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ABSTRACT Hippocampal segmentation from infant brain MR images is indispensable for studying
early brain development. However, most of the hippocampal segmentation methods were developed for
population-based adult brain images, which are not suitable for longitudinal infant brain images acquired
in the first year of life due to the low image contrast and variable development patterns of the hip-
pocampal structure. To address these challenges, we propose a classification-guided boundary regression
method to first detect hippocampal boundaries in the longitudinal infant brain images and then use those
detected boundaries to guide the deformable model for final segmentation. Specifically, we first employ
a classification-guided regression forest to predict the 3D displacements from individual image voxels to
the potential hippocampal boundaries. These predicted displacements then determine the boundary maps
by a voting strategy. Second, we iteratively enhance the voted hippocampal boundary map by incorporating
the spatial context information given the tentative boundary estimation of the current time point. Besides,
the longitudinal context information from all time points of the temporal sequence of the same subject
(i.e., given their tentative segmentation results) is also utilized to facilitate accurate segmentation. Finally,
a deformable model is applied to the enhanced voted boundary maps for achieving the longitudinal
hippocampal segmentation. The experiments on infant brain MR images acquired from 2-week-old to
1-year-old show promising hippocampal segmentation results, indicating the applicability of our method
in early brain development study.

INDEX TERMS Infant brain, longitudinal MR image, hippocampal segmentation, classification-guided
boundary regression, deformable segmentation.

I. INTRODUCTION
Accurate segmentation of brain structures in magnetic
resonance (MR) images is a prerequisite to explore brain
development [1]–[3]. Among the various brain structures,
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hippocampus plays an essential role in memory and learning
functions [4]–[6]. Morphometric development of hippocam-
pus is an important biomarker for investigating brain structure
and function alterations in many clinical studies [7], [8].
Particularly, infant brain undergoes critical and fast postnatal
development in the first year of life, which is the foun-
dation of human brain development. Accurate hippocampal
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segmentation from infant brain MR images is highly desired
to study early brain development [9] and neurodevelopment
disorders (such as autism and attention deficit hyperactivity
disorder [10]).

However, it is still a great challenge to accurately segment
the hippocampi from infant brain MR images due to the
following reasons.

(1) Ambiguous hippocampal boundary. Image intensities
in the hippocampi are very similar to those in the nearby struc-
tures, such as amygdala, caudate nucleus, and thalamus [11].
Therefore the image contrast around the hippocampal bound-
ary is relatively low, which results in the ambiguous boundary
(shown in FIGURE 1).

FIGURE 1. Illustration of the hippocampi in the T1, T2, and FA images of
an infant brain. The red and green contours at the bottom row indicate
the left and the right hippocampi, respectively. It can be observed that the
image contrast is low near the boundaries of the hippocampi.

(2) Small hippocampal volume. The size of the hippocampi
is smaller than many nearby structures. Thus, it is difficult to
accurately locate and segment the hippocampi in the entire
MR image.

To address the above challenges, many hippocampal seg-
mentation methods have been proposed. These segmentation
methods mainly fall into 2 categories.

A. ATLAS-BASED METHODS
1) SINGLE-ATLAS METHODS
In the atlas-based methods [12]–[14], single-atlas methods
are first presented. A single atlas image is registered to the
testing image. Then, the label map of the atlas is warped
to the testing image for final segmentation with the esti-
mated deformation field. For example, Barnes et al. [12]
performed global affine registration to obtain a hippocampal
region-of-interest (ROI), and another local affine registra-
tion to refine the obtained ROI for the final segmentation.
Carmichael et al. [13] evaluated the atlases selection and the
registration methods for better hippocampal segmentation.
Kwak et al. [14] adopted a graph-cut algorithm to optimize
the atlas-based hippocampal segmentation result. Among the
single-atlas methods, the highly-variable anatomy of target
tissue often hinders the segmentation accuracy.

2) MULTI-ATLAS METHODS
To alleviate the high anatomical variability across images,
multiple atlases are also adopted for the atlas-based hip-
pocampal segmentation. These methods register multiple
atlases to the testing image, and then derive the final seg-
mentation by label fusion. For example, Kim et al. [2]
used the multi-atlas strategy and the sequences of location-
adaptive classifiers to segment the hippocampi from 7T MR
images. Hao et al. [3] adopted a local label learning strategy
to fuse labels using statistical machine learning technique.
Dong et al. [15] proposed to learn a hypergraph of image
voxels to propagate the labels from multiple atlases for hip-
pocampal segmentation in the testing image. Wu et al. [16]
proposed both multi-scale feature representation and label-
specific patch partition to determine the hippocampal label.
Wang et al. [17] used a multi-atlas method to segment the
hippocampi with a joint label fusion strategy. Zhu et al. [18]
learned a distance metric to propagate the atlas labels.
Guo et al. [19] employed hierarchical multi-set kernel canon-
ical correlation analysis to learn feature representation and
propagated the labels under a multi-atlas framework. The
main drawback of the atlas-based methods is the high compu-
tation cost related with the deformable registration (between
atlases and the testing image) and also the sophisticated label
fusion.

