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ABSTRACT The sparse reconstruction techniques can improve the accuracy and resolution of the direction
of arrival (DOA) estimation using sensor arrays. However, due to reflective objects and nonidealities of the
antennas and circuitry, the received signals may be coherent and coupled to each other in nonuniform noise
environments, causing severe performance degradation of the signal sparse reconstruction. In this paper,
a novel sparsity-inducing DOA estimation method is proposed to adapt to such a challenging scenario.
To mitigate the nonuniform noise, its power components are first eliminated by a linear transformation.
Then, leveraging the steering vector parametrization based on the banded symmetric Toeplitz structure of
the mutual coupling matrix (MCM), a reweighted `1-norm minimization subject to an error-constrained `2-
norm is designed to determine the DOA estimates, further enhancing the sparsity and providing robustness
against the noise. In addition, a new stochastic Cramér–Rao lower bound (CRLB) of the DOA estimation
is derived for the considered adverse condition. The simulation results demonstrate the superiority of the
proposed method over its state-of-the-art counterparts.

INDEX TERMS Direction of arrival (DOA), mutual coupling, coherent signals, nonuniform noise, sparse
reconstruction.

I. INTRODUCTION
Prevailing high-resolution algorithms for direction of
arrival (DOA) estimation using antenna arrays, such as
MUSIC [1] and ESPRIT [2], work well provided that the
array manifold is known a priori or well calibrated, and
there is no correlation between incident signals. In prac-
tice, however, antennas in massive MIMO systems may be
closely spaced, and mutual coupling, an intrinsic character-
istic between array elements, becomes prominent. Besides,
the source signals may undergo multipath propagation that
is very common in urban areas, and the resultant multipath
signals become coherent to each other accordingly. These
nonidealities can significantly deteriorate the estimation
performance, and much effort has been devoted to tackle
the problem of DOA estimation of coherent signals in the
presence of unknown mutual coupling.

The associate editor coordinating the review of this manuscript and
approving it for publication was Liangtian Wan.

For uniform linear arrays (ULAs) where each sensor is
only coupled with a portion of the whole array, ‘‘middle
subarray’’ has been recognized to preserve the Vandermonde
structure of the array response and be mutual coupling-
free [3]–[6], so various rank recovery methods in conjunction
with this property are developed to handle the coherency
between signals [7]–[9]. However, Dai and Ye [7] utilized
forward spatial smoothing only to reconstruct the deficient
rank and ignored the conjugate information, resulting in a
loss of half of DOFs. Toeplitz matrix reconstruction directly
in data domain [8] showed good performance for real-time
applications in decorrelating coherent signals without mutual
coupling compensation, but at the cost of halving the effective
array aperture that is very limiting in practice. To amelio-
rate the drawbacks mentioned above, a matrix reconstruction
method was proposed to improve effective aperture after rank
restoration [9], but still constrained by the size of the ‘‘middle
subarray’’.
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Recently, some novel approaches have been proposed to
deal with the issue via exploiting spatial sparsity [10]–[12],
that exhibits remarkable superiority in resolution and robust-
ness to coherency. In [10], `1-SVD is applied to obtain DOA
estimates with the help of the ‘‘middle array’’ in ULAs. Liu
and Zhou first address the DOA estimation problem with
three array perturbations under a unified sparse Bayesian
learning framework [11]. This work is followed by Liu et al.,
and a joint estimation of DOAs and array perturbations is
solved by sparsematrix completion.More recently, some new
sparseDOAestimation algorithms are developed towithstand
the mutual coupling effects [12]–[16]. An improved `1-SVD
method is proposed in [12] by using a transformation of the
real steering vector with the structured mutual coupling of
the whole array, introduced in [4], to form a new dictionary
for sparse reconstruction, and performance improvements are
achieved since the information of whole array is exploited.
Following a quite distinct transformation of the real steer-
ing vector derived in [17] and replacing the `1-SVD with
the simultaneous orthogonal matching pursuit (SOMP) [13]
and sparse Bayesian learning [14], respectively, with mul-
tiple measurement vectors (MMVs), Chen et al. provide
two off-grid compressed sensing based methods to tackle
adverse coupling effects, further improving the estimation
accuracy and resolution. Taking advantage of the steering
vector transformation in [4], Meng et al. [15] present a DOA
estimation approach against the unknown coupling based on
block sparse recovery of the array covariance vectors by the
popular weighted `1-norm penalty. However, the weighting
matrix is constructed by the principle of the Capon estimator,
and it may cause a limited resolution and poor estimation
performance at low signal-to-noise-ratios (SNRs). By lever-
aging the uncorrelation between signals and the same trans-
formation of the coupled steering vector, we cast the original
problem as a group sparsity reconstruction of an SMV prob-
lem, and the developed solution takes advantage of a larger
array aperture and mitigates the noise effects, allowing more
accurate DOA estimates to be resolved [16].

