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ABSTRACT Indoor tracking and navigation (ITN) mainly depend on indoor localization. An impulse radio
ultra-wideband (IR-UWB) is the most advanced technology for precision indoor localization. Besides its
precision, the IR-UWB also has low complex hardware, low power consumption, and a flexible data rate that
makes it the ideal candidate for ITN. However, two significant challenges impede the achievement of high-
resolution accuracy and optimum performance: non-line-of-sight (NLOS) channel condition and multipath
propagation (MPP). To enhance the performance under these conditions, the ranging error is estimated and
corrected using parameters’ uncertainties. The uncertainties in the channel’s parameters have a relationship
with the error, and these uncertainties are induced due to the NLOS and MPP propagation conditions. The
parameters are collected in real-time experimental setups in two different environments. A proposed fuzzy
inference model utilizes these uncertainties and the relationship to estimate ranging errors. The model is
evaluated, and its performance is gauged in terms of residual ranging error cumulative distribution, root
mean square error, and outage probability parameters using experimental measurements and compared with
the state-of-the-art work. Moreover, the proposed fuzzy model is evaluated for computational complexity
in terms of execution time and compared with the state-of-the-art work. The time is estimated on the
targeted embedded system. The experimental and simulated results show that the proposed model effectively
minimizes the ranging errors and computational burden. Moreover, the model does not induce a delay in
estimating ranging error due to the non-statistical based solution.

INDEX TERMS Fuzzy logic, indoor tracking and navigation, impulse radio ultrawide band, localization,
computational complexity.

I. INTRODUCTION
In recent years, indoor tracking and navigation (ITN) sys-
tem has been attracting the attention of the research com-
munity due to the proliferation of unmanned vehicles and
drones within civilian and military applications [1], [2].
ITN also enhances the functionality and expands the capa-
bilities of applications in mobile wireless sensor networks,
infrastructure monitoring, healthcare, mining, and military
domains [2]–[4]. Legacy Global Navigation Satellite System
(GNSS) provides a satisfactory performance that supports
tracking and navigation in open space. However, the perfor-
mance of GNSS depends on the reception of satellite signals
[1], [2]. In the case of the indoor environment, the reception
of the signals is so weak, which significantly inhibits GNSS
performance [2]. Moreover, inertial measurement unit (IMU)
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sensors support dead reckoning based tracking and naviga-
tion [4], [5]. However, the IMU sensors-based tracking and
navigation alone is not suitable for precise ITN [5]. Therefore,
there are wireless standards that enable and support ITN
due to enabled localization feature, such as Wi-Fi, Blue-
tooth, ZigBee, Impulse Radio Ultra-Wideband (IR-UWB),
and radio frequency identification RFID [3], [6]–[8]. Among
those standards, IR-UWB is the leading technology for pro-
viding high-resolution localization [9]–[11]. Besides preci-
sion ranging, IR-UWB’s salient features include through-wall
propagation, low power consumption, and size form factor
bode well for mobile devices [9]–[13]. However, multipath
propagation (MPP) and non-line-of-sight (NLOS) conditions,
which frequently occur in indoor environments, are impeding
in the achievement of sub-centimeter resolution and degrad-
ing the performance of ITN systems [7], [11], [13]. There are
limited existing studies [11], [14]–[21] which provide
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solutions to mitigate ranging errors. A comprehensive review
of those studies is provided in Section II. However, due
to limited computational resources of mobile devices and
ITN’s stringent delay requirement, those studies have some
deficiencies which are as follows:
• The range statistical based solutions induce delay.
• The CIR parametric statistical based solutions induce
delay.

• The machine learning based solutions are cumber-
some to implement on a real-time embedded system
due to limited computational resources. Furthermore,
machine learning methodology requires mandatory
training phase which incurs an extra overhead (i.e., time
and memory).

• The full-length channel impulse response (CIR) data
based Fuzzy model slows down the ranging procedure
and adds latency [22].