B. DEFORMABLE-MODEL-BASED METHODS
Deformable model is also widely used for the hippocam-
pal segmentation in MR images. Zarpalas et al. [20]
employed adaptive gradient distribution boundary map in the
Active Contour Model (ACM) to segment the hippocampi.
Hajiesmaeili et al. [21] presented an initialization technique,
which divides the hippocampus into head, middle and tail,
under the ACM framework. Gao et al. [22] proposed a
region-based signed pressure force function to outline the
hippocampal boundary. Luo et al. [23] employed 3D Active
Appearance Model (AAM) to segment the hippocampi.
Hu et al. [24] used AAM to capture global shape charac-
teristics of the target structure and refined the segmentation
result in a patch-wise way. Ettaïeb et al. [25] employed
Active Shape Model (ASM) based on the spatial distance to
segment the hippocampi. Although the deformable-model-
based methods are extensively studied, they often suffer the
difficulty in designing the initialization and deformation strat-
egy. Besides, the size of infant hippocampi is small, hence the
deformable-model-based methods tend to obtain suboptimal
segmentation on infant hippocampal images.

Recently, boundary regression [26] achieves promis-
ing segmentation performance in medical image analysis.
Chen et al. [27] outlined the target organ boundary with
landmarks, and predicted the boundary by detecting each
landmark.Wang et al. [28] represented the boundary with key
boundary points and used multi-dimensional support vector
regressor to jointly estimate those boundary points on multi-
ple imaging modalities. Although these methods can predict
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the target boundary, they need to train a large number of
point detectors to outline the whole target boundary, which
is highly time-consuming. Recently, Shao et al. [29], [30]
adopted a single regression forest to effectively predict the
nearest boundary point from each image voxel and thus
achieved the whole target boundary through a large num-
ber of votes. Based on the local image patch around each
voxel under consideration, a regression forest is trained to
predict the displacement from each image voxel to its nearest
hippocampal boundary point. In this way, the entire hip-
pocampal boundary can be voted by collecting the nearest
boundary point predictions from a large number of image
voxels. Although the boundary regression method is robust to
many image segmentation tasks, it is still challenged by the
extremely low image contrast around the infant hippocam-
pal boundary (c.f. FIGURE 8(a)), especially when the local
image appearance is merely considered by the regression
forest.

In this paper, we propose a classification-guided boundary
regression method to accurately determine the hippocam-
pal boundary based on local image patches, and then use
the obtained boundary map to drive the deformable model
for final hippocampal segmentation in the infant brain MR
images. Specifically, a boundary regression forest [30] is first
employed to regress the 3D displacement from each image
voxel to its nearest hippocampal boundary point. Then, all
image voxels cast their votes at the potential nearest boundary
points with the predicted displacements, thus generating the
hippocampal boundary map (as shown in FIGURE 8(a)).
Since the classification map implies the shape information
of the hippocampi, we further integrate a voxel-wise clas-
sification forest into the boundary regression forest, hence
generating both the boundary displacement map (outputted
by the boundary regressor) and the hippocampus classifi-
cation map (outputted by the classification forest). Here,
we call the boundary regression forest, integrated with a
classification forest, as the classification-guided boundary
regression method (c.f. Section II.A). Since the appearance
characteristics of the infant brain structures in MR images
change dynamically during the first year of life, especially
those of the white matter and gray matter, we learn different
classification-guided boundary regression forests for differ-
ent time points (2-week, 3-month, 6-month, 9-month and
12-month) of the first year of life.

Due to the ambiguous hippocampal boundary, we integrate
the spatial and the longitudinal contextual information into
the classification-guided boundary regression forest to refine
the boundary map. The outputted hippocampus classification
map and boundary displacement map aforementioned are
again inputted into the classification-guided boundary regres-
sion forest to extract the spatial context information for better
learning performance (c.f. Section II.B.1). Additionally, to
consider the longitudinal consistency of multiple time points,
we also extract the longitudinal context information from
the tentative segmentation results of other time points of the
same subject (c.f. Section II.B.2). The tentative segmentation

results are achieved by a deformable model on the boundary
map, which is derived from the outputted boundary dis-
placement map (c.f. Section II.C). With these spatial and
longitudinal context information, we can iteratively refine the
estimation of the hippocampal boundary map.

