
Received February 13, 2019, accepted February 25, 2019, date of publication March 11, 2019, date of current version March 25, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2903018

Avoiding Data Corruption in Drop
Computing Mobile Networks
RADU-IOAN CIOBANU 1, VLĂDUŢ-CONSTANTIN TĂBUŞCĂ1,
CIPRIAN DOBRE 2, (Member, IEEE), LIDIA BĂJENARU2, (Member, IEEE),
CONSTANDINOS X. MAVROMOUSTAKIS 3, (Senior Member, IEEE),
AND GEORGE MASTORAKIS 4, (Member, IEEE)
1Faculty of Automatic Control and Computers, University Politehnica of Bucharest, 060042 Bucharest, Romania
2National Institute for Research and Development in Informatics, 11456 Bucharest, Romania
3Department of Computer Science, University of Nicosia, 2417 Nicosia, Cyprus
4Department of Informatics Engineering, Technological Educational Institute of Crete, 714 10 Heraklion, Greece

Corresponding author: Radu-Ioan Ciobanu (radu.ciobanu@cs.pub.ro)

This work was supported in part by projects vINCI: Clinically-validated INtegrated Support for Assistive Care and Lifestyle Improvement:
the Human Link under Grant AAL2017-63-vINCI and RO-SmartAgeing: Non-invasive monitoring and health assessment of the elderly in
a smart environment under Grant PN 19 37 03 01 and Grant CPN 301 100/2019.

ABSTRACT Drop computing is a network paradigm that aims to address the issues of the mobile cloud
computing model, which has started to show limitations especially since the advent of the Internet of Things
and the increase in the number of connected devices. In drop computing, nodes are able to offload data
and computations to the cloud, to edge devices, or to the social-based opportunistic network composed of
other nodes located nearby. In this paper, we focus on the lowest layer of drop computing, where mobile
nodes offload tasks and data to and from each other through close-range protocols, based on their social
connections. In such a scenario, where the data can circulate in the mobile network on multiple paths
(and through multiple other devices), consistency issues may appear due to data corruption or malicious
intent. Since there is no central entity that can control the way information is spread and its correctness,
alternative methods need to be employed. In this paper, we propose several mechanisms for ensuring data
consistency in drop computing, ranging from a rating system to careful analysis of the data received. Through
thorough experimentation, we show that our proposed solution is able to maximize the amount of correct
(i.e., uncorrupted) data exchanged in the network, with percentages as high as 100%.

INDEX TERMS Mobile, cloud, edge, opportunistic, consistency.

I. INTRODUCTION
Mobile applications nowadays offer a large amount of inno-
vative features for end users. However, although smart-
phones generally have a high computing power and plenty
of resources, these applications generally rely on cloud
support in order to offer the best interaction for the user,
through mobile cloud computing [1]. Because of the numer-
ous cloud interactions, there are certain limitations and chal-
lenges regarding the network load [2], since even two devices
located close to one another need to pass through the cloud in
order to interact.

Communicating with a cloud system is necessary for

The associate editor coordinating the review of this manuscript and
approving it for publication was Zhangbing Zhou.

devices with limited resources, but costly in terms of infras-
tructure and delay. In order to reduce these interactions, the
amount of data sent to cloud platforms needs to be reduced,
by moving some processing at the edge of the network, closer
to where data are generated. In a network composed ofmobile
devices (smartphones, sensors, things, etc.), in order to have
access to data or computing power, a node needs to make a
request to the cloud. To avoid high latencies in the cloud,
as well as the cost of virtual resources, edge computing
is employed [3]. This paradigm refers to the existence of
routers, switches or set-top-boxes in the same network as
the mobile devices, which can cache data received from the
cloud or even help process some tasks. Thus, when a node
requests data or compute-intensive tasks to be solved, it first
contacts the edge devices, which can offer the reply without

31170
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0002-4114-1139
https://orcid.org/0000-0003-4638-7725
https://orcid.org/0000-0002-6733-5652
https://orcid.org/0000-0003-0333-8034


R.-I. Ciobanu et al.: Avoiding Data Corruption in Drop Computing Mobile Networks

FIGURE 1. The Drop Computing paradigm.

needing to contact the cloud. However, since edge and fog
computing have already begun to show some limitations [4],
new concepts have become necessary.

By further extending the edge computing model in order
to reduce latency and costs even more, we developed the
Drop Computing paradigm [5], which adds an extra layer
between the mobile devices and the edge nodes, as shown in
Figure 1. That layer is composed of neighboringmobile nodes
that can be accessed using opportunistic communication in
a hop-by-hop probabilistic manner. Thus, if a mobile node
needs data or has to compute a task and does not have the
necessary resources, it can try to get the results from the
ad-hoc cloud ofmobile devices existing around it. Using these
close-range nodes is cheaper even than contacting the edge,
because short-distance protocols such as Bluetooth andWi-Fi
Direct tend to consume less power than mobile broadband
protocols, while at the same time having lower latencies due
to the short distances. In order to optimize the process of
selecting the suitable mobile node that can help with a request
(for data or for computations), social and historic metadata
about the nodes making up the mobile layer are employed.
Thus, only nodes that are considered familiar and trustworthy
are selected for serving the requests of a mobile device.

Drop Computing implies that data or tasks are spread into
the network composed of mobile devices, for quicker access
and a lower consumption of resources. However, in such
situations where data belonging to a node pass through other
peers, extra care should be taken to ensure data consistency.
Since at the lowest layer of Drop Computing (as shown
in Figure 1) we are dealing with a decentralized network
(composed of mobile devices that only have information
about and from the nodes they encounter), the classical data
consistency methods cannot be employed. There is no central
entity for ensuring consistency, so nodes need to govern
themselves and decide together which data are correct. Some
nodes might have hardware failures or might be malicious,
so they should be avoided. Therefore, in this paper we pro-
pose several solutions for ensuring data consistency for task
computation in Drop Computing, while striving to have a low
effect on the overall processing latency and the number of
tasks computed. Through thorough experimental simulations,

we show that our solution is even able to achieve 100%
correctness in certain situations, while keeping the effect on
latency down.

This paper is an extension of the work published at the
IEEE International Conference on Computational Science
and Engineering [6]. As an addition to that work, we have
delved into more detail regarding the Drop Computing
paradigm, presenting the way it performs and proposing four
scenarios where it proves useful. Furthermore, we extended
the experimental validation of our solution by testing thor-
oughly on an additional mobility trace (collected in con-
ditions that were different than the original trace and the
synthetic mobility model), while also analyzing the benefit
of our solution on various mobile network-specific metrics.

The remainder of this paper is structured as follows.
In Section II, we present several solutions similar to Drop
Computing, together with methods for ensuring data con-
sistency in mobile cloud networks. Then, in Section III,
we discuss the main components of Drop Computing and the
way they work, and then we propose four scenarios (three
for mobile applications and one for an IoT-based elderly
care facility) that highlight the benefits and usability of our
proposed solution, along with the need for data consistency.
We propose our solution in Section IV and evaluate it in
Section V. Finally, we present our conclusions and future
work in Section VI.

II. RELATED WORK
While multiple solutions similar to Drop Computing have
been proposed recently, none of them have mechanisms for
data consistency, while also not allowing for device-to-device
communication along multiple hops.

Huerta-Canepa and Lee [7] present a solution where
devices with common goals work together to solve tasks.
Each node is able to compute parts of a task, and then all
these partial results are merged into the final solution, which
is shared by all the contributing nodes. The main issue of
this solution is that it does not account for node mobility
when offloading tasks, which is an important component of
the Drop Computing vision that we are addressing in this
paper. Moreover, Drop Computing supports a heterogeneous
network, where devices come in all shapes and sizes, whereas
Huerta-Canepa and Lee’s framework assumes that all nodes
are similar. Fernando et al. propose a similar mobile cloud
framework [8], but this solution has the drawback of only
allowing single-hop device-to-device communication using
Bluetooth. Furthermore, users of this framework are incen-
tivized through monetary transactions, which might prove
difficult to implement in real-life, especially since no data
corruption mechanisms are proposed and communication is
performed in a decentralized fashion betweenmobile devices.

The mCloud platform [9] allows task offloading from
mobile node to mobile node, but is also able to employ the
cloud as backup. However, device-to-device communication
is also performed over a single hop, while incentives for
participation are offered by carriers, which might not be

VOLUME 7, 2019 31171



R.-I. Ciobanu et al.: Avoiding Data Corruption in Drop Computing Mobile Networks

a realistic solution. Moreover, like the previous two solu-
tions, the mCloud platform does not propose mechanisms for
ensuring data consistency. Another platform with the same
name [10] proposes task offloading from mobile devices
towards edge devices or public cloud services. It allows com-
munication through several wireless channels such as Wi-Fi,
3G, Bluetooth or Wi-Fi Direct, employing a multi-criteria
optimization solution for the offloading behavior, which takes
into consideration battery consumption, computation time,
resource availability and network conditions. However, sim-
ilarly to the other solutions mentioned here, it only allows
one-hop device-to-device communication, while not offering
data consistency mechanisms to prevent against corruption.