Those deficiencies motivated us to propose a fuzzy logic-
basedmodel to estimate and correct the range bias error; since
such a non-statistical approach aligns with the strict bound
on computational complexity and ranging acquisition delay.
Moreover, the uncertainties in the measurements, which are
induced due to MPP and NLOS, are covered optimally by
the fuzzy approach. The range bias error is estimated in one
step rather than in two steps (i.e., first, identification of line-
of-sight (LOS)/NLOS; second, mitigation of ranging errors).
We start by analyzing the uncertainties in the CIR’s param-
eters (i.e., received power, received first path power and rise
time). Then, we propose a fuzzy inference system (FIS) based
model which is based on the uncertainties in the parameters
and their correlation to ranging error. In addition to NLOS
errors, we consider the error in LOS conditions due toMPP in
the proposed model. Finally, we evaluate the proposed model
using real-time experimental data in two different environ-
ments and compare the ranging error mitigation performance
with the existing fuzzy logic-based obstruction identification
and mitigation method [14] and machine learning methods
for error mitigation [18]. In addition, the proposed model
is evaluated and compared with the works mentioned above
(i.e., [14] and [18]) in terms of computational time. The time
is a key parameter for computational complexity estimation
and system resources utilization [23], [24]. The main con-
tribution of this work is to propose a range error mitigation
model using the fuzzy logic approach with parameters that
do not incur a delay in estimating and correcting the errors
and reduced computational complexity in IR-UWB domain.
To the best of authors’ knowledge, the approach was not
employed in the domain.

The rest of the paper is organized as follows: Section II
presents a comprehensive review of the existing work.
Section III defines the problem statement. Section IV presents
the uncertainties analysis, concerning the severity of the
NLOS condition and MPP in LOS condition in the CIR’s
parameters and their relationship with ranging errors. The
detailed proposed FIS model is presented in Section V.
Experimental setups and scenarios are presented in

Section VI. Localization performance evaluation is dis-
cussed in Section VII. Finally, the conclusion is drawn
in Section VII.

II. LITERATURE REVIEW
The current literature includes some studies that provide
solutions to mitigate ranging errors bias due to NLOS con-
ditions within the IR-UWB domain. The mitigation solutions
are mainly based on better detection of edges (i.e., leading
edge detection algorithm) and system level soft computing
CIR parametric approach [11], [14]–[21]. The parametric
mitigation methodology is mostly based on five key factors:
range statistics, CIR parameters’ statistics, CIR parameters’
energy (or power) levels, machine learning methods based on
waveforms’ (or CIR) parameters, and fuzzy-based model for
obstruction detection. Yousefi et al. [15] propose derivation
of weights from range statistics. The weights are proportional
to the severity of NLOS conditions and utilize in an extended
Kalman filter (EKF) for correcting the position estimation in
NLOS conditions. However, estimating range variation for a
moving target is not feasible particularly in NLOS conditions
and introduces latency in range estimation [17]. The CIR
parameters’ statistics-based identification of LOS/NLOS and
mitigation of range error bias in NLOS conditions study
in [16]. The parameters’ statistics for this technique are based
on kurtosis and mean root mean square (RMS) delay. The
technique identifies the LOS/NLOS conditions and mitigates
the range error in NLOS conditions based on the deriva-
tion of weights that are related to the severity of the NLOS
conditions. Moreover, the proposed technique has been eval-
uated based on simulated 802.15.4a (IEEE standard for
IR-UWB) channel models. Besides, Silva and Hancke [11]
employ a similar technique to [16]; however, they assess
their technique using real-time measurements in an indus-
trial environment for the identification of LOS/NLOS
conditions.

On the other hand, the CIR parametric statistic technique
also introduces latency, since it is a statistical-based solu-
tion. Marano et al. [17] propose least square support vec-
tor machine (LS-SVM), a machine learning based model,
to identify the LOS/NLOS conditions and to mitigate the
ranging error bias in NLOS conditions. The authors evaluate
the performance of their model using real-time experimen-
tal data. Moreover, Wymeersch et al. [18] suggest range
errors bias mitigation technique as a one-step procedure
usingmachine learningmethodology (i.e., directly estimating
ranging error) instead of performing two-steps procedure
(i.e., identification of LOS/NLOS and range error mitiga-
tion) which increases the complexity. The technique uses two
machine learning methods (i.e., SVM and gaussian regres-
sions) and the residual ranging error is used to evaluate
the technique’s performance. Furthermore, the work in [19]
proposes to employ a support vector data description (SVDD)
machine learning based regression methodology for ranging
errormitigation, which is also a one-step procedure. Thework
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analyzes the percentage of training data and its impact on the
ranging error mitigation accuracy.

The above-mentioned machine learning-based techniques
were employed to identify the NLOS conditions and to miti-
gate the range error bias; however, they are not feasible in a
practical real-time system because they dramatically incur a
computational complexity [20]. Moreover, machine learning
based methods are time-consuming due to the mandatory
training phases and highly dependent on the uncertainties
of the environments. In [20], after the identification phase,
the authors have derived weights for the severity of the NLOS
conditions based on statistics of propagation time compared
to LOS time of flight (ToF). You et al. [21] empirically
identify the LOS/NLOS conditions based on first path power
(or energy) and overall received power.