In the final, the refined boundary map is used to drive the
deformable model to complete the final segmentation of the
hippocampi (c.f. Section II.C). Since the infant hippocampal
boundary is ambiguous, we also integrate the shape priors
into the deformable model for accurate hippocampal segmen-
tation. To achieve better accuracy, the infant hippocampi are
segmented on the multi-modal neuroimaging data, including
T1-, T2-weighted MR images, and fractional anisotropy (FA)
image from diffusion tensor imaging (DTI). Experimental
results show that our method achieves promising segmen-
tation results for the infant brain image sequences acquired
from 2-week-old to 1-year-old.

The contributions of our proposed method are three-fold.
(1) We propose to integrate voxel-wise classification into
the boundary regression to exploit the implicit hippocam-
pal shape information for accurate boundary regression.
(2) Besides the spatial context information, the longitudinal
context information of the same subject is applied to facil-
itate the consistent segmentation of a temporal sequence of
hippocampi from one subject. (3) We employ a deformable
model to incorporate shape priors for the challenging
hippocampal segmentation.

The rest of this paper is organized as follows. Section II
gives an overview of the classification-guided boundary
regressionmethod, followed by the details of each component
in our method. Section III shows the experimental results.
Section IV presents the discussion. Finally, the paper con-
cludes in Section V.

II. METHODS
Our method aims to accurately segment the hippocampi
from the longitudinal infant brain MR images by the pro-
posed classification-guided boundary regression
(c.f. FIGURE 2). Specifically, we first combine the clas-
sification and the regression forests for the classification-
guided regression forest to obtain the hippocampal boundary
map (c.f. Section II.A). Second, to refine the hippocampal
boundary map iteratively, the classification-guided regres-
sion forests integrate both the spatial context information
from the tentative classification/regression output of the
same time point and the longitudinal context information
from the tentative segmentation output of other time points
(c.f. Section II.B). Third, a deformable model is driven by
the improved boundary map to complete the final hippocam-
pal segmentation (c.f. Section II.C).

A. CLASSIFICATION-GUIDED BOUNDARY REGRESSION
Recently, random forest achieves promising performance in
image processing [27], [31]–[37] due to its efficiency and
robustness. A classical random forest [38] , which is a regres-
sion forest with continuous targets or a classification forest
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FIGURE 2. Flowchart of our method at time point t . For simplicity, we only take the left hippocampus as example.

with discrete labels, generally contains an ensemble of binary
decision trees. Each tree randomly selects a subset of training
samples for the root node. Then each tree grows from the root
node by iterative node splitting with a sequence of features
selected from a large feature pool and the corresponding
optimal thresholds. The node splitting for a decision tree
repeats until the tree reaches the maximum depth or the
minimum number of training samples in a leaf node. Using a
set of trained decision trees, a random forest can predict the
classification label or the regression target for each testing
sample. The final prediction of a testing sample is obtained
by fusing all outcomes of decision trees in the forest.

In this work, to exploit the shape information implied
in voxel-wise hippocampal classification, we integrate the
classification forest into the boundary regression forest for
accurate hippocampal segmentation. Therefore, we need to
build (1) a classification forest that estimates the voxel labels
(classification labels) within an image patch in a structured
way, and (2) a regression forest that predicts the displacement
vector (regression target) from the central voxel of a patch
to the nearest hippocampal boundary point. The details are
described in the following sections.

1) STRUCTURED CLASSIFICATION FOREST
Motivated by [39], we use the structured classification forest
to exploit the structured information of the target organ for
accurate hippocampal identification in the image. Different
from the traditional classification forest [40], the structured
classification forest predicts the labels for a local patch of
voxels simultaneously, instead of the label of a single voxel.
With the structured classification forest, a hippocampal clas-
sification map can be achieved based on an intensity image.
The structured classification forest of this paper is detailed as
follows:

Sampling: In the training stage, we randomly draw a
large number of samples

{
pi
}
(i = 1, 2, . . . ,K ) near the

manually annotated hippocampal boundary using a Gaussian
distribution for each training image. Mathematically, pi =
qi + N(qi)δ, where qi is a randomly selected point on the
manually annotated hippocampal boundary, N(qi) is the nor-
mal direction of the boundary at qi, and δ = N (0, σ ) indi-
cates a random offset (positive or negative) along the normal
direction. In this way, the samples are concentrated around the
hippocampal boundary, which makes our method specific to
the hippocampal detection and segmentation. In the testing
stage, to identify the hippocampi in the testing image, all
image voxels are used to predict the hippocampi.