Another solution implies using cloudlets formed of nodes
located in the vicinity of a mobile user [11]. The composing
nodes of a cloudlet can work together to help each other
solve tasks by offloading from one to another. The framework
considers two types of cloudlets, elastic (specially built in dat-
acenters for offloading) and ad-hoc (formed on the spot when
multiple devices are connected to the same network). The
devices in a cloudlet are in the same local network, whereas
devices in different cloudlets must be connected to the global
Internet in order to communicate. Thus, if a node needs to
offload some computations to a different cloudlet, it needs
to contact a service that is aware of all the cloudlets. From
our standpoint, this represents a disadvantage, because this
service is a central point of failure and congestion. Another
disadvantage of the cloudlet framework when compared to
Drop Computing is that it does not work optimally in scenar-
ios with mobile devices because, in order to use the resources
of a cloudlet, a node must be connected to an access point,
so nodes that are not connected to a Wi-Fi access point
or to a mobile cell tower will not be able to offload their
computations, even if some capable devices are in wireless
range. Drop Computing is able to solve this issue, because it
uses opportunistic communication for offloading tasks.

In cloud computing, popular communication protocols
generally make the assumption that nodes which make
requests are always connected to the sources of informa-
tion. However, since we assume a scenario with mobile
devices, this does not always hold true, so new means of
communication have to be devised, that take into considera-
tion critical scenarios where the infrastructures get damaged
due to causes such as natural disasters. In these situations,
availability-ensuring methods like data replication should be
employed, because data spread in multiple geographic loca-
tions can reduce latencies and avoid congestion.

Data consistency is an important issue in mobile networks,
because the high degree of node mobility can easily lead to
partitioning. Hara and Madria
citeHara2009 show that the hit rate can be increased and the
congestion reduced if a local consistency mechanism is used
instead of taking a global consistency approach. However,
this solution is not generally feasible in current mobile net-
works (and inDropComputing in particular), because devices
might not always be connected to one another, so paths

between two or more nodes that want to communicate do not
always exist.

In the literature, several data replicationmethods have been
proposed over the years, but they do not necessarily apply to
the scenarios that Drop Computing is aimed at. For example,
One-to-One Optimization (OTOO) [13] assumes that mobile
nodes collaborate with the peers they are in contact with
at a given moment and decide what information to store.
In this case, each node individually computes a utility value
as the frequency of access to a data item, and then stores
the item based on the computed value. However, there is a
certain limitation to this method, given by the fact that nodes
can only communicate with one-hop neighbors, thus restrict-
ing their communication range. In Drop Computing, nodes
communicate opportunistically, so this problem is averted by
allowing peer collaboration across Wi-Fi or Bluetooth range
boundaries.

III. DROP COMPUTING
In this section, we present the Drop Computing paradigm
that is at the basis of this paper. We begin by describing
its evolution from mobile networks where communication is
performed through close-range protocols in a probabilistic
fashion, and then we propose some use cases where Drop
Computing can be employed for mobile applications and in
an IoT scenario. Finally, we discuss about data consistency in
Drop Computing.

A. THE EVOLUTION OF DROP COMPUTING
Opportunistic networks (ONs) have been proposed as an
evolution of mobile ad-hoc networks (MANETs), being
part of the delay-tolerant networking (DTN) paradigm [14].
ON nodes are characterized by a high degree of mobility,
leading to dynamic interactions between the members of the
network. Because of this mobility of nodes, communication
between two peers can (and should) occur even if they are not
directly connected. Instead, other nodes are probabilistically
employed as next hops, based on a series of heuristics that use
context information. The main building block of ONs comes
from a paradigm entitled store-carry-and-forward [15], where
nodes store the data to be sent for a period of time, carry it
around the network, and then forward it to a suitable next hop,
or to the destination.

The other component of Drop Computing, mobile edge
computing, scales communication horizontally [16], assum-
ing that the cloud model is not feasible anymore. Thus,
requests for data and computation are not made directly
to cloud, but instead they are forwarded to the edge of
the network, to specialized small-scale devices that can
offer an extremely distributed computing environment that is
employed for developing applications and services. Further-
more, the edge devices can store and process data closer to
the requesting nodes, reducing the congestion and commu-
nication latency. Another advantage brought forth by mobile
edge computing is that applications can be split into multiple
components which can be spread in the network, so some

31172 VOLUME 7, 2019



R.-I. Ciobanu et al.: Avoiding Data Corruption in Drop Computing Mobile Networks

requests can be answered by the edge nodes, while others can
be resolved directly by the cloud service.

Based on opportunistic and mobile edge networking (with
a cloud backbone), Drop Computing offers decentralized
computing over multi-level networks, combining cloud and
wireless technologies over a social crowd composed of
mobile and edge devices [5]. This way, Drop Comput-
ing mobile nodes can take advantage of other devices in
proximity for a quicker and more efficient access to data
and computations. The need for this paradigm comes from
the insufficiency of the classic cloud model in the era of
the Internet of Things, where tens of thousands of small
devices perform cloud requests simultaneously. By employ-
ing opportunistic communication before the edge layer,
Drop Computing can extend the network and the cloud
horizontally.

B. MOBILE USE CASES
Drop Computing can have a variety of use cases in the real
world. While initially it was conceived with smartphones as
the nodes, we propose extending it for the Internet of Things,
which can be easily done, because the working principles are
the same. Instead of only having smartphones in the network,
they are interspread with sensors and actuators, and the com-
munication patterns remain the same. The smartphones will
be the nodes that can aid others with data and computation
(for example, pre-processing or aggregating data from some
sensors), acting as the extra layer before the edge nodes. Thus,
in this section we present three use cases that are oriented
more towards smartphones, while in the next section we
present in detail another scenario showing how this can be
taken further with other types of nodes from the Internet of
Things.

As a first use case, we address the situation where, in some
crowded areas such as stadiums or concert venues (where
the concentration of mobile devices in a small area is large),
the mobile broadband or wireless connection will have high
latencies and low speeds. This happens because the broad-
band cell or the Wi-Fi access point are crowded, since many
requests are made at the same time. However, based on the
assumption that, in such a human-centric scenario, the data
requests will be related (for example, participants at a sport-
ing event might be interested in other scores from the matches
being played in parallel, or in information about the sport they
are watching), Drop Computing might alleviate the connec-
tivity problems. Thus, instead of having all the nodes connect
to the cell tower or access point andmake requests at the same
time, only a (dynamically changing) subset of nodes does
this, and then the information is spread in an opportunistic
fashion around the venue. The selection of devices that will
actually connect to the access point and make the requests
is performed using social metrics such as popularity (of the
data or of the node) or number of links, since the number
of connections needs to be minimized, while the number of
nodes that receive the data of interest in a timely fashion
should be maximized.

FIGURE 2. Example of a photo collage application over Drop Computing.

Another scenario is represented by CPU-intensive mobile
apps, where generally a cloud backend is employed in order
to perform the heavy computations. As a first side effect of
this, such an application cannot work without an Internet
connection, thus adding extra limitations to its functionality.
With Drop Computing, the mobile device would be able
to leverage the aid of nodes nearby to perform the heavy
computations, which, in time, is able to lead to an overall
decrease in battery consumption and delay. As a concrete
example, we envision an application that allows mobile users
to create a video collage from a list of photos, as shown
in Figure 2. Generally, similar apps (such as Google Photos,
which has this feature), employ the cloud for collating the
photos, but we want to address situations where the cloud is
not available or the user wants to avoid employing it. Since a
device might not always have the capabilities of performing
certain computations itself, the application has an offloading
component based on Drop Computing. Thus, as shown in the
example in Figure 2, the pictures to collate are spread between
the nearby devices, then each device creates a collage of its
own subset of photos and then sends it back to the originating
device, which merges the collages it receives. The main goal
of such a scenario (and of the Drop Computing paradigm) is
to decrease the load on a single device in a collaborative fash-
ion, in order to achieve fairness and efficiency at the mobile
network level. The two scenarios presented so far show that
Drop Computing can be used for both data offloading (as in
the first use case) and computation offloading (as seen in the
collage app scenario).

One of the most important real-life situations where using
the opportunistic mobile nodes at the base of a Drop Com-
puting network brings an advantage is in the case of natural
disasters. In many such crisis situations (that may lead to
large-scale physical damages), the communication between
members of the rescue teams and with the victims is crucial.
With the help of Drop Computing, nodes would be able to
communicate even without an existing infrastructure, since
the devices close to each other would be able to exchange
information. Thus, if for example a person is caught in a
wreckage but has their smartphone on them, then they would
be able to notify the rescue teams in a device-to-device fash-
ion (either when in range of other mobile devices, or even

VOLUME 7, 2019 31173



R.-I. Ciobanu et al.: Avoiding Data Corruption in Drop Computing Mobile Networks

FIGURE 3. AAL IoT scenario for Drop Computing.

with the help of drones that fly around the disaster area
looking for devices using close-range protocols such asWi-Fi
Direct or Bluetooth).