The FIS based classification has been studied in gen-
eral and particularly in a wireless system and position-
ing for various problems [14], [25], [26]. Wen et al. [14]
purpose obstruction identification based NLOS range error
mitigation based on a fuzzy mapping between signal char-
acteristics (inputs) and likely obstruction (output). There are
four signal characteristics: signal-to-noise ratio (SNR), RMS
delay spread, kurtosis and skewness for identification of
predefined obstructions (propagations). After identification
of LOS/NLOS conditions, the range error is compensated
using a predefined range error for the obstruction. The authors
validate and evaluate their empirical fuzzy logic model in
predefined propagation scenarios. On the other hand, the CIR
frame length data is required for estimating the signal char-
acteristics. However, acquiring the CIR frame length data in
runtime slows down the ranging process, and adds a delay in
estimating range between anchor and agent nodes [22].

III. PROBLEM STATEMENT
In this section, ranging errors that inhibit localization perfor-
mance are discussed. First, the localization procedure and the
algorithm are described. Second, the source of ranging errors
and its impact are considered.

A. AGENT LOCALIZATION
In the localization network, nodes are classified as an
anchor or an agent. An anchor is a node with the known
position while an agent is a node with the unknown position.
A typical single node localization requires three or more
anchor nodes as well as a single agent node whose position
needs to be determined. To describe a scenario, let an agent be
at an unknown position denoted byP. The agent is surrounded
by Na anchor nodes with known positions denoted by Ai,
where i = 1, 2, . . .Na and Na is the maximum number
of anchors. The coordinates of the agent and the anchors
are labelled as (xP, yP) and (xAi , yAi ) for 2-dimensional (2D)
space or (xP, yP, zP) and (xAi , yAi , zAi ) for 3-dimensional (3D)
space respectively. The true distance between the agent and
the ith anchor is given by di = ‖P− Ai‖.
To localize the agent, the distances between the agent and

the anchors within the vicinity need to be estimated, using the

ranging algorithm. Let d̂i be the estimated distance between
the ith anchor and the agent. In the 2D space, using position
algorithm, minimum three estimated distances are required
to determine the agent position. A typical solution to this
problem is to use the least square (LS) algorithm, which is
provided by:

P̂ = argminT

∑(
Ai,d̂i

)
∈O

(
d̂i − ‖T − Ai‖

)2
(1)

where O is the number of agent-anchor pairs in the vicinity.
For the 2D space, minimumO = 3. The agent can estimate its
position by minimizing (1), which is determined numerically
by solving (1) using linearization methods such as pseudo
inverse [27]. However, LS algorithm does not consider rang-
ing errors.

B. RANGING ERROR
In practice, the ranging errors are introduced by a ranging pro-
tocol, MPP and NLOS channel conditions between an agent
and anchors. The NLOS channel condition induces a signifi-
cant ranging error mainly due to obstructions between anchor
and agent nodes which results in position errors when using
(1) to estimate a position. The ranging errors are induced by
either an attenuated first path or a complete blockage of the
first path because of having obstructions. Moreover, in NLOS
condition, overall received power is attenuated compared to
LOS condition. The ranging error is given by εi = d̂i − di.
Based on our experimental studies, we note the following
observations:

1. The ranging errors in LOS and NLOS conditions are
exhibit differently. In case of LOS, the ranging errors
are confined to 10 cm. However, in NLOS conditions,
the ranging errors are expanded up to 110 cm.

2. The enabling of full-length CIR data slows down the
ranging process.

3. Collecting multiple ranges increases acquisition time.
4. Implementing machine learning methods increases

computational complexity.
Therefore, to reduce the errors along with a reduction in

computational complexity and an improvement in the local-
ization performance, we propose a non-statistical based FIS
based model to mitigate ranging errors.

IV. PARAMETERS UNCERTAINTIES
In this section, the uncertainties in the CIR parameters
are considered, and the relationship between parameters’
uncertainties and ranging errors is defined. The relationship
is employed as expert-based knowledge for the proposed
FIS model. In general, the uncertainties may occur due to
LOS/NLOS conditions, multipath, measurement noise, and
unknown dynamics. However, most of those uncertainties
are induced by NLOS conditions. The uncertainties can be
lumped into one single block 1.

Considering the uncertainties, the CIRmeasurementmodel
can be partitioned into a nominal part and an uncertain
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FIGURE 1. Relationship between the received signal strength (RSS) and line-of-sight (LOS) or non-line-of-sight (NLOS) condition.

part as:

CIR(t) = CIRN (t)+ CIR1(t) (2)

where CIRN (t) is the nominal value and CIR1 (t) is the
uncertain part and satisfy the conditionCIR1 (t) ≤ η, ∀t ≥ 0,
where η is a positive variable [28]. This measurement model
enables relaxing to determine the requirement of exact knowl-
edge of CIR (t) and uncertainties and their correlation to
range error at any given instant. The CIR parameters: received
signal strength (RSS), first path power strength (FPPS) and
rise time (RT).