Feature Extraction: Given the voxel samples, i.e.,
{
pi
}

(i = 1, 2, . . . ,K ), each sample is represented by a ran-
domly generated, extended Haar-like feature vector Fi (i.e.,

Fi =
[
FTi,T1,F

T
i,T2,F

T
i,FA

]T
) from the respective local image

patches on the T1, T2, and FA images. The extended
Haar-like feature vector Fi,θ (θ ∈ {T1,T2,FA}) on each
image modality includes a set of extended Haar-like features.
Each extendedHaar-like feature consists of one or more cubic
blocks defined as Eq. (1).

fi,θ =
U∑
j=1

βjb̄i,θ (Lj,Sj), (1)

where θ ∈ {T1,T2,FA}, U is the number of the cubic blocks
(randomly selected between ‘‘1’’ and ‘‘2’’), b̄i,θ (Lj, Sj) is the
average image intensity on modality θ of the cubic block,
which locates at Lj with the size of Sj within the image patch
centered at pi, and βj = (−1)(j−1) is the polarity of the j-th
cubic block. To exploit the abundant appearance information
of the local patch centered at pi, the number U , location Lj
and size Sj of the cubic block are randomly determined.

Node Splitting: With the feature vectors and the corre-
sponding labels of those drawn samples, we need to build
classification decision trees by node splitting with a set of
best features and corresponding thresholds. Here, the best

VOLUME 7, 2019 33731



Y. Shao et al.: Hippocampal Segmentation From Longitudinal Infant Brain MR Images via CBR

FIGURE 3. Illustration of the extended Haar-like feature. The whole cyan
rectangle indicates the image patch centered at pi. The red and green
cubes indicate the cubic blocks, the location and size of which are
randomly generated.

feature and the threshold for each node are determined by the
maximum information gain of the classification labels upon
node splitting. To avoid expensive computation, in this paper,
the information gain is defined in Eq. (2):

IGC
i = E (Oi)−

∑
H∈{L,R}

∣∣Oi,H∣∣
|Oi|

E
(
Oi,H

)
, (2)

E (Oi) =
1
|Oi|

∑
l∈Oi

∥∥l − l̄∥∥22 , (3)

where IGC
i is the information gain for classification decision

tree, Oi is the samples in the i-th node prior to the splitting,
Oi,H(Hε {L,R}) indicates the samples in the left or the right
children nodes after the splitting, and E (·) evaluates the
variation of the sample labels. In particular, l is a patch-based
label vector, generated by concatenating labels in a target
image patch, and l̄ is themean of the label vectors inOi. In this
paper, each leaf node in a decision tree stores the probability
distribution of labels for each voxel of the local patch. The
probability distribution of labels is computed as the classical
classification forest [38]. Given a testing image, we extract
extended Haar-like feature vector from an image patch for
each image voxel. Then we go through the trained decision
tree, based on the feature vector, to predict the voxel labels in
the local patch centered at the image voxel.

2) CLASSIFICATION-GUIDED BOUNDARY REGRESSION
To accurately segment the infant hippocampi, we propose the
classification-guided boundary regression by integrating the
structured classification into the boundary regression forest.
In the training stage, we draw voxel samples

{
p′i
}
(i =

1, 2, . . . ,K ′) and generate their Haar-like features from the
multi-modal images as Section II.A.1). Then, we compute
the displacement vector d′i from each sample p′i to its nearest
hippocampal boundary point as the regression target, and
the label vector l′i from the local patch centered at each
sample p′i of the annotation image as the classification label
(c.f. FIGURE 4).

With the triples (the Haar-like features, displacement vec-
tors and label vectors) of all training samples, we train a
classification-guided regression forest CR1. Different from
both classification forest and regression forest, the node

FIGURE 4. Illustration of the displacement vector and label vector of our
classification-guided boundary regression. It is an annotation image. The
yellow point is a sample point, the green arrow indicates the
displacement vector from the sample point to the nearest boundary
point, and the blue cubic indicates the structured label, which can be
concatenated as a label vector.

splitting of the classification-guided regression forest is deter-
mined by the auxiliary information gain IGi = (1− α)IGC

i +

αIGRi , where αε[0, 1] is a scalar, IG
C
i is computed from the

classification part (defined as Eq. (2)), and IGR
i is computed

from the regression part (defined as Eq. (4)).

IGR
i = H (Oi)−

∑
H∈{L,R}

∣∣Oi,H∣∣
|Oi|

H
(
Oi,H

)
, (4)

H (Oi) =
1
|Oi|

∑
y∈Oi

‖y− ȳ‖22 . (5)

In particular, H (·) indicates the variation of regression
targets, y is a regression target in the i-th node, and ȳ is
the mean of regression targets in Oi. In this way, each leaf
node in the classification-guided regression forest stores both
boundary displacement vectors and classification label vec-
tors of samples falling in this node. For the purpose of testing,
we record the selected features and the respective thresholds
of node splitting during the training stage.