C. IoT SCENARIO
As an application for Drop Computing in the Internet of
Things, we propose the scenario presented in Figure 3.
We assume that there is an elderly home facility that uses
ambient assisted living (AAL) for improving the lives of the
residents through careful monitoring and analysis of their
behavior, living conditions, and state. The analysis is per-
formed on a local server or in a cloud system, since it requires
aggregating information from various sensors and corellating
it.

As shown in Figure 3, there are four types of entities
present in our scenario: sensors (marked with an S), carri-
ers (C), access points (AP), and the cloud. In the following
sections, we present each of these entities in detail, together
with their role and behavior.

1) SENSORS
Various types of sensors are employed for monitoring. They
can be embedded into the residents’ environments, resulting
in intelligent living environments capable of enhancing daily
life, especially in the case of elderly or individuals suffering
from mental or motor deficiencies. In particular, wireless
mesh sensor networks (WMSNs) could be used for designing
unobtrusive, interconnected, adaptable, dynamic, and intelli-
gent environments where sensors are embedded in everyday
objects [17]. The sensors embedded into daily environments
are usually called ‘‘ambient sensors’’ (as opposed to body
sensors). The ambient sensors will collect various types of
data to deduce the activities of inhabitants and to anticipate
their needs in order to maximize their comfort and quality of
life [18].

WMSNs are based on mesh and opportunistic networking,
where each node also serves as a relay for other nodes,

aside from capturing and disseminating its own data. The
main benefit of WMSNs is their capability to dynamically
self-organize and self-configure, with the network automati-
cally establishing and maintaining mesh connectivity among
sensors [19]. WMSNs do not require centralized APs to
mediate the wireless communication, and they are particu-
larly suitable to be used in complex and dynamic environ-
ments such as living spaces [20].

In our scenario, we present in Figure 3 (markedwith S) sev-
eral external sensors that may be found in the facility, such as
temperature sensors (S1), motion sensors (S2), microphones
(S3), or cameras (S4). These are fixed sensors that are able
to collect raw data and send them further. In our scenario,
the sensors themselves do not have long-range connection
capabilities, so they cannot connect to the cloud or to the
server themselves. Instead, they use close-range protocols
such as Bluetooth, Wi-Fi Direct or ZigBee to send their data
opportunistically to any mobile carriers that come within
range.

2) CARRIERS
Since sensors cannot directly connect to the cloud or to the
local servers hosting the facility’s services, their data are sent
opportunistically (through close-range protocols) to mobile
nodes which are carried by the residents or by the nurses and
doctors, as shown by the entities marked with C in Figure 3.
The mobile nodes receive the data collected by the sensors
when they are in close range, and then, through mobility,
move them further towards the access points that have the
possibility of connecting to the server or to the cloud.

The communication between the sensors and mobile
devices is thus performed through Drop Computing, where
nodes, in the form of mobile devices, can collaborate without
the need of supervision or coordination from a central entity.
Each node can communicate with any other node found in the
proximity defined by the Wi-Fi/Bluetooth range. The lack of
a central entity forces nodes to form their own opinions about
the network, only by gathering information from other nodes
(mostly in a gossiping manner). The degree of accuracy of
this opinion is most of the time vital to the behavior of the
algorithms. Each node has to take complex routing decisions
each time it receives a messages, so, for this reason, it should
keep itself as informed as possible.

The nodes belonging to the residents do not only have Drop
Computing communication capabilities, so their goal is not
only to collect data from the sensors and move them towards
the cloud; they also have sensors themselves, potentially even
being part of a body area network (BAN) [21]. In a BAN,
various sensors are attached on clothing or on the body or
even implanted under the skin [22]. An important benefit of
BANs is their scalability and integration with other network
infrastructures. BANs may interface with wireless sensor
networks (WSNs), RFID, Bluetooth, Bluetooth Low Energy
(BLE), video surveillance systems, wireless personal area
networks (WPANs), wireless local area networks (WLANs),
the Internet, and cellular networks [23].

31174 VOLUME 7, 2019



R.-I. Ciobanu et al.: Avoiding Data Corruption in Drop Computing Mobile Networks

3) ACCESS POINTS AND THE CLOUD
In our proposed scenario, aside from static nodes (sensors)
and mobile nodes (residents, doctors, nurses), there are also
two types of access points, denoted by AP in Figure 3. Firstly,
there are access points that have an Internet connection (AP1),
which collect data from sensors and mobile devices, and
they are able to upload all the information to the processing
server. They also have some computing capabilities of their
own, which allow them to pre-process the data before sending
them to the server (or even tomake their own decisions, so not
everything is actually uploaded to the server, thus reducing
the transferred data and, implicitly, the power consumption).

Moreover, there are also smaller access points (such asAP2
in Figure 3) that are used to collect data from mobile devices
and send them to the main APs. These smaller access points
have amuch higher range than the sensors and devices carried
by the residents, and can thus move the data towards the main
access point easier.

The cloud entity, as shown in Figure 3, is where the actual
data processing and decisions are made. The server (which
is not necessarily in the cloud, but can be running on a local
high-performance machine) receives data from the static sen-
sors and from the BANs carried by the residents, through the
main access points. Based on these data, notifications can be
sent, or actions can be taken (if some special situations, such
as abnormal behavior or danger, are encountered). However,
if the server is located in the cloud, the administrators of
the assisted living facility may not wish to upload sensitive
data regarding their residents. This information can only be
stored locally, at the main access points (or at specialized
computers), and only non-sensitive data would be uploaded
to the cloud. This is an advantage brought to the fore by
Drop Computing, since sensor nodes and APs can commu-
nicate between themselves, without the need for connecting
to the Internet for every interaction (which would require
additional security measures for dealing with sensitive
data).

4) INTERACTIONS
There are several types of interactions between entities pre-
sented in Figure 3, and they are described below.

a: SENSOR TO CARRIER
Sensors collect data from their surroundings and store them.
Whenever a carrier comes into range of the protocol used by
the sensor (Bluetooth, ZigBee, Wi-Fi Direct, etc.), the col-
lected data are sent to the carrier. This is shown in Figure 3
in the interactions between sensors S1 and S2 and carrier C1,
between S2 and C2, S3 and C4, or S4 and C5.

b: CARRIER TO CARRIER
Not all carriers may end up in the range of an access point,
so the devices belonging to the carriers (which also act as
BANs for the residents of the facility) are also able to com-
municate with each other. Thus, whenever two carriers are in

range, their devices exchange the data collected so far from
other sensors or carriers. This way, the probability that the
data collected from various sensors end up at an access point
is increased. Such an example is shown in Figure 3 in the
interaction between carriers C2 (a patient) and C3 (a doctor).
C2 collects some data from sensor S2, carries them for a time,
and then, upon encountering C3, sends them further.

c: CARRIER TO ACCESS POINT
Carriers collect and exchange data among themselves, and
also from sensors. These data are meant to be sent to the
processing server, operation which can only be performed
by the access points. For this reason, they need to collect
data from the carriers. This can be seen in Figure 3 in the
interactions between carriers C3 and C5 and access point
AP1, or between C4 and AP2.

d: ACCESS POINT TO ACCESS POINT
There are multiple types of access points in our scenario.
The first category includes powerful access points that have a
connection to the Internet (or to the processing server), such
as A1 in Figure 3. However, since these kinds of APs may
be expensive, the scenario we propose also includes some
smaller access points, that have a higher range than carrier
devices, which can communicate directly to the more power-
ful APs (but not to the processing server itself). Their goal is
to act as intermediaries between the Internet-connected APs
and carriers that may not end up in their range. For example,
Figure 3 shows a situation where carrier C4 never ends up in
range of AP1, but is able to send its data to AP2, which in turn
delivers it to AP1.

e: ACCESS POINT TO THE CLOUD
Finally, the main access points send the data collected from
the carriers and sensors to the cloud.

D. DATA CONSISTENCY
Inconsistencies can be caused by various reasons, among
which we would like to highlight malicious intent (nodes
intentionally tamper with the data in order to spread false
information in the network) or hardware failures. At the
hardware level, Bairavasundaram et al. mention three classes
of data corruption: checksummismatches, identity discrepan-
cies, and parity inconsistencies [24]. Checksum mismatches
can be caused by bit-level corruption and torn or misdirected
writes, identity discrepancy is caused by lost or misdirected
writes, while parity inconsistency occurs when the memory
is corrupted, when writes are lost, or when the parity is mis-
calculated. When transferring data in a network, corruption
may occur due to attenuation or signal loss (or degradation),
delay spread, or network congestion. Ways to avoid inconsis-
tencies are generally based on setting up trust and reputation
mechanisms (for avoiding malicious nodes), replication, etc.
In Section IV, we propose and present our solution for achiev-
ing data consistency in Drop Computing.