A. RECEIVED SIGNAL STRENGTH (RSS)
There is a correlation between RSS, transmitted power, and
the distance between transmitter and receiver as computed
using the Friis equation [29]. The RSS estimated using the
equation is labeled as RSSmean. In addition, RSS is affected
by multipath propagation components (MPCs) and condition
of the channel (LOS or NLOS) as illustrated in Fig. 1 For the
scenario illustrated in Fig. 1, it is assumed that three receivers
(RXs) are placed at equidistance from the transmitter (TX).
The RX1 received instantaneous power close to RSSmean
power level while power levels received by RX2 and RX3
are attenuated due to NLOS conditions. The RX3 power is
primarily attenuated by multiple obstructions and RX3 is
categorized as in severe NLOS condition. The instantaneous

RSS varies due to MPCs, and the LOS/NLOS condition can
be modeled as follows:

RSS inst. =

{
RSSmean + L N = 0(LOS)
RSSmean + L + N N < 0(NLOS)

(3)

where L is the MPP factor in dBs and N is the attenua-
tion factor due to NLOS conditions in dBs. The constants
(i.e., L and N ) show uncertainties induced due to MPP and
NLOS conditions, respectively. Note that N is proportional
to the severity of NLOS conditions. For less severe NLOS
condition, N is low and causes less uncertainty in RSSmean
magnitude. However, for severe NLOS condition, N is high
and more RSSmean is attenuated. For the LOS condition,
RSS inst. is close to RSSmean and MPP induces a very low
uncertainty. The RSS inst. is estimated in Decawave devices
using received CIR magnitudes [22].

B. FIRST PATH POWER STRENGTH (FPPS)
In IR-UWB, the FPPS (instantaneous) is estimated using
CIR leading edge MPC (F1) followed by two MPCs in CIR
(F2 and F3) [22] as illustrated in Fig. 2. For ranging estima-
tion, leading edge detection (LED) algorithm is employed to
detectF1 based on time of arrival (ToA) technique. Therefore,
detection of FPPS is vital for correct ranging estimation in
IR-UWB. Like RSS inst., instantaneous FPPS varies due to
MPCs and the channel condition. Therefore, the FPPS can
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be modelled as follows:

FPPS inst =

{
FPPSmean + LFP NFP = 0 (LOS)
FPPSmean + LFP + NFP NFP < 0(NLOS)

(4)

where LFP is the MPP factor in dB and NFP is the first
path NLOS attenuation factor in dB. The magnitude of
NFP depends on the obstruction material and the number of
obstructions in NLOS conditions. As RSS inst. and FPPS inst.
are estimated using CIR magnitude. Hence, they are corre-
lated with each other.

C. RISE TIME (RT)
RT is defined as the difference between the time occurrence
ofF1, denoted as TF1 , and time occurrence of maximumMPC
(Fmax), denoted as TFmax , and can be modeled as:

RT = TFmax − TF1 (5)

RT varies according to the condition as demonstrated
in Fig. 2. The figure shows that RT, in LOS condition, is low
while it is high in NLOS condition respectively. The RT
magnitude also depends on the severity of NLOS.

FIGURE 2. Channel impulse responses. (a) LOS. (b) NLOS.

D. RANGING ERROR AND FPPS
For the LED algorithm, the first MPC above the threshold
is considered as the first path. Based on that, the distance

between the TX and the RX is estimated as:

TOF = TF1 − Tsyn (6)

d̂ = TOF .C (7)

whereC is the speed of light; TOF is the time of flight; Tsyn is
the time at which TX and RX are synchronized; and TF1 is
the time at which F1 (leading edge magnitude) detected,
provided:

F1 > δ (8)

where δ is the threshold level for ToA based estimator
(i.e., the receiver). However, F1 depends on the received
power and the channel condition as provided in (4). In addi-
tion, the ranging error depends on detection scenarios of F1,
such as early detection and post detection.
Case I (Early Detection): This case is commonly observed

in LOS conditions due to MPP. Assume that the leading edge
is detected earlier than the true F1, as shown in Fig. 2(a),
(i.e., F1′ ). The new time-of-flight (i.e., TOF ′) is computed as:

TOF
′

= TF1′ − Tsyn (9)

such that:

TF1′ < TF1 (10)

1T = TF1′ − TF1 (11)

Error in the distance is given by:

e = 1T .C (12)

From (11), the estimated distance is shorter than the true
distance and the ranging error is negative. From (3), (4)
and (12), the ranging error depends on the RSS inst. and
FPPS inst. power levels in LOS conditions.
Case II (Post Detection): It is the case where an NLOS

condition is present. In this case, the leading edge is detected
after the true F1, as shown in Fig. 2(b), (i.e., F ′′1 ). The time-
of-flight, TOF ′′, is estimated using (6). However,

TF ′′1 > TF1 (13)

using (11), 1T is positive. Hence, the error is positive,
thus, the error magnitude is correlated with the received
RSS inst. and FPPS inst. magnitudes. Further, the magnitudes
of RSS inst. and FPPS inst. are related to NLOS severity as
in (3) and (4).