In the testing stage, we test the voxels in a bounding
box of a testing image to predict the hippocampal boundary.
The hippocampal bounding box is a rectangular region, cen-
tered at the initially estimated hippocampal location. Here,
the initial hippocampal location on the testing image is deter-
mined by the detected hippocampal landmarks (as described
in Section II.C.1). Within the bounding box, we extract the
Haar-like features F̂′, whose pattern are previously recorded
by the trained forest, from the local patch of each image
voxel p̂′. Then, with the trained classification-guided regres-
sion forest CR1, we estimate both the displacement vector d̂ ′

from p̂′ to the nearest hippocampal boundary point, and the
label vector l̂ ′ of the local patch centered at p̂′. Since the
voxel samples closer to the hippocampal boundary can pro-
vide more reliable information than those far-away voxels in
boundary regression, we adopt a weighted voting strategy to
integrate the contribution of each testing voxel based on the
magnitude of estimated displacement. Specifically, with p̂′

and the estimated displacement d̂ ′, we cast a weighted vote
at the potential boundary point p̂′ + d̂ ′. Here, the weight is
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FIGURE 5. Flowchart of the classification-guided boundary regression with spatial context information for the time point t .

inversely proportional to the magnitude of d̂ ′. By summing
up all weighted votes from all voxels in the bounding box, we
can finally get the hippocampal boundary map. Meanwhile,
with the structured classification, the label of each voxel can
be predicted by the voxel itself and the voxels in the local
patch. By averaging the classification labels of each voxel in
the bounding box, we can also acquire the hippocampus clas-
sificationmap, which can improve the hippocampal boundary
map in an iterative way (c.f. FIGURE 5).

B. SPATIAL AND LONGITUDINAL CONTEXT INFORMATION
If the image voxels independently predict their displace-
ment vectors toward the hippocampal boundary, the resulted
boundary map could be incoherent. To this end, we refine
the voted hippocampal boundary map by combining the
classification-guided boundary regression with (1) the spa-
tial context information from the tentative classification/
regression outputs of the same time point (c.f. Section II.B.1),
and (2) the longitudinal context information from other time
points (c.f. Section II.B.2) in the temporal sequence of the
same infant subject.

1) SPATIAL CONTEXT INFORMATION
To improve the boundary map, we enforce the spatial con-
straint in the classification-guided boundary regression under
the auto-context model [41]. The main idea is to train a
set of classification-guided regression forests CRm(m =

1, 2, . . . ,M ), each of which is trained with both the appear-
ance features of the multi-modal images and the spatial con-
text features extracted from the outputs (i.e., the classification
map and displacement map) of a previously trained forest
CRm−1. Note that the first classification-guided regression
forest CR1 is trained only by the appearance features of
the multi-modal images. The spatial context features here
are extracted in the same way as the Haar-like appearance
features (c.f. Section II.A.1). The classification-guided

regression forests can iteratively generate better classification
maps and displacement maps, which contribute to more
precise displacement estimation. Then, the final displacement
vectors, implied in the displacementmap, generate the bound-
ary map by voting at the predicted boundary points. The
flowchart of the classification-guided boundary regression
with the spatial context information is shown in FIGURE 5.

2) LONGITUDINAL CONTEXT INFORMATION
To obtain more accurate displacement estimation, we inte-
grate the longitudinal context information from different time
points of the same subject. Specifically, for each subject, its
tentative segmentation results from different time points are
mapped to the specific time point under consideration by rigid
registration [42] (c.f. FIGURE 6). On the mapped segmen-
tation results, the longitudinal context features are extracted
in the same way as the Haar-like appearance features (c.f.
Section II.A.1). Then, the longitudinal context features from
the mapped segmentation results of other time points, and
the spatial context features (c.f. Section II.B.1) from the
classification/regression maps of the same time point, are
inputted into the classification-guided regression forest with
weights. Since the images from later time points usually have
higher image contrast, which tends to produce more reliable
segmentation results, the weights of the longitudinal context
features increase gradually for the later time points.

Finally, the flowchart of our proposed boundary regression
model can be summarized as FIGURE 7 below. Given a
testing image, the learned classification-guided regression
forests are iteratively employed to generate the displacement
estimation. In each iteration, the context features from the
previous iteration, and the appearance feature from the testing
image are inputted into the trained classification-guided
regression forest to generate a new classification map and a
new displacement map. Note that, the context features here
include the spatial context features (from the classification
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FIGURE 6. Longitudinal and spatial context features of a subject at iteration m.

map and the displacement map of the same time point), and
longitudinal context features (from the segmentation results
of other time points). By repeating this step, a sequence of
displacement maps can be iteratively generated.

Meanwhile, a sequence of the gradually refined boundary
maps can also be acquired with the estimated displacement
vectors and the aforementioned weighted voting strategy. The
refined boundary maps are illustrated in FIGURE 8. In the
experiment, we observe that the boundary map in our method
converges by 5 iterations.