VOLUME 7, 2019 31175



R.-I. Ciobanu et al.: Avoiding Data Corruption in Drop Computing Mobile Networks

IV. PROPOSED SOLUTION
In this section, we propose and present several mecha-
nisms for ensuring data consistency in Drop Computing.
We implemented our solution assuming that Drop Computing
is employed for task computation. Thus, at certain times
nodes generate tasks, which they can compute themselves
(although they might not always have the required resources)
or which can be sent to the Drop Computing network com-
posed of other mobile devices nearby. When the latter occurs,
nodes need to ensure that, when they receive the task results
back, they are correct and have not been modified. We only
focus on the device-to-device component of Drop Computing
in this paper because this is where data corruption most
commonly occurs. At this level, devices have a much higher
chance of malfunctioning and corrupting data, or of mali-
ciously modifying it, whereas in the cloud and at the network
edge, consistency mechanisms are usually already in place.

A. TASK EXCHANGE
The scenario we are addressing in this paper assumes that
Drop Computing is used by mobile nodes for computing
various tasks. ADropComputing task T is defined as follows:

T = <ID, tg, te, c, o, e, p> (1)

In the definition above, ID is the unique identifier of the
task, in order to distinguish it in the network (as an example,
this parameter can be generated as the hash of the task data).
tg is the timestamp when the task was generated, whereas te
is the time when the task expires and needs to be executed
in the cloud. This parameter depends on the type of task and
the duration it would take to compute, as well as its priority
from the standpoint of the user. Parameter c represents the
number of cycles of task T , and is useful when estimating
the computation duration of a task based on the capabilities
of a mobile device. The o parameter specifies the owner of
task T (i.e., the ID of the device that generated this task and
expects its result), while e is the the current executor of the
task. Finally, p is the set of paths taken by this task through
the Drop Computing network (a path is basically an array of
IDs belonging to the nodes that the task has passed through
in the mobile network, whether before being executed or
afterwards). Tasks are executed by nodes, which are defined
as follows:

N = <ID, t, cptu> (2)

ID is the identifier of the node, t is the list of tasks this node
currently has stored (which can belong to itself or to other
nodes, and can be executed or not), and cptu is the amount of
cycles per time unit that this node can compute. By default,
Drop Computing nodes compute their own tasks until they
are in range of another mobile device. When a contact occurs,
the first step is for the two encountering nodes to verify if they
are socially connected, which is performed using the function

below (where i and j are the two nodes):

conn(i, j) =


1 if contacts(i, j) > tc and

contact_time(i, j) > tt
0 otherwise

(3)

The formula above specifies that two nodes are socially
connected if the total number of contacts between them
exceeds a threshold tc and if their total contact duration is
larger than a threshold tt . If the result of the function above
is 1, then the nodes in contact attempt to solve the following
optimization problem:

minimize

∣∣∣∣∣∣
∑
t∈i.t

t.c× i.cptu−
∑
t∈j.t

t.c× j.cptu

∣∣∣∣∣∣
subject to i.t ∩ j.t = ∅ (4)

The main goal of this bound constrained optimization
problem is to balance the computational load on the two
encountering nodes, since it attempts to minimize the dif-
ference between the total computation durations of the two
nodes, calculated as the product between the number of
cycles per task and the duration of a cycle per node. After
the minimization problem is solved, the nodes exchange the
necessary tasks between each other, in order to remain with
the most optimal task set. For solving the problem, we take
a greedy approach, where the first node selects the task that
takes the longest for it to compute, while the second node
chooses one or multiple tasks that take a similar amount of
time for it to compute, and so on. We chose this solution
over more complex algorithms such as Newton or gradient
projection methods due to the mobile device requirements
and constraints. Namely, we wanted to avoid using too much
of a node’s CPU and to choose the tasks quickly, so there is
more time during the contact to exchange actual data. In the
future, we plan on looking at some more efficient solutions
already proposed [25]. When a task is completed by a node
that is not its owner, the result needs to return to the owner.
That is why, when a node finishes a task, it disseminates its
result to all encountered nodes. This process can arguably be
improved in order to minimize the load on the network, and
that is something that we wish to address in future work.

B. DATA CORRUPTION
In Drop Computing networks, we consider that there are two
ways that tasks can be corrupted. The first type of corruption
occurs right after the correct execution of a task. In this
situation, the task is computed correctly and its result is the
expected one, but, when the result is saved from RAM to
the main memory, it becomes corrupted. The second way a
task can be corrupted is when two nodes meet and exchange
information about completed tasks. In this case, a node A
initially has task T computed successfully (and correctly),
but, when it sends the result of task T to a node B, the
information ends up being corrupted. Thus, node A will still
have a correct version of task T ’s result (and will be able to

31176 VOLUME 7, 2019



R.-I. Ciobanu et al.: Avoiding Data Corruption in Drop Computing Mobile Networks

further spread it correctly in the network upon contact with
other devices), whereas node B will end up with a corrupted
version. The main difference between these two methods is
that, in the former version, the corrupted task spreads to all
nodes that the executor encounters after the task is computed,
whereas the latter version of corruption only alters the task at
the node receiving its result. In other words, the first version
corrupts tasks at the executor, while the second one corrupts
tasks at the receiver.

C. STORING THE PATH OF A TASK
In our proposal, nodes that corrupt the task results are
detected using information regarding the routes a task takes
through the network, from its original owner to its executor
(or executors), and then back to the owner on multiple paths.
Since we are dealing with opportunistic networks, a single
task may take multiple paths in the network, be executed by
more than one peer, and then end up at its owner by taking
different routes. Furthermore, since our data corruption solu-
tion requires multiples copies of a task result before deciding
which version is correct (as will be shown in Section IV-D),
there is a high chance that a task will pass through many
different Drop Computing nodes. Aside from this, it should
be noted that tasks can be exchanged between nodes before
or after being computed (and, in some situations, even when
they have been partially computed), so this should also be
taken into consideration, especially knowing the ways a task
can be corrupted, which have been presented in Section IV-B.

In our implementation, each copy of a task stores the path
that it takes through the network. The list of paths taken by a
task is represented as follows:

T .p = {p1, p2, . . . , pn} (5)

p1 to pn are the currently stored paths of a task, where a
path is defined as follows:

pi = {< ti1, si1, di1, ci1, hi1 >, . . .} (6)

As seen above, a path of index i is a list of 5-tuples, which
contains the timestamp of a data exchange (t) between a
source node and a destination node (s and d). The c field
specifies if the task was executed or not when the exchange
took place, while h is a hash of the task, used to differentiate
between task versions (i.e., in the case the task has been
corrupted).

D. THE EXPECTED VERSIONS OF A TASK
In mobile networks, there is no central entity available at
all times that the nodes can query in order to find out if a
version of a task is corrupted or not. Thus, we implemented
a mechanism where, once the result of a task arrives at the
task’s owner, it will not be sent directly to the application
level. Instead, a certain number of versions of the same
task are expected, ideally computed by different nodes or
routed through different paths. Once the desired amount of
task result versions arrive, the most popular one is selected
through a quorum and considered as the correct version.

Algorithm 1 Expected Versions Mechanism
1: Ldata - list of received versions
2: Taskid - received task ID
3: Tc - number of corrupted tasks
4: Nversions - number of waiting versions
5: Taskdata - unmodified task data
6:

7: Majority = percent of most frequent data from Ldata
8: if Majority is equal to 50% then
9: increase number of waiting versions for Taskid by 1
10: return
11: end if
12:

13: for all data D from list Ldata do
14: if detect collisions between D and Taskdata then
15: increase Tc by 1
16: end if
17: end for
18:

19: if Majority > 50% and 2× Tc > Nversions then
20: corrupted version is accepted
21: else
22: uncorrupted version is accepted
23: end if

However, there might be situations where a task is com-
puted by a node A, which corrupts the result and then sends
it through the Drop Computing network on multiple paths,
and the owner B of the task only receives versions that have
been computed (and corrupted) by A, which would lead to
an incorrect task result at note B. In order to avoid such a
situation, we propose upgrading the expected versions mech-
anism by specifying that a given percentage of executors of a
task need to be different. Furthermore, we add the restriction
that a minimum number of final relay nodes per task should
be expected. These restrictions can help increase consistency
because of the following:

• by accepting task versions executed by different nodes,
the chances that the information is not corrupt increase,
regardless of the way data are corrupted

• by accepting task versions from different nodes,
we allow the task to have a more diverse path from
executor to owner, which is useful in the scenario where
tasks are corrupted after they are computed.

The proposed solution for enforcing the number of
expected versions is shown in Algorithm 1. When the
pre-established number of versions is received, the algorithm
applies the quorum method and selects the correct version,
which is then sent to the application level. If there aremultiple
instances where the same number of versions is received,
the mobile node will wait for another version of this task
result, until a majority is formed (lines 8-11). As shown at
lines 19-23 of Algorithm 1, if the majority of versions of a
task result are corrupted, then the owner of the task will end

VOLUME 7, 2019 31177



R.-I. Ciobanu et al.: Avoiding Data Corruption in Drop Computing Mobile Networks

up with the corrupted version. In order to avoid this situation,
we propose a rating system in the next section, which has the
role of detecting and avoiding the nodes that tend to corrupt
data.

E. NODE RATING SYSTEM
As specified above, the role of the rating system is to isolate
the nodes that tend to corrupt data, either due to external
factors, or because they act maliciously on purpose. It is based
on historical information collected when a node waits for
a certain number of task versions and whenever two nodes
exchange information upon a contact.