It should be noted that the aforementioned methods are
generally restricted to uniform white Gaussian noise envi-
ronments. On the other hand, in many applications, the noise
power in each channel is no longer identical, i.e., the noise
becomes nonuniform, due to the nonhomogeneity of the
hardware in receiving channels or prevailing external noise
received by the array elements [18]–[20]. However, to the
best of our knowledge, the problem of DOA estimation for
coherent signals under the coexistence of unknown mutual
coupling and nonuniform noise has not been investigated.
To bridge this gap, in this letter, we address the issue from
a sparse reconstruction perspective. The nonuniform noise
is first mitigated by removing its power components. Then,
considering the banded symmetric Toeplitz structure of the
MCM, a novel dictionary is constructed by parameterizing
the virtual steering vector, and a newly designed reweighted
`1-norm minimization subject to an error-constrained `2
norm is carried out to determine the DOA estimates.

In addition, we provide the stochastic CRLB for the coher-
ent signals under the coexistence of mutual coupling and
nonuniform noise. The CRLB derivation herein is a natu-
ral extension of the well-known results given by Weiss and
Friedlander [21] for the case of uniform noise. Simulation
results illustrate that the proposed algorithm outperforms its
sparsity-inducing counterparts.

The remainder of this paper is organized as follows.
In Section II, an arraymodel for coherent signals perturbed by
unknown mutual coupling in nonuniform noise is introduced.
In Section III, a robust sparsity-aware DOA estimator using
weighted `1-norm minimization of reconstructed covariance
vectors is developed. Section IV provides numerical exam-
ples for demonstrating the validity and efficiency of our pro-
posed method. Finally, some concluding remarks are given
in Section.

Throughout this paper, the following notations will be
used: the operators (·)T , (·)∗, (·)H , (·)+, ⊗, �, tr{·}, ‖ ·
‖1, and ‖ · ‖2 denote the operation of transpose, conju-
gate, conjugate transpose, pseudo-inverse, Kronecker prod-
uct, Schur-Hadamard product, trace, `1 norm, and Euclidean
(`2) norm, respectively. The symbol diag{z1, · · · , zN } rep-
resents a diagonal matrix with diagonal entries z1, · · · , zN
and blkdiag{Z1,Z2} represents a block diagonal matrix with
diagonal entries Z1,Z2. The symbol IK stands for an identity
matrix of size K × K .

II. PROBLEM FORMULATION
Consider K groups of coherent signals impinging on a ULA
with M identical omnidirectional sensors. In the k-th coher-
ent group, the signals coming from direction θkp, p =
1, 2, · · · ,Pk corresponds to the p-th multipath propagation
of the signal source sk (t), and the complex fading coefficient
is αkp. It is apparent that the total number of coherent signals
is N =

∑K
k=1 Pk . If there exits mutual coupling between the

array elements, the corresponding M × 1 array observation
vector is then given by

x(t) =
K∑
k=1

Pk∑
p=1

Ca(θkp)αkpsi(t)+ n(t)

= CA0s(t)+ n(t) (1)

where a(θ ) =
[
1, β(θ ), · · · , βM−1(θ )

]T
∈ CM is the steering

vector, β(θ ) = ej
2πd
λ

sin θ with λ and d being the wavelength
of carrier signal and the spacing between adjacent elements,
respectively, C denotes the MCM, A = [a(θ1), · · · , a(θN )]
is the array manifold, 0 = blkdiag{α1, · · · ,αK } with αk =[
αk1, · · · , αkPk

]T containing attenuation information of the
k-th coherent group where blkdiag{·} represents a block diag-
onal matrix, and s(t) = [s1(t), · · · , sN (t)]T . We assume that
n(t) is a nonuniform zero-mean Gaussian noise vector and
uncorrelated to s(t). From (1), the array covariance matrix is
given by

Rx = E
[
x(t)xH (t)

]
= CA0Rs0

HAHCH
+Q (2)
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where Rs = E
[
s(t)sH (t)

]
= diag

{
γ 2
1 , γ

2
2 , · · · , γ

2
N

}
is

a diagonal matrix containing the signal powers
{
γ 2
i

}N
i=1,

and Q = E
[
n(t)nH (t)

]
= diag

{
σ 2
1 , σ

2
2 , · · · , σ

2
M

}
is also

a diagonal matrix with σ 2
m being the noise power at the

m-th antenna.
As described in [3]–[12], [15], and [16], it is often suf-

ficient to consider the ULA coupling model that has just
finite non-zero coefficients, and a banded symmetric Toeplitz
matrix can be used to model mutual coupling. By assuming
that the largest interelement spacing contributing to mutual
coupling to be P, the MCM can be expressed as

C = Toeplitz
{[
1, c1, · · · , cP−1, 01×(M−P)

]}
(3)

where Toeplitz {r} denotes a symmetric Toeplitz matrix con-
structed by the vector r, and 0 < |c1|, |c2|, · · · , |cP−1| <
c0 = 1 are the mutual coupling coefficients.