C. DEFORMABLE SEGMENTATION DRIVEN BY
BOUNDARY MAP
The obtained boundary map highlights the target hippocam-
pal boundary with high votes, which can be used as an
external force to guide the active shape model (ASM) [43].
Besides, ASM can integrate the shape priors into the seg-
mentation procedure to alleviate the ambiguous boundary.
Therefore, we apply ASM on the boundary map for accurate
hippocampal segmentation.

1) DEFORMABLE MODEL INITIALIZATION WITH
POINT REGRESSION
To segment the hippocampi in infant brain MR images with
ASM, proper initialization is a prerequisite. Inspired by the
point regression method [27], [31], [44], we automatically
detect six utmost points for each hippocampus (namely supe-
rior, inferior, left, right, anterior, and posterior points of the
hippocampus) as landmarks.

Specifically, in the training stage, we randomly draw sam-
ples

{
p̃i
}
(i = 1, 2, . . . , K̃ ) around a specific annotated

landmark. Subsequently we extract the extended Haar-like
features frommulti-modality images and the obtained bound-
ary map as Eq.(1)), and then compute the displacement
vector d̃ i from each sample p̃i to the specific landmark as
the regression target. With these Haar-like features and the
corresponding 3D displacement vectors, a regression forest
R̃L(L = 1, 2, . . . , 12) can be trained [38] for the L-th
annotated landmark.

Given a testing image, we employ the trained regression
forest R̃L to predict the displacement vector from each image
voxel to the L-th landmark, and then cast a vote at the
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FIGURE 7. Flowchart of our proposed method for the time point t .

FIGURE 8. The boundary map of a certain subject evolves with the use of spatial and the longitudinal context information.
Green curves represent the manually-delineated hippocampal boundaries. With the increase of iteration, the accuracy of the
boundary map can be gradually improved. To highlight the voted hippocampal boundaries, we only show the left and right
hippocampal regions of the obtained boundary map at each iteration. (a) Iteration 1. (b) Iteration 2. (c) Iteration 3.
(d) Iteration 4. (e) Iteration 5.

potential landmark position (c.f. FIGURE 9(a)). The position
with the maximal vote is considered as the L-th landmark.
It is worth noting that, different from the previous boundary
regression, the point regression for landmark detection is
to predict a specific landmark point, instead of the nearest
boundary point (c.f. FIGURE 9).

With all detected landmarks, we compute the affine trans-
formation between the corresponding points of the mean
shape S̄ (described in Section II.C.2 below) and the detected
landmarks. Using the affine transformation, the mean shape
is warped onto the testing image as the deformable model
initialization.

2) SHAPE MODEL
Due to the ambiguous hippocampal boundary, we fur-
ther incorporate the shape priors (shape model) into the
deformable model for accurate hippocampal segmentation.
To establish the shape model for the infant hippocampi in
brain MR images, we first build a shape model by principal
component analysis (PCA) based on hippocampal surfaces

FIGURE 9. Illustration of point regression for landmark detection and
boundary regression for boundary detection. Red contour indicates the
hippocampal boundary, and white points indicate two typical target
boundary landmark points. Each blue cube represents the image patch
centered at a voxel sample (i.e., the yellow point), and each green arrow
represents the displacement vector from the patch center to a target
boundary point. (a) Point regression for landmark detection. (b) Boundary
regression for boundary detection.

from the training subjects. Specifically, we extract the target
hippocampal surfaces from manually segmented images in
the training set by the marching cube algorithm [45]. One
typical surface is selected from the dataset as the reference
mesh and further smoothed. Here, the number of the vertices
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on the reference mesh is 420 for both the left and the right
hippocampi. Then, the surface registration method [46] is
used to warp the reference mesh onto other hippocampal sur-
face meshes for building surface correspondences. All these
surfaces are further affine aligned into a common space, and
then used to build the PCA shape space with 95% variation.
A shape S in the PCA shape space can be represented as
S = S̄ + Ab. Here, S̄ is the mean shape, A is a matrix of
principal components, and b is the parametric perturbation to
generate the shape S.

3) DEFORMABLE SEGMENTATION
Given a testing stage, the initial shape is inferred according
to the detected landmarks as described in Section II.C.1.
Each point of the hippocampal shape model can be indepen-
dently deformed on the boundary map towards the real target
boundary, by searching for the position with the maximal
boundary votes along the respective surface normal direction.
Then, the intermediate deformed shape Ŝ is refined by the
learned PCA shape model as follows, b̂ = AT (3−1Ŝ− S̄),
b̂ ∈ [−3λi, 3λi]. Here λi is the eigenvalue regarding the i-th
principal component of the shape. 3−1 is a transformation
to project the deformed shape into the PCA shape space.
During deformable segmentation, the model deformation and
the shape refinement alternate, under the guidance of both
the boundary map and the PCA shape space. With the iter-
ation increasing, the shape constraint gradually decreases.
The deformable segmentation finally converges when the
intermediate deformed shape no longer changes.