Because mobile networks are decentralized, each node has
its own local rating for all the other encountered devices
in the network, which is re-computed at every interaction
on the network. Moreover, information about nodes not yet
encountered can also be obtained through gossiping at every
contact with other devices. The formula for computing the
local rating Lij of a node j from the standpoint of a node i is
as follows:

Lij =
suc(i, j)

suc(i, j)+ unsuc(i, j)
(7)

Thus, Lij is the percentage of successful interactions
between the two nodes (i.e., the percentage of times node
j has helped node i from the total amount of chances to do
this). An interaction means that node i has encountered node
j and has asked it to help with the execution of a task or with
the delivery of a solved task back towards its owner. If node
j was willing to help and thus executed the task or further
disseminated it into the Drop Computing network, then the
interaction is considered successful. However, whether an
interaction was successful cannot be decided on the spot
(since the two nodes might not be in range for a sufficient
time), so the analysis is performed after a period of time,
when node i encounters node j again, or when it comes
in contact with another node that has encountered node j
recently.

If there have been no direct or indirect interactions between
i and j (thus, the rating based on the formula above would
be 0), our solution employes pre-trusted nodes, which are
considered trustworthy by default based on external factors.
In our situation, these factors refer to the connections between
the node’s owners given by online social networks. Thus,
if two nodes have not had any interactions in the network but
their owners are socially connected, then their local rating for
each other is 1. On the other hand, if they are not socially
connected through any online social network, the local trust
is set to a predefined value.

However, if a mobile node only calculates other node’s
task computation willingness based on its local rating,
it may end up with a skewed view of the network, while
incomplete information might lead to wrong decisions (i.e.,
non-corrupting nodes can be considered malicious). For this
reason, nodes actually employ a global rating mechanism
using local values from all the other nodes in the network.

FIGURE 4. Task exchange example.

Thus, for computing the global rating, we calculate a
weighted average based on the local rating that each node
has for all the other nodes. As such, the global rating value
Rik that a node i has for a node k is computed as follows:

Rik =

∑
j sijLjk∑
j Lij

(8)

Once all the expected task versions arrive at the task’s
owner, it selects the correct version using the quorum mech-
anism (i.e., the most popular version), and then all the other
versions are marked as corrupt. The next step is to analyze all
the network exchanges on the paths of the versions that are
considered corrupt and see which exchange was responsible
for the corrupt version. When this is found, the rating of the
sender node at that exchange is decreased, and then the new
rating value is gossiped by the task owner at every subsequent
contact.

Extra care needs to be taken when deciding which node on
the path has corrupted a certain task. For this reason, we add a
timestamp to any transaction, in order to create correct paths
that can easily be analyzed. Figure 4 shows a node transfer
scenario where the timestamp is paramount to making correct
decisions. Node A is the owner of task Ta and spreads it in the
network for execution, the yellow color of the task showing
that it has not been executed yet. At time moment 1, the task
is delivered to node C , and at moment 2 to node B. Then,
the task is solved by node C (which is what the red color
specifies), which then sends it to nodeD at timemoment 3 and
deletes it from its own memory. Node B also computes the
task and delivers it to node C at time moment 4. Since node
C had previously deleted the task at moment 3, it will now
receive the version computed by B. This shows that node C
sees two versions of the task at two separate moments of time
(and, as shown in Figure 4, this is also true for nodeD). In this
situation, if node B corrupts the task and sends a corrupted
version to node C , if timestamps are not employed, the owner
of the task (node A) will incorrectly assume that node C is the
one that corrupted the task, since it had definitely received a
correct version from the owner.

The entire node rating mechanism, which is executed
whenever a node exchanges tasks with other peers, is pre-
sented in Algorithm 2. The algorithm returns false if the

31178 VOLUME 7, 2019



R.-I. Ciobanu et al.: Avoiding Data Corruption in Drop Computing Mobile Networks

Algorithm 2 Node Rating Mechanism
1: dcNodeId - encountered node ID
2: NMapR - map between encountered nodes ID and rating

values
3: TMapR - map between node ID and timer value
4: TR - initial timer associated with the rating value
5: Social - social network of the current node
6:

7: if NMapR contains node dcNodeId then
8: decrease rating timer by 1 and add the new value in
TMapR

9: Rvalue = value of the key dcNodeId stored in NMapR
10: Tvalue = timer value from TMapR
11:

12: if Rvalue is between 50 and 100 and Tvalue <= 0 then
13: put in NMapR minimum value between 100 and

Rvalue + 20
14: put in TMapR initial timer value TR
15: end if
16:

17: Rvalue = new value from NMapR
18:

19: if Rvalue >= 75 then
20: return true
21: else
22: return false
23: end if
24: end if
25:

26: if Social contains dcNodeId then
27: return true
28: else
29: return false
30: end if

encountered node should not be trusted (i.e., is not socially
connected to the current node, or has a rating below 75,
as shown at lines 19-23 and 26-30, respectively), and true
otherwise. Since nodes might corrupt data because of a
hardware or software problem and not necessarily out of
maliciousness, the proposed algorithm allows such nodes the
possibility of increasing their rating through good behavior.
This is done using a timer per node, which is decreased every
time the rating algorithm is run, as shown on line 8 in Algo-
rithm 2. When the timer expires, if the node has a promising
rating (higher than 50), the rating value is increased with
20 and the timer is reset (lines 12-15), thus reincluding the
node in the task computation and dissemination process. The
node is then considered trustworthy as long as its rating is
above 75.

F. HAMMING CODES
Hamming codes are capable of detecting two errors and
correcting one and, to implement such a system, parity bits

should be added to the data bits. They represent redundant
information that contributes to recovering the initial data
even when they are corrupted. The overhead of the parity
bits reaches small values when the quantity of data grows.
If the Hamming codes are not feasible for only 8 bits of
data (generating an overhead of 50%), using them on a larger
quantity of data will generate a very small overhead. For
example, for 2560502 bits of data, only 9 parity bits are
added. The number of parity bits is computed based on the
following formula:

2r > d + r + 1 (9)

In the formula above, r is the number of redundant bits
and d is the number of data bits. The new information is
built by putting parity bits on the positions specific to powers
of 2, while the rest of the positions are completed with data
bits. Because of its advantages and its simplicity, we added a
Hamming code mechanism to our solution.

V. EVALUATION
This section presents an evaluation of the proposed solu-
tion, showing the setup of the experiments and the results
obtained.

A. SETUP
We implemented and tested our solution using the MobEmu
simulator1 [26], which is able to run routing and dissemina-
tion solutions in mobile opportunistic networks. Drop Com-
puting was already implemented in MobEmu, so we simply
had to add our consistency mechanisms on top of the existing
implementation.

The first set of experiments was realized using the HCMM
model [27], which simulates the behavior and the interactions
between multiple mobile nodes. It is based on the cave-
man model, where users can belong to several base com-
munities (called ‘‘home’’ communities), but can also have
social relationships outside of their home communities (in
‘‘acquainted’’ communities). For this scenario, we simulated
a Drop Computing network with the following parameters:
30mobile nodes, split into 5 different communities, 6 hours of
interactions, with 5 of the nodes being travelers that can move
between communities. The physical space was simulated as
a 1000x1000-meter grid, and the speed of the nodes was set
to vary between 1.25 and 1.5 m/s (i.e., the average human
speed). Finally, the transmission radius of the nodes was
set to 10 meters, which is an approximation of Bluetooth
range.

Along with this synthetic model, we also used two real-life
mobility traces collected at our faculty (and available in
the CRAWDAD archives,2) called UPB 2011 [28] and UPB
2012 [29]. They are two traces taken in an academic environ-
ment at the University Politehnica of Bucharest, where the
participants were students and teachers. UPB 2011 includes

1Available at https://github.com/raduciobanu/mobemu.
2https://crawdad.org/all-byname.html.

VOLUME 7, 2019 31179



R.-I. Ciobanu et al.: Avoiding Data Corruption in Drop Computing Mobile Networks

TABLE 1. Testing scenarios.

data collected for a period of 25 days by 22 participants,
while UPB 2012 had a duration of 64 days and involved
66 participants.

The proposed implementation was evaluated using three
metrics, which allowed us to make measurements on multi-
ple data consistency and corruption scenarios. These metrics
were:
• the percentage of correct tasks received by their owners,
which were executed by other nodes in the network

• the total number of the tasks executed by nodes other
than their owners (this number varies according to the
number of versions of the same task which must be
expected before making a decision)

• the average processing latency for every task executed
by other nodes (the time elapsed from the generation of
the task until the moment when the owner accepts its
execution).

The measured values were analyzed both quantitatively
and qualitatively in the following situations (also presented
in Table 1):
• when data is corrupted, taking into account both sce-
narios described in Section IV-B (i.e., on task execution
or when disseminating an executed task), but no consis-
tency mechanisms are used

• when varying the number of expected versions (3 or 4,
with the mention that, if there are two versions with the
same frequency, the node waits for another one for that
task)

• when the rating mechanism is activated or deactivated
(in the affirmative case varying the value of the rating’s
benchmark)

• when the percentage of different executors varies
depending on the number of desired versions

• when using Hamming correction and detection codes
(varying the number of permitted corruptions of the
same task).