V. FUZZY INFERENCE SYSTEM (FIS) MODEL
The parameters’ uncertainties and their correlation to the
ranging error are indicators to the channel condition
(i.e., LOS or NLOS) and the severity of the NLOS condition,
as shown in the preceding section. To overcome the ranging
error due to these uncertainties, the FIS model is presented in
this section.

There are three types of FIS: Mamdani, Surgeno, and
Takagi–Sugeno–Kang (TSK) [30]. However, Mamdani FIS
is widely used for its analogy to human interpretation and
easiness of design [30]. In this work, we employ theMamdani
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FIS for estimating ranging error. The particular Mamdani
multiple input single output (MISO) FIS can be written as
follows:

ϕ (ri) = β (ri)+ y, (14)

where ϕ is the fuzzified weight of a particular rule ri, β (ri)
is the firing strength of the rule, and y is the area of the
consequent membership function (MF) of ri.

Z =

∫
µY (y) ydy∫
µY (y) dy

, (15)

where µY (y) is the output membership function (MF) of
output y.

FIGURE 3. Fuzzy inference system model.

The employed Mamdani MISO FIS model is depicted
in Fig. 3. From the figure, n is the number of inputs, n ∈
{1, 2, 3}, i is the total number of MFs, and m is the number
of rules, while X in and Ym are input and output fuzzy sets,
respectively. The ranging error estimation process using the
Mamdani FIS model is performed in five steps as follows:
Step 1: Fuzzification step

S1,a,b = µXba (xa) (16)

where a = 1, · · · , n and b = 1, . . . , i are associated with
each input. The antecedent MF is a Gaussian function as
it gives the best performance among different membership
functions [30].

µXba
(xa) = exp

{
−

(
xa − γab
ϑab

)2
}

(17)

where γab and ϑab are the parameters referred to as input
premise (Gaussian) parameters.
Step 2: Inference or rule step

S2,i = βi = µX i1
(x1)× µX i2

(x2)× · · ·µX ia (xa) (18)

where i = 1, · · ·m. Firing strength βi of the rule is generated
using the product (AND) method [30].

Step 3: Implication step

S3,i = βi ◦ µY i
(
yi
)
, (19)

where i = 1, · · ·m. In this instance, the implication operator
(i.e., ‘◦’) is a product. Like antecedent MF, consequent MF
(µY i

(
yi
)
) is also Gaussian function:

µY i

(
yi
)
= exp

{
−

(
yi − αi
ρi

)2}
, (20)

where αi and ρi are the parameters referred to as output
premise (Gaussian) parameters.
Step 4: Aggregation step

S4 =
∑m

i=1
βi ◦ µY i

(
yi
)
, (21)

Step 5: Defuzzification step

S5 = 1e = Z ◦ S4, (22)

The crisp output 1e is estimated with the defuzzification
method (Z ) centroid [30].

VI. EXPERIMENTAL EVALUATION
The purpose of the experimental study is twofold. In the first
stage, we empirically analyze the measured parameters and
compare as well as verify with theoretical analysis of the CIR
parameters’ uncertainties presented in Section-IV. The analy-
ses are supportive in designing the FIS model parameters and
rules. In the second stage, we evaluate the performance of the
proposed FIS model in real-time environments. During our
measurements, waveforms, estimated distance, channel data,
overall received power, and first path received powers for
LOS andNLOS conditions are collected in different scenarios
and environments as described below.

A. ENVIRONMENTS & SCENARIOS
We collect the measurements in two different environments:
Office and a Warehouse. The covered area of the office
and the warehouse are 4.88 × 9.06 and 3.6 × 8.34-meter
square (m2), respectively. These are located inside the engi-
neering building of the University of Windsor. The charac-
teristics of the two environments are different. In the office,
cubical spaces having wooden wall separation, and con-
crete pillars are utilized to create NLOS scenarios as shown
in Fig. 4(a). In each cubical space, a desk, a chair, and a metal
cabinet are placed. There are also glass walls that enclose the
area and are utilized to create NLOS conditions. In the ware-
house, the area is designated as research and development for
automobile engines and parts. It has metal pillars. The area
is semi-open space with metal parts that mimic an industrial
environment as shown in Fig. 4(b).

