper,
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we present a new perspective to handle feature selection
issue of partially labeled data. Firstly, we introduce several
neighborhood granulation measures including neighborhood
information granulation, neighborhood combination infor-
mation granulation, and conditional neighborhood informa-
tion granulation, which can measure the granular structure
and knowledge implied in an information system or a decision
system. Moreover, their properties are discussed systemati-
cally. Then, a novel concept of significance is proposed to
measure the discernibility power of attributes in partially
labeled data. Based on that, a feature selection method for
partially labeled data is proposed. Finally, we conduct a series
of experiments to verify the validity of our proposed method.
The comparative results and analysis show the applicability
and effectiveness of our proposed method. It’s noted that
in reality, there may exist both categorical and numerical
features in the partially labeled data. Thus, in the future,
our group will mainly investigate the mixed feature selection
problem for partially labeled data.
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