B. RESULTS
In this section, we present the results obtained follow-
ing the analysis of the proposed solution for the HCMM
mobility model and for the two traces (UPB 2011 and
UPB 2012).

FIGURE 5. Task success rate for HCMM (for more information about the
testing scenarios, please see Table 1).

1) HCMM MOBILITY MODEL
Figure 5 shows the percentage of tasks correctly executed
and transferred by the network nodes back to their own-
ers. In Figure 5a, it can be observed that the standard
version v1 (where no corruption detection mechanisms are
used) has a correctness percentage noticeably lower than
all versions implemented in this paper (for a corruption
probability of 90%, the task success rate for default Drop
Computing is barely above 50%). On the other hand, some
of our proposed techniques provide a fairness percentage
of accepted tasks as high as 100%. Along with this per-
fect percentage, we also observe a considerable reduction
in corrupted versions in the network by using the rating
mechanism. Thus, from 857 corrupted tasks in the standard
version, there were 15 corruptions in the v3 scenario, sug-
gesting that an efficient filtering of the corrupted nodes was
produced, the data no longer being predisposed to corruption
due to the avoidance at critical moments of nodes with low
ratings. Furthermore, it can be observed that the highest
success rate is obtained when using the rating mechanisms,
or when imposing task execution at different nodes in the
network.

Figure 5b shows all scenarios that use Hamming correction
and detection codes, and it is important to observe how the
percentage of tasks correctly received does not increase pro-
portionally with the decrease of the probability of corrupted

31180 VOLUME 7, 2019



R.-I. Ciobanu et al.: Avoiding Data Corruption in Drop Computing Mobile Networks

FIGURE 6. The number of executed tasks in the network for HCMM.

nodes. This behavior is due to the fact that, at the time
of corruption, a random number between 1 to 3 is chosen,
with the possibility that the proportion of corruption with
more than one bit is higher even if fewer corruptions are
recorded. However, it can be seen that in all scenarios shown
in Figure 5, a better share of correct results is recorded than
in the standard version, v1, which confirms the improvements
brought about by our solution. The methods that seem to
work best in this scenario are when we are expecting more
versions of a task and when we are employing the rating
mechanism.

The lower value of the number of executed tasks in the
network is confirmed by Figure 6. The charts show that
our solution provides a degree of reliability regarding the
correctness of information at the cost of a lower number
of tasks solved. This is due both to node filtering and to
the fact that these simulations were made with the same
amount of waiting time of a node for any task. Thus, with
the increase of the waiting versions, chances for a node to
execute its own tasks using only its own resources are also
increased.

Figure 7 shows how the average processing latency for
each given task executed in the network increases, but there
are cases where its value is similar or even lower than the one
in the scenario with no data consistency mechanisms (e.g., v4
or v5.3). v4 is the most incontestable example demonstrating
the improvements made, because it produces both a lower

FIGURE 7. Processing latency for HCMM.

latency and a percentage of 100% of correct tasks accepted,
as highlighted in Figure 5a. The existence of these situations
shows that the entire network was efficiently covered, tasks
being shared through nodes that actually had more chances
to meet the tasks’ owners, despite the decrease of trans-
fer possibilities. Increased processing latency is somewhat
inevitable when multiple versions are expected, but it can be
seen that the percentage of duration increase is not propor-
tional to the percentage of increase in the number of expected
versions.

In Figure 8, we analyze the three metrics described in
Section V-A (m1-m3) and an extra metric (m4), which is
the total number of corrupted task versions existing in the
network. We show the latency (m2) in minutes, in order to be
able to represent all metrics (each with its own measurement
unit) on the same chart. We vary the number of expected
versions of a task, attempting to see what parameters to use
to maximize all four metrics. It can be observed that the
best values (lowest processing latency, most tasks executed
in the network, and a maximum percentage of correct tasks)
are obtained when the number of expected versions of a
message is 2. In this case, if two different versions arrive,
a third one will also be expected, which acts as a tie-breaker.
The conclusion drawn here is not necessarily true for any
mobile network scenario, so a more suitable way would be to
dynamically detect the behavior of the corruption detection
and prevention mechanism at runtime. Similarly to the work

VOLUME 7, 2019 31181



R.-I. Ciobanu et al.: Avoiding Data Corruption in Drop Computing Mobile Networks

FIGURE 8. Rating mechanism analysis for HCMM (m1 is the percentage of
correct tasks that return to their owner after being executed by other
nodes in the network, m2 is the number of the tasks executed by other
nodes, m3 is the processing latency, and m4 is the total number of
corrupted task versions existing in the network.

FIGURE 9. Task success rate for UPB 2011.

in [30], this would assume solving a multi-objective opti-
mization problem offline based on various network metrics,
and then using the information learned to set the suitable
algorithm version.

2) UPB 2011 TRACE
The results obtained for the UPB2011 trace in terms of task
success rate are highlighted in Figure 9. Due to the fact that
only 20 mobile nodes were used in this simulation, the per-
centage of nodes that are predisposed to corruption (30%) is
higher than in the HCMM simulation (26%), all simulations
being made with the assumption that 1 in 3 nodes can cor-
rupt information. Thus, for a high probability of corruption
(more than 90%), there are no correctly received tasks if no
data consistency mechanisms are employed (v1 in Figure 9).
Taking into account that this scenario has a small number
of node connections, implementations of our solution with
multiple waiting versions or different executors could not
be used. However, using the rating mechanism, as well as
Hamming detection and correction codes, an improvement of
up to 80% of correctly received tasks is obtained. In Figure 9,
at probability 0.7, it can be seen that the percentage of corrupt

FIGURE 10. The number of executed tasks in the network for UPB 2011.

FIGURE 11. Processing latency for UPB 2011.

accepted tasks after applying the rating mechanism is lower
than that obtained in the standard version. This is an isolated
case due to the decreased rating of a node that has not yet been
corrupted. Therefore, due to the lower number of connections
between nodes, the current node fails to increase its rating
above the reference value, not having enough opportunities
to transfer the correct information.

Regarding the number of accepted tasks, Figure 10 shows
that, for a high probability of task corruption, our proposed
solution manages to execute the same number of tasks as the
default version (v1), but instead of the tasks being corrupted,
they are correct (so this means that our solution is able to
correct all corrupted tasks in certain situations). From the
results depicted in Figure 9 and Figure 10, we can compute
the total number of correct tasks that reach the user (i.e.,
are accepted by the mobile node and are also correct). For
the default Drop Computing scenario, where no corruption
detection and prevention mechanisms are employed, the total
number of correct tasks is 8 when the corruption rate is 50%.
On the other hand, for the v3 version of our proposed solution,
there are 10 correct tasks after a simulation run, while for
v5.4 there are 9 correct tasks. The latter version also has
the advantage that all tasks that are accepted are correct,
so the user has the guarantee that task results cannot be
corrupted.

31182 VOLUME 7, 2019



R.-I. Ciobanu et al.: Avoiding Data Corruption in Drop Computing Mobile Networks

FIGURE 12. Task success rate for UPB 2012.

FIGURE 13. The number of executed tasks in the network for UPB 2012.

FIGURE 14. Processing latency for UPB 2012.

Figure 11 shows the latency of our solution compared to
the default case (v1). It can be observed that, as expected,
the latency is higher when corruption detection mechanisms
are employed, but the differences are small, and we believe
that they are negligible and acceptable if one wants to obtain
correct data.

3) UPB 2012 TRACE
Regarding the UPB 2012 trace, Figure 12 shows that versions
v2.1, v2.2 and v4.1 manage to achieve a 100% value for
the number of correct accepted tasks. When employing the

rating mechanism, the maximum percentage of correct tasks
is not achieved, but, because of the lower number of expected
versions, a higher number of tasks are executed and returned
to their owner, as seen in Figure 13. The UPB 2012 trace
contains data collected for 1507 hours and is much sparser
than UPB 2011 and HCMM, so the processing latency values
shown in Figure 14 are naturally higher. Nodes meet much
rarer than in previous simulations, so the duration between
the time a task is sent to the Drop Computing network and
the time it arrives back to its original owner is somewhat
high.

In conclusion, the results presented in this section show
that our implementation can lead to a high percentage of
correct tasks received by their owner after being computed
in the Drop Computing network. This suggests that corrupt
nodes are correctly filtered out and thus avoided, through
optimized exchanges of useful messages. There is still plenty
of work to be done to improve the results, and, in the near
future, we would like to focus on decreasing the processing
latency and increasing the number of executed tasks in the
network. We believe that we can achieve this through an
optimal detection of nodes that tend to corrupt data (either
because they belong to malicious individuals, or because they
suffer hardware or software malfunctions), in order to avoid
them and learn when the corruptions appear.