III. EXPERIMENT RESULTS
In the experiments, we validate our method on the T1,
T2 and FA images from 10 infant subjects at each time point
of 2 weeks, 3 months, 6 months, 9 months and 12 months
of age. The T1- and T2-weighted images were both scanned
with a Siemens head-only 3T scanner. The T1-weighted MR
images were obtained at the resolution of 1 × 1 × 1mm3

with 144 sagittal slices, while the T2-weighted MR images
were obtained at the resolution of 1.25 × 1.25 × 1.95mm3

with 64 axis slices. Diffusion weighted images were obtained
at the resolution of 2 × 2 × 2mm3 with 60 axial slices.
Additionally, for each subject, the T2-weighted MR images
were aligned to the corresponding T1-weighted MR images;
the FA images were first aligned to the correspond-
ing T2 images and then transferred to the corresponding
T1 image spaces. Since the T1, T2 and FA images from
each subject share the same brain anatomical space, they can
be accurately aligned with rigid registration by FLIRT [42]
using correlation ratio as the similarity measure. As the image
preprocessing step, all images in the dataset were isotropi-
cally resampled to 1 × 1 × 1mm3. Standard preprocessing
operations [47] were then applied to each subject, including
skull stripping, bias-field correction, histogram matching,
and also removal of the cerebellum and brain stem. Besides,
for each subject, the manual hippocampi delineation of an

experienced radiologist from UNC-hospital is used as the
ground truth for quantitative evaluation.

To quantitatively evaluate our proposedmethod, we employ
Dice similarity coefficient (DSC) [48] and average surface
distance (ASD) as the metric.

DSC is an overlap measure between the segmented organ
and the manual ground truth:

DSC =
2TP

2TP+ FP+ FN
× 100% (6)

where TP is the number of the correctly labeled organ voxels,
FP is the number of falsely labeled organ voxels, and FN is
the number of falsely labeled background voxels.

Average surface distance is the average distance between
the surface of segmented organ (SEG) and that of the manual
ground truth (GT):

ASD =
1
2

(∑
u∈GT d(u,SEG)
|GT|

+

∑
v∈SEG d(v,GT)
|SEG|

)
(7)

where d(u,SEG) is the minimal distance of voxel u on the
ground truth surface to the voxels on the segmented organ
surface, d(v,GT) is the minimal distance of voxel v on the
segmented organ surface to the voxels on the ground truth
surface, and |·| is the cardinality of a set.

A. PARAMETER SETTING
We use leave-one-out cross-validation to evaluate our
method. The parameter setting is as follows: the number of
the trees in each regression forest is 10; the maximum depth
of each tree is 15; the size of the feature pool for splitting each
node is 1000; the minimum number of the samples in a leaf
node is 5; the patch size for extracting the Haar-like features is
8×8 × 8mm; the number of the samples (i.e., K = K ′ = K̃ )
drawn from each training image is 10000; the number of
iterations for auto-context model is 5; the beginning iteration
integrated with longitudinal information is 3; and the number
of the iterations for deformable model is 20.

B. BOUNDARY REGRESSION VERSUS CLASSIFICATION-
GUIDED BOUNDARY REGRESSION
To compare the conventional boundary regression ([29], [30])
with the proposed classification-guided boundary regression,
we apply the ASM model on the boundary maps generated
from the boundary regression and the classification-guided
boundary regression, respectively. For a fair comparison, both
methods are based on the image appearance features with one
iteration. During the ASM-based deformable segmentation,
the deformable model searches on the boundary map for the
maximal vote along the normal direction of the surface. Note
that both deformable models adopt the same initial shape and
deformation strategy.

To quantitatively compare the boundary regression with
the classification-guided boundary regression in hippocampal
segmentation, the DSC metric between automatic segmenta-
tion and the ground truth is computed. It can be observed from
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FIGURE 10. Comparison of hippocampal segmentation results between the boundary regression (BR) and the
classification-guided boundary regression (CBR).

FIGURE 11. Comparison of hippocampal segmentation results between the classification-guided boundary regression (CBR)
and the classification-guided boundary regression with spatial context information (CBR+SPA).

FIGURE 10 that, on both hippocampi, the classification-
guided boundary regression achieves better performance than
the boundary regression for the hippocampal segmentation.
It proves that the voxel-wise classification forest is effec-
tive to achieve a better hippocampal segmentation. Besides,
among different time points, the segmentation accuracy of
the first time point (the 2-week time point) is lowest for
both boundary regression methods. The reason is that the
infant hippocampi has too small size, low image contrast and
ambiguous boundary at early stage of life.