In both environments, the nodes are placed on trapezoids
to collect measurements as shown in Fig. 4. The LOS and
NLOS scenarios are created by placing TX and RX nodes at
different intervals between 1.92 m and 11.31 m. The NLOS
scenarios are emulated using the single wall, multiple walls,
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FIGURE 4. Scenarios. (a) Office. (b) Warehouse.

concrete and metal pillars, glass wall, a human body, and
different objects such as chairs and metallic parts. In all, there
are 30 scenarios where 700 measurements of the parameters
are collected.

B. EQUIPMENT SETUP
For the experimental measurements, Decawave R© EVB-
1000 IR-UWB kit, based on DW-1000, is employed. The kit
provides CIRs (or waveforms), range estimations, RSS inst.,
FPPS inst. and other parameters as outputs from received sig-
nal through software. The algorithm used for range estimation
in the kit is based on LED-ToA algorithm given in IEEE
802.15.4a framework. During the measurements, Channel 2,
having 500MHz bandwidth, 6.8 Mbps data rate and center
frequency of 3.5 GHz, is utilized. More details of the kit,
operating channels and MAC parameters, and datasheets can
be found in [22]. Moreover, Beaglebone R© Black Rev. C with
A8 ARM cortex processor having 1 GHz clock is employed
for code profiling. More details of the board can be
found in [31].

C. EMPIRICAL PARAMETERS ANALYSIS
The empirical analysis of the uncertainties in the parameters
is supportive in designing the input and output MFs using
(15) and (18), respectively as shown in Fig. 5. We analyze
the measured parameters (i.e., RSS inst. and FPPS inst levels,
RT and ranging errors) based on the theoretical uncertainties
analysis of the parameters presented in Section-IV. From
the measurements, we observe that for LOS condition in all
scenarios, the RSS inst. is in the range of −78 to −80 dBm,
whileFPPS inst is in the range of−80 to−82 dBm. Therefore,
in order to design theMFs and convert the ranges into linguis-
tic variables, the ranges are labeled as very high, as illustrated
in Fig. 5. For mild NLOS condition, the RSS inst. is in the
range of −80 to −82 dBm, while FPPS inst is in the range
of −82 to −86 dBm and labeled as high. Subsequently,
as the NLOS severity increases, the RSS inst. and FPPS inst
levels consequently attenuate and the ranges are labelled as

medium, low, and very low as shown in Fig. 5. Based on
the observations, we find that RSS inst. and FPPS inst levels
are very high in LOS scenarios and attenuate gradually as
the NLOS severity increases. Those observations prove the
veracity of the uncertainty model in (3) and (4).

Similarly, we observe that for all the scenarios in LOS
condition, the RT is in the range of 3-4 ns. and is labeled as
very low. For mild NLOS condition, the RT is in the range of
5-10 ns. and is labeled as low. As the NLOS severity
increases, the RT increases, and the ranges are labeled as
medium, high, and very high, accordingly, as illustrated
in Fig. 5.

For LOS condition, we find that the ranging errors are in
the range of −15 to −2 cm: thus, the range is labeled as
negative (NE), as shown in Fig. 5. The errors can be negative,
as discussed in Case 1 in Section IV. However, for mild NLOS
conditions, the ranging errors are in the range of 2 to 12 cm
and labeled as very low (V. Low). Moreover, as the severity
of the NLOS condition increases, the ranging error magnitude
increases and the ranges are labeled as low medium and high,
as shown in Fig. 5.

D. MITIGATION PROCEDURE
The proposed FIS model is blindly (i.e., without a priori
knowledge of LOS or NLOS condition) applied to the exper-
imentally collected CIR parameters (i.e., RSS inst., FPPS inst ,
and RT) to estimate ranging errors. The inference mecha-
nism estimates the fuzzified ranging error based on the fuzzy
inputs. The fuzzified ranging error is defuzzified to determine
an estimated crisp value (±1e). The1e is subtracted from the
reported corresponding measured range to correct the range.
The corrected range is called a fuzzy range.

E. PROFILING PROCEDURE
The proposed FIS model, Fuzzy-CIR model [14], and
machine learning regression models [18] are implemented
in Simulink and run on Beaglebone R© Black platform using
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FIGURE 5. Inputs & outputs memberships and linguistic variables for the fuzzy inference system.

FIGURE 6. System block diagram for code profiling.

the processor-in-loop (PIL) procedure for estimating task
execution time as shown in Fig. 6. The time is estimated using
Monte Carlo simulations for 5000 executions.