VI. CONCLUSIONS AND FUTURE WORK
In this paper, we have presented the Drop Computing
paradigm, which combines edge and fog computing with
mobile network and social information to decrease latency
and power consumption. We presented several use cases for
Drop Computing, including an AAL scenario where we show
that it can be employed in an elderly care facility to reduce
costs.

Then, we proposed data consistency mechanisms for Drop
Computing, assuming a scenario where mobile nodes want
to solve some computation tasks and thus offload them to
devices in proximity in an opportunistic fashion. The thor-
ough experimental testing showed that, through setting appro-
priate restrictions, our consistency solution can satisfy the
requirements of a network with regard to a desired trust
level, since the proposed rating mechanism can lead to a
task correctness as high as 100%. Furthermore, this happens
without the latency and the number of tasks executed in the
network being affected too much.

For future work, our aim is to improve the rating mech-
anism in order to obtain higher hit rates, as well as lower
latencies and overhead. Moreover, we wish to come up with
methods to increase the altruism of Drop Computing nodes,
incentivizing them to participate in the collaborative network.
This would be done by integrating reward mechanisms for
nodes that execute and disseminate computing tasks. Finally,
we also wish to implement a Reed-Solomon code [31] as an
improvement over the Hamming mechanism, since it would
be able to detect corrupted bits based on the number of parity
bits added in the payload.

VOLUME 7, 2019 31183



R.-I. Ciobanu et al.: Avoiding Data Corruption in Drop Computing Mobile Networks

ACKNOWLDEGMENT
The authors would like to thank the networking support by the
COST Action CA16226, ‘‘SHELD-ON: Indoor Living Space
Improvement: Smart Habitat for the Elderly.’’ They would
also like to thank the reviewers for their time and expertise,
constructive comments and valuable insight.

REFERENCES
[1] K. Akherfi, M. Gerndt, and H. Harroud, ‘‘Mobile cloud computing for

computation offloading: Issues and challenges,’’ Appl. Comput. Informat.,
vol. 14, no. 1, pp. 1–16, 2018.

[2] E. Ahmed, A. Gani, M. K. Khan, R. Buyya, and S. U. Khan, ‘‘Seamless
application execution in mobile cloud computing: Motivation, taxonomy,
and open challenges,’’ J. Netw. Comput. Appl., vol. 52, pp. 154–172,
Jun. 2015.

[3] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, ‘‘Mobile edge
computing—A key technology towards 5G,’’ ETSI White Paper, vol. 11,
no. 11, pp. 1–16, 2015.

[4] R. Roman, J. Lopez, and M. Mambo, ‘‘Mobile edge computing, Fog et al.:
A survey and analysis of security threats and challenges,’’ Future Gener.
Comput. Syst., vol. 78, pp. 680–698, Jan. 2018.

[5] R.-I. Ciobanu, C. Negru, F. Pop, C. Dobre, C. X. Mavromoustakis, and
G. Mastorakis, ‘‘Drop computing: Ad-hoc dynamic collaborative comput-
ing,’’ Future Gener. Comput. Syst., vol. 92, pp. 889–899, Mar. 2017.

[6] V.-C. Tabusca, R.-I. Ciobanu, and C. Dobre, ‘‘Data consistency in mobile
collaborative networks based on the drop computing paradigm,’’ in Proc.
IEEE Int. Conf. Comput. Sci. Eng. (CSE), Oct. 2018, pp. 29–35.

[7] G. Huerta-Canepa and D. Lee, ‘‘A virtual cloud computing provider for
mobile devices,’’ in Proc. 1st ACM Workshop Mobile Cloud Comput.
Services Social Netw. Beyond (MCS). New York, NY, USA: ACM, 2010,
pp. 6:1–6:5. doi: 10.1145/1810931.1810937.

[8] N. Fernando, S. W. Loke, and W. Rahayu, ‘‘Dynamic mobile cloud com-
puting: Ad hoc and opportunistic job sharing,’’ in Proc. 4th IEEE Int. Conf.
Utility CloudComput. (UCC),Washington, DC,USA: IEEEComput. Soc.,
Dec. 2011, pp. 281–286. doi: 10.1109/UCC.2011.45.

[9] E. Miluzzo and R. Cáceres, and Y.-F. Chen, ‘‘Vision:
mClouds—Computing on clouds of mobile devices,’’ in Proc. 3rd
ACM Workshop Mobile Cloud Comput. Services (MCS). New York, NY,
USA: ACM, 2012, pp. 9–14. doi: 10.1145/2307849.2307854.

[10] B. Zhou, A. V. Dastjerdi, R. N. Calheiros, S. N. Srirama, and R. Buyya,
‘‘mCloud: A context-aware offloading framework for heterogeneous
mobile cloud,’’ IEEE Trans. Services Comput., vol. 10, no. 5, pp. 797–810,
Sep./Oct. 2017.

[11] T. Verbelen, P. Simoens, F. De Turck, and B. Dhoedt, ‘‘Cloudlets: Bringing
the cloud to the mobile user,’’ in Proc. 3rd ACM Workshop Mobile Cloud
Comput. Services (MCS). New York, NY, USA: ACM, 2012, pp. 29–36.
doi: 10.1145/2307849.2307858.

[12] T. Hara and S. K. Madria, ‘‘Consistency management strategies for data
replication in mobile ad hoc networks,’’ IEEE Trans. Mobile Comput.,
vol. 8, no. 7, pp. 950–967, Jul. 2009.

[13] P. Nithiyalakshmi and V. U. Kumar, ‘‘Data consistency for cooperative
caching in mobile environments,’’ Int. J. Sci. Res., vol. 3, no. 1, p. 1, 2014.

[14] R.-I. Ciobanu, R.-C. Marin, C. Dobre, V. Cristea, C. X. Mavromoustakis,
and G. Mastorakis, ‘‘Opportunistic dissemination using context-based
data aggregation over interest spaces,’’ in Proc. IEEE Int. Conf. Com-
mun. (ICC), London, U.K., Jun. 2015, pp. 1219–1225. doi: 10.1109/ICC.
2015.7248489.

[15] R. Ciobanu, C. Dobre, and V. Cristea, ‘‘Reducing congestion for routing
algorithms in opportunistic networks with socially-aware node behavior
prediction,’’ in Proc. IEEE 27th Int. Conf. Adv. Inf. Netw. Appl. (AINA),
Barcelona, Spain, Mar. 2013, pp. 554–561. doi: 10.1109/AINA.2013.63.

[16] Y. Yu, ‘‘Mobile edge computing towards 5G: Vision, recent progress, and
open challenges,’’ China Commun., vol. 13, no. Supplement2, pp. 89–99,
2016.

[17] D. He, C. Chen, S. Chan, J. Bu, and A. V. Vasilakos, ‘‘ReTrust:
Attack-resistant and lightweight trust management for medical sen-
sor networks,’’ IEEE Trans. Inf. Technol. Biomed., vol. 16, no. 4,
pp. 623–632, Jul. 2012.

[18] E. J. Pauwels, A. A. Salah, and R. Tavenard, ‘‘Sensor networks for
ambient intelligence,’’ in Proc. IEEE 9th Workshop Multimedia Signal
Process. (MMSP), Oct. 2007, pp. 13–16.

[19] I. F. Akyildiz, X. Wang, and W. Wang, ‘‘Wireless mesh networks: A sur-
vey,’’ Comput. Netw., vol. 47, no. 4, pp. 445–487, Mar. 2005.

[20] G. U. O. W. Wendy, W. M. Healy, and Z. Mengchu, ‘‘Wireless mesh net-
works in intelligent building automation control: A survey,’’ Int. J. Intell.
Control Syst., vol. 16, no. 1, pp. 28–36, 2011.

[21] M. Chen, S. Gonzalez, A. Vasilakos, H. Cao, and V. C. M. Leung, ‘‘Body
area networks: A survey,’’Mobile Netw. Appl., vol. 16, no. 2, pp. 171–193,
2011.

[22] B. Latré, B. Braem, I. Moerman, C. Blondia, and P. Demeester, ‘‘A survey
on wireless body area networks,’’ Wirel. Netw., vol. 17, no. 1, pp. 1–18,
Jan. 2011. doi: 10.1007/s11276-010-0252-4.

[23] G. Acampora, D. J. Cook, P. Rashidi, and A. V. Vasilakos, ‘‘A survey
on ambient intelligence in healthcare,’’ Proc. IEEE, vol. 101, no. 12,
pp. 2470–2494, Dec. 2013.

[24] L. N. Bairavasundaram, A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau,
G. R. Goodson, and B. Schroeder, ‘‘An analysis of data corruption in the
storage stack,’’ Trans. Storage, vol. 4, no. 3, pp. 8:1–8:28, Nov. 2008.
doi: 10.1145/1416944.1416947.

[25] R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu, ‘‘A limited memory algorithm
for bound constrained optimization,’’ SIAM J. Sci. Comput., vol. 16, no. 5,
pp. 1190–1208, 1995.

[26] R.-I. Ciobanu, R.-C. Marin, and C. Dobre, MobEmu: A Framework to
Support Decentralized Ad-Hoc Networking. Cham, Switzerland: Springer,
2018, pp. 87–119. doi: 10.1007/978-3-319-73767-6_6.