C. IMPORTANCE OF SPATIAL CONTEXT INFORMATION
To study the role of the spatial context information in
improving the boundary map, we suppress the spatial con-
text information and evaluate the difference of final seg-
mentation performance. In this paper, we employ the spatial
context information under the 5-iteration auto-context model
(c.f. FIGURE 5). The first classification-guided regression
forest is trained without spatial context information, and
the others are trained with the spatial context information
extracted from the outputs of the previous classification-
guided regression forests. Hence, under the auto-context
model, we actually compare the classification-guided bound-
ary regression with 1 iteration and the classification-guided
boundary regression with 5 iterations. Based on the generated

boundary maps by these two classification-guided boundary
regression models, we apply two deformable models with the
same setting to segment the hippocampi.

To analyze the importance of the spatial context in our
method, we quantitatively compare the segmentation result
with the ground truth of the hippocampi. From FIGURE 11,
we can observe that, the classification-guided boundary
regression with the spatial context information outperforms
that without spatial context information on both hippocampi.
This means that the spatial context information is effective to
improve hippocampal boundary map.

D. CONTRIBUTION OF LONGITUDINAL CONTEXT
INFORMATION
To validate the contribution of the longitudinal context infor-
mation, we compare our method using only spatial context
information, with that using both spatial and longitudinal
context information under 5-iteration auto-context model.
The ASM model is also applied on the boundary map to
segment the hippocampi with the same setting.

FIGURE 12 shows the segmentation performance
(in DSC metric) of our method with and without longitudinal
context information.We can find that, the DSC of our method
with the longitudinal context information is higher than that
without longitudinal context information, which indicates
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FIGURE 12. Comparison of hippocampal segmentation results between our method (CBR+SPA+LONG) and our method without
longitudinal context information (CBR+SPA).

TABLE 1. Comparison between our method and the state-of-the-art methods in DSC (%).

TABLE 2. Comparison between our method and the state-of-the-art methods in ASD (mm).

the contribution of the longitudinal context information in
infant hippocampal segmentation. Besides, for longitudinal
context information, since the images from later time points
have better image contrast, the tentative segmentation results
from later time points are better than the early time points.
Therefore, the improvement of hippocampal segmentation
performance at early time points tends to more than that at
the last time point.

E. COMPARISON WITH STATE-OF-THE-ART METHODS
To justify the effectiveness of our method in infant hippocam-
pal segmentation, we also compare our proposedmethodwith
the state-of-the-art methods. The performances of all methods
on both hippocampi are summarized in TABLE 1. Note that,
these methods are evaluated on the same dataset.

As can been seen from TABLE 1, our method achieves
competitive performance on infant hippocampal segmen-
tation to other segmentation methods under comparison.
Specifically, on all reported time points, our method achieves
better performance than Guo et al. [19] and Zhang et al. [49].

IV. DISCUSSION
We have proposed a boundary detection method based on
the classification-guided boundary regression to segment the
infant hippocampi. Different from the traditional boundary

regression, we integrate the implicit shape clue from
classification results into the traditional boundary regression
for better segmentation. We also employed the spatial and
longitudinal context information to achieve a coherent seg-
mentation result. Due to the low image contrast near the
hippocampus head and tail, the segmented organ boundary
is likely to leak. That is the main reason why we adopted
the shape-constrained deformable model after the boundary
regression.

Currently, the infant hippocampus dataset consists of only
10 subjects at 5 time points, which is not suitable for
deep learning methods to obtain discriminative features.
Next, we will collect more subjects from hospitals to fur-
ther improve the segmentation results of our method, and
try popular deep learning methods for better hippocampus
segmentation. Besides, the average segmentation time of our
method is 591 seconds (with Intel Core i7-4770K 3.50 GHz,
16 GB RAM) for a testing image under the auto-context
model, which is similar to that of the one-layer random
forest of [49].

V. CONCLUSION
In this paper, we present a classification-guided boundary
regression method with spatial and longitudinal context
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information for accurate hippocampal segmentation in
MR infant brain images. Specifically, we combine classifi-
cation forest and regression forest to learn the classification-
guided boundary regression method for predicting the
entire hippocampal boundary. Then, we integrate the spatial
and longitudinal information into the classification-guided
regression forest to iteratively refine the voted boundary
map. Finally, a deformable model is employed on the bound-
ary map to achieve the final hippocampal segmentation.
Validated on 10 subjects from 2-week-old to 1-year-old, our
classification-guided boundary regression method achieves
better segmentation accuracy than the state-of-the-art meth-
ods under comparison.
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