F. PERFORMANCE ANALYSIS
The fuzzy mitigation ranging performance is quantified in
terms of both the residual ranging errors (ε), (i.e., errors
remaining after mitigation), and the root mean square error
(RMSE) as shown in Fig. 7 and provided in Table I, respec-
tively. Moreover, a quantitative comparison of computa-
tional performance in terms of execution time is provided
in Table 1. The RMSE is estimated using the actual error
and the predicted error. The figure demonstrates the cumu-
lative distribution function (CDF) of the residual errors for
the proposed fuzzy model along with existing works from
[14] and [18], and unmitigated LOS and NLOS errors. The
proposed model is compared with Fuzzy-CIR model [14],
Machine-SVM model [18] and Machine-gaussian regres-
sion (GR) model [18]. The parameters used for Fuzzy-CIR
are SNR, RMS delay spread, kurtosis, and skewness which
are estimated using our experimentally collected CIR data.
In Decawave R© devices, for the suggested optimum threshold
level (δ) [22], ranging errors in LOS conditions are more on
the negative side within −10 cm for most of the readings.
Moreover, in some experimental setups, in LOS conditions,
where the estimated distance is more than 10 m, the ranging

FIGURE 7. Residual ranging errors cumulative distribution function.

TABLE 1. Quantitative comparison between the proposed model and
existing works.

errors exceed up to −20 cm, as shown in Fig. 7. This is also
observed for some soft NLOS (SNLOS) cases in which TX
and RX are obstructed and the strongest path is the first path
followed by weak MPCs in CIR.

We consider the ranging errors in LOS and SNLOS condi-
tions and estimate ranging errors using the proposed model
based on RSS inst., FPPS inst, and RT levels in those condi-
tions. The machine learning based regression models are also
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FIGURE 8. Outage probability versus the number of Anchor nodes (Na) with varying PNLOS in: (a) Warehouse; (b) Office.

trained to predict errors in these conditions using RSS inst.,
FPPS inst, and RT. However, Fuzzy-CIR does not consider
LOS and SNLOS ranging errors. For the proposed fuzzy
model, most of the residual errors are confined between
upper and lower bounds (i.e., between±10 cm) as illustrated
in Fig. 7. Moreover, the figure shows an evidence that the
errors are confined within the bounds with the estimated
CDF of 90.97%. Whereas, in the case of unmitigated NLOS
ranging errors in which the estimated CDF is 64.62%. In the
case of using the Fuzzy-CIR model, the CDF is 79.87% for
±10 cm. We observe that the Fuzzy-CIR model’s perfor-
mance, in predicting the errors, decreases in lower ranging
errors due to higher estimated RMS delay spread. This phe-
nomena in NLOS conditions occur due to the presence of
metal obstructions and ranging errors in the conditions are
in the range of 20-40 cm. However, when using the proposed
fuzzy model, the uncertainties based on RSS inst., FPPS inst,
and RT are optimally covered by the model; hence the error
prediction is close to the actual error in the conditions. For
higher errors, the performance of both the proposed fuzzy
and Fuzzy-CIR models are identical. In comparison with
the proposed model, Fuzzy-CIR’s RMSE is increased by
around 2 cm and the computational time is also increased by
around 6%. ForMachine-SVMcase, we observe that the error
prediction performance is identical to the proposed system
performance except in some (NLOS) conditions where chan-
nel dynamics are changing more often due to high occupancy
and the distance between TX and RX is more. Moreover, the
Machine-SVM’s CDF is 84.5% for the bound. However, the
computational time of the Machine-SVM model is increased
by approximately 42% comparing to the proposed model.
In the case of Machine-GR model, the error prediction per-
formance is better than our proposed model as can be gauged
from Machine-GR’s estimated CDF of 95.04% and RMSE is
of around 5 cm.However, the improvement in error prediction

comes at the expense of a huge increase of computational bur-
den as 600 times increase in task execution time comparing
to the proposed model.

Therefore, we consider the proposed FIS based mitigated
ranges and unmitigated ranges for evaluating the localization
performance.