[27] C. Boldrini and A. Passarella, ‘‘HCMM: Modelling spatial and temporal
properties of human mobility driven by users’ social relationships,’’ Com-
put. Commun., vol. 33, no. 9, pp. 1056–1074, 2010.

[28] R. I. Ciobanu, C. Dobre, and V. Cristea, ‘‘Social aspects to support oppor-
tunistic networks in an academic environment,’’ in Proc. Int. Conf. Ad-
Hoc Netw.Wireless (ADHOC-NOW), Belgrade, Serbia, Springer, Jul. 2012,
pp. 69–82.

[29] R.-C. Marin, C. Dobre, and F. Xhafa, ‘‘Exploring predictability in mobile
interaction,’’ in Proc. 3rd Int. Conf. Emerg. Intell. Data Web Technol.,
Sep. 2012, pp. 133–139.

[30] R.-I. Ciobanu, C. Dobre, D. G. Reina, and S. L. Toral, ‘‘A dynamic data
routing solution for opportunistic networks,’’ in Proc. 14th Int. Conf.
Telecommun. (ConTEL), Jun. 2017, pp. 83–90.

[31] A. R. de Araujo Zanella and L. C. P. Albini, ‘‘A reed-solomon based
method to improve message delivery in delay tolerant networks,’’ Int.
J. Wireless Inf. Netw., vol. 24, no. 4, pp. 444–453, 2017.

RADU-IOAN CIOBANU received the B.S., M.S.,
and Ph.D. degrees (summa cum laude) from
the Faculty of Automatic Control and Comput-
ers, University Politehnica of Bucharest, in 2010,
2012, and 2016, respectively. He has worked in
mobile devices for more than eight years, hav-
ing experience in both startups (VirtualMetrix)
and corporations (Luxoft). He is currently a Lec-
turer and a Researcher with the Computer Science
Department, Faculty of Automatic Control and

Computers, University Politehnica of Bucharest.
During his still young career, he has been involved in several national and

international research projects in mobile and cloud computing, the IoT, and
ambient assisted living. His research interests include pervasive and mobile
networks, DTNs, opportunistic networks, and cloud computing. His research
has led to the publishing of numerous papers and articles at important
scientific journals (such as Pervasive and Mobile Computing, the Journal of
Network and Computer Applications, Transactions on Emerging Telecom-
munications Technologies, and Ad Hoc Networks) and conferences (IEEE
GLOBECOM, ICC, IM, and WoWMoM.)

VLĂDUŢ-CONSTANTIN TĂBUŞCĂ received the
B.S. degree with a thesis about drop comput-
ing, in 2018. He is currently pursuing the mas-
ter’s degree in advanced software systems with
the Faculty of Automatic Control and Computers,
University Politehnica of Bucharest. His research
interests include mobile opportunistic networks,
cloud computing, the Internet of Things, and ambi-
ent assisted living systems.

31184 VOLUME 7, 2019

http://dx.doi.org/10.1145/1810931.1810937
http://dx.doi.org/10.1109/UCC.2011.45
http://dx.doi.org/10.1145/2307849.2307854
http://dx.doi.org/10.1145/2307849.2307858
http://dx.doi.org/10.1109/ICC.2015.7248489
http://dx.doi.org/10.1109/ICC.2015.7248489
http://dx.doi.org/10.1109/AINA.2013.63
http://dx.doi.org/10.1007/s11276-010-0252-4
http://dx.doi.org/10.1145/1416944.1416947
http://dx.doi.org/10.1007/978-3-319-73767-6_6


R.-I. Ciobanu et al.: Avoiding Data Corruption in Drop Computing Mobile Networks

CIPRIAN DOBRE received the Ph.D. and Habil-
itation degrees. He received the Ph.D. Scholar-
ship from the California Institute of Technology,
USA, and another one fromOracle. He is currently
a Professor and leads the MobyLab Laboratory
on Pervasive Products and Services, University
Politehnica of Bucharest, and the National Insti-
tute for Research and Development in Informatics
(ICI), Bucharest. He has scientific and scholarly
contributions on data science, mobile and ubiqui-

tous computing, mobile and urban smart technologies, the Internet of Things,
monitoring, wireless networks, and modeling/simulation. He received the
Gheorghe Cartianu Award of the Romanian Science Academy and the IBM
Faculty Award. His results received two CENIC awards, and five best paper
awards, and were published in articles in major international peer-reviewed
journals and well-established international conferences and workshops. He
currently coordinates the project Clinically-validated INtegrated Support
for Assistive Care and Lifestyle Improvement: the Human Link (vINCI,
AAL2017-63-vINCI).

LIDIA BĂJENARU was born in Barlad, Romania,
in 1962. She received the B.S. and M.S. degrees
in computer engineering from the Technical Uni-
versity ‘‘Gheorghe Asachi’’, Iasi–Faculty of Elec-
trotechnics, Automation and Computer Science,
in 1985, and the Ph.D. degree (magna cum laude)
in economics informatics from the Bucharest Uni-
versity of Economical Studies, in 2017.

From 1995 to 2013, she was a Training Expert
in computer science with the Computer Training

Centre S.A. Bucharest, conducting didactic activities in information and
communication technology using modern online training solutions, in par-
allel with ICT-applied research activities. Since 2013, she has been a Princi-
pal Senior Analyst with the Department of Systems and Applications for
Society, National Institute for Research and Development in Informatics,
Bucharest. She authored and co-authored more than ten books and more
than 50 scientific papers in journals and volumes of conferences in national
and international publications. She coordinated and has been member in
research teams in more than 40 national and international projects. Her
research interests include education, e-learning, e-health, mobile computing,
artificial intelligence, computer ontologies, e-services, e-government, social
networks, and cloud computing.

She is a member of professional associations, national, and international
scientific committees.

CONSTANDINOS X. MAVROMOUSTAKIS
(SM’03) received a five-year Diploma of Engi-
neering (B.S., B.Eng., M.Eng./KISATS approved/
accredited) degree in electronic and computer
engineering from the Technical University of
Crete, Greece, the M.S. degree in telecommuni-
cations from the University College of London,
U.K., and the Ph.D. degree from the Department of
Informatics, Aristotle University of Thessaloniki,
Greece.

He is currently a Professor with the Department of Computer Science,
University of Nicosia, Cyprus. He is leading theMobile Systems Laboratory,
Department of Computer Science, University of Nicosia. He has participated
in several FP7/H2020/Eureka and National projects.

He has a dense research work outcome in mobile and wearable computing
systems and the Internet of Things, consisting of numerous refereed publi-
cations including several Books (IDEA/IGI, Springer, and Elsevier). He has
served as a Consultant to many industrial bodies (including Intel Corporation
LLC). He is a Management Member of the IEEE Communications Society
Radio Communications Committee and a Board Member of the IEEE-SA
Standards IEEE SCC42 WG2040. He has been an Active Member (Vice
Chair) of IEEE/ R8 regional Cyprus Section, since 2016. Since 2009, he has
been serving as the Chair of C16 Computer Society Chapter of the Cyprus
IEEE Section. He is also a Co-Founder of the IEEE Technical Committee
on IEEE SIG on Big Data Intelligent Networking (IEEE TC BDIN SIG).
He also serves as a Vice Chair.

GEORGE MASTORAKIS received the B.S. degree
in electronic engineering from UMIST, in 2000,
the M.Sc. degree in telecommunications from
UCL, in 2001, and the Ph.D. degree in telecommu-
nications from University of the Aegean, in 2008.
He is serving as an Associate Professor with the
Department of Business Administration and as a
Research Associate in research and development
with the Telecommunications Systems Labora-
tory, Technological Educational Institute of Crete,
Greece.

He has more than 250 publications in various international conferences
proceedings, workshops, scientific journals, and book chapters. His research
interests include cognitive radio networks, the Internet of Things, energy-
efficient networks, big data analytics, and mobile computing.

VOLUME 7, 2019 31185


	INTRODUCTION
	RELATED WORK
	DROP COMPUTING
	THE EVOLUTION OF DROP COMPUTING
	MOBILE USE CASES
	IoT SCENARIO
	SENSORS
	CARRIERS
	ACCESS POINTS AND THE CLOUD
	INTERACTIONS

	DATA CONSISTENCY

	PROPOSED SOLUTION
	TASK EXCHANGE
	DATA CORRUPTION
	STORING THE PATH OF A TASK
	THE EXPECTED VERSIONS OF A TASK
	NODE RATING SYSTEM
	HAMMING CODES

	EVALUATION
	SETUP
	RESULTS
	HCMM MOBILITY MODEL
	UPB 2011 TRACE
	UPB 2012 TRACE


	CONCLUSIONS AND FUTURE WORK
	REFERENCES
	Biographies
	RADU-IOAN CIOBANU
	VLADUT-CONSTANTIN TABUSCA
	CIPRIAN DOBRE
	LIDIA BAJENARU
	CONSTANDINOS X. MAVROMOUSTAKIS
	GEORGE MASTORAKIS