VII. LOCALIZATION PERFORMANCE
The performance of localization is evaluated using fuzzy mit-
igated ranges and comparedwith unmitigated ranges. To eval-
uate the performance, we simulate the localization network
using the following settings: ANs 3 ≤ Na ≤ 6 with varying
probability of NLOS: 0.2 ≤ PNLOS < 1. The ANs are placed
around an agent with the agent’s true position P = (0, 0). For
every AN 1 ≤ i ≤ Na, the true distance (di) is selected from
the pool of scenarios associated with the ith scenario and the
ith AN’s position around the agent is estimated as:

Ai = di

(
cos

(
2π (i− 1)

Na

)
, sin

(
2π (i− 1)

Na

))
(23)

From the ranges’ measurements, the estimated distances
between the agent and ANs are used to estimate the position
of the agent using (1). The ith estimated distance (d̂i) is
drawn fromNLOS pool withPNLOS and fromLOS pool using
(1− PNLOS ). Likewise, based on the fuzzy mitigated ranges,
the estimated agent position is determined using (1), and the
ith fuzzy range (d̃i) associated with the ith scenario is selected
for the ith AN.
The reliability of the localization is measured in terms of

outage probability (Pout ). The Pout is defined as the probabil-
ity that the position error is greater than the threshold error
and computed as:

Pout (eth) =
{∥∥∥P− P̂∥∥∥

2
> eth

}
(24)
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where P̂ is the estimated position. In this context, we also
consider threshold error (i.e., eth = 15 cm). The Pout
is determined using Monte Carlo simulation for 5000 net-
works implemented using (23) and the target agent for each
set of Na.
The Pout for networks with ANs from 3 to 6 with varying

PNLOS for both the environments, namely, warehouse and
office, are illustrated in Fig. 8. In the figure, the Pout using
unmitigated ranges and fuzzy mitigated ranges are labelled
as V1 and V2, respectively. As shown in the figure, the Pout is
less than 10% with low PNLOS (i.e. 0.2) for both V1 and V2.
However, as the PNLOS increases, the Pout increases. In the
case of V2, Pout is relatively low as it is consistently below
10% even for high PNLOS in both the environments. It is
also observed that as PNLOS increases, Pout does not decrease
even with increasing Na. This is due to high ranging errors
in the unmitigated ranges, particularly observed in the office
environment as illustrated in Fig. 8(b).

FIGURE 9. Outage probability versus PNLOS in the worst scenarios with
number of anchor nodes (Na = 3).

Consider Na = 3 for the worst-case scenarios for both the
environments, as shown in Fig. 9. The worst-case scenarios
are defined as the ranging errors are in the range of 40-100 cm
under NLOS conditions. According to the figure, the Pout
is consistently high for every PNLOS using the unmitigated
ranges. However, Pout is considerably low as it is consistently
less than 10% for the systemwhen using the fuzzy ranges (V2)
compared to V1. For instance, for equal probability of AN in
LOS/NLOS (i.e., PNLOS = 0.6), the system’s availability is
more than 95% (i.e., 1−Pout ) when using the fuzzy mitigated
ranges. In contrast, the system’s availability reduces to around
66% when using the unmitigated ranges. This is because of a
considerable reduction of ranging errors in the case of fuzzy
mitigated ranges.

VIII. CONCLUSION
Traditionally, statistical and machine-learned methods are
employed to tackle ranging errors and to enhance the accu-
racy of localization in IR-UWB. However, those methods

add a delay in position updates and computational burden in
indoor tracking and navigation systems. Moreover, machine
learning based models are cumbersome to train and specific
to the trained scenarios. In this paper, we have proposed to
employ fuzzy logic to estimate the ranging error and to
enhance the localization accuracy. In addition, the fuzzy
mechanism is employed to cope with the errors present in
the LOS conditions due to MPP. The ranging errors are esti-
mated blindly. In other words, prior or posterior knowledge
of LOS or NLOS conditions is not required. The ranging
correction and the localization performance are evaluated in
terms of the CDF of the residual errors, RMSE and the out-
age probability with extensive experimental measurements
in indoor environments using IR-UWB devices. Moreover,
computational time is estimated to gauge the computational
burden using the targeted embedded system. The experimen-
tal results have shown that the residual errors after the fuzzy
correction are concentrated around ideal LOS performance,
specifically those which have minimal errors. Furthermore,
for the proposed model, the attained error convergence for
±10 cm is improved by 27%, 12%, and 7% compared to
the unmitigated NLOS errors, using Fuzzy-CIR scheme and
Machine-SVM method, respectively. In addition, the pro-
posed fuzzy model reduces the computational complexity
(in terms of execution time) by 42% and around 600 times
when compared with Machine-SVM and Machine-GR mod-
els, respectively.

Likewise, when using the fuzzy corrected ranges, the simu-
lated localization system has shown more robustness against
the position errors and has increased the localization relia-
bility when compared with a system using the unmitigated
ranges. In case of system reliability with 15 cm position
error threshold, on average, the proposed model has shown
system’s availability of more than 90% while the system’s
availability for the model using unmitigated ranges is only
about 66%. Finally, the result facts have demonstrated the
effectiveness of employing the proposed fuzzy logic model
for mitigating the ranging errors while reducing the compu-
tational burden in IR-UWB.
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