III. PROPOSED DOA ESTIMATOR USING
SPARSE RECONSTRUCTION
A. NONUNIFORM NOISE MITIGATION
Denoting

Rx = CAP+Q (4)

where P = 0Rs0
HAHCH , and vectorizing Rx , one has

y = vec (Rx)

= (IM ⊗ (CA)) vec (P)+ 1M2 (5)

where vec (P) =
[
pT1 , · · · ,p

T
M

]T where pi ∈ CN is the
i-th column of P, and 1M2 =

[
σ 2
1 e

T
1 , · · · , σ

2
MeTM

]T
where

ei ∈ RM is a column vector with 1 at the i-th entry and 0
elsewhere.

Carefully examining the position of σ 2
i , we find that σ 2

i
is located at the ((i− 1)(M + 1)+ 1)-th entry of y, so the
noise components can be eliminated by performing a linear
transformation on y as

ȳ = Jy = J (IM ⊗ (CA)) vec (P) (6)

where J =
[
blkdiag{J1, J2, · · · , JQ

}
, 0Q(M−1)×M (M−Q)] ∈

RQ(M−1)×M2
is a selection matrix with Jq = [e1, · · · , ei−1,

ei+1, · · · , eM ]T ∈ R(M−1)×M where ei ∈ RM is a column
vector with 1 at the i-th entry and 0 elsewhere. Here, Q
indicates how many columns of Rx we use and Q ≤ M .
In order to combat effect of unknown mutual coupling

in the ULA, we reparameterize the coupled steering vector
as [4]

Ca(θ ) = T(θ )α(θ ) (7)

where T(θ ) ∈ CM×(2P−1) and α(θ ) ∈ C2P−1 are given by

T(θ ) = blkdiag {T1,T2,T3} (8)

α(θ ) =
[
µ1, · · · , µP−1, τ (θ ), α1, · · · , αP−1

]T (9)

with

µl = 1+
P−1∑
k=1

ckβk (θ )+
l−1∑
k=1

ckβ−k (θ ) (10)

αl = 1+
P−1∑
k=1

ckβ−k (θ )+
P−1−l∑
k=1

ckβk (θ ) (11)

τ (θ ) = 1+
P−1∑
k=1

ck
(
βk (θ )+ β−k (θ )

)
(12)

T1 = diag
{
1, β(θ ), · · · , βP−2(θ )

}
∈ C(P−1)×P−1) (13)

T2 =

[
βP−1(θ ), · · · , βM−P(θ )

]T
∈ CM−2P+2 (14)

T3 = diag
{
βM−P+1(θ ), · · · , βM−1(θ )

}
∈ C(P−1)×P−1)(15)

and generally τ (θ ) in (9) is assumed to be nonzero as sug-
gested in [4].

Substituting (7) back to (4), one has

ȳ = Bg (16)

where B = J (IM ⊗ [T(θ1), · · · ,T(θN )]) and g =

(IM ⊗ blkdiag {α(θ1), · · · ,α(θN )}) vec (P). In practice, only
finite samples are available, and the unknown ȳ is esti-
mated from L snapshots, i.e., ˆ̄y = Jvec

(
R̂x

)
where R̂x =

1
L

∑L
t=1 x(t)x

H (t).

B. DOA ESTIMATION USING SPARSE RECONSTRUCTION
It is noted that the ȳ can be sparsely represented in the spatial
domain over the entire angular grid as

ȳ = B (Θ) p̄ (17)

where B(Θ), an over-complete dictionary, is defined
as a collection of virtual steering matrices J(IM ⊗
[T(θ̃1), · · · ,T(θ̃G)]) over the entire possible grids with Θ =
{θ̃1, · · · , θ̃G}. We assume that the true DOAs are exactly on
the sampling gridsΘ and G� M .

It is important to note that the angular positions of the
signal arrivals θi, i = 1, · · · ,N , are indicated by the non-zero
entries in p̄, whose values describe the corresponding coeffi-
cients associated with g. It is useful to introduce a vector po =
[po1, p

o
2, · · · , p

o
G]

T with the g-th entry pog equal to the `2-norm
of Q(2P − 1) entries, from the (G(q − 1) + (g − 1))(2P −
1) + 1-th to the (G(q − 1) + g)(2P − 1)-th, q = 1, · · · ,Q,
i.e., pog = (

∑Q
q=1

∑(G(q−1)+g)(2P−1)
q=(G(q−1)+(g−1))(2P−1)+1 p̄

2
r )

1
2 where p̄r

is the r-th entry in p̄. Generally, the non-zero entries of p̄g =
[p̄(g−1)(2P−1)+1, · · · , p̄g(2P−1), · · · , p̄(G(Q−1)+(g−1))(2P−1)+ 1,

· · · , p̄(G(Q−1)+g)(2P−1)]T take different values to each other
but share the same positions because they correspond to the
DOAs of the same N signals. Therefore, p̄g exhibits a group
sparsity that can be coherently described by po with the same
sparse structure and hence, seeking a sufficiently sparse po

will make {p̄g}Gg=1 consistently fit ˆ̄y as sparsely as possible
in a manner such that all the entries in p̄g tend to be zero
or nonzero simultaneously. The DOA estimation of coher-
ent signals with unknown mutual coupling and nonuniform
noise can be solved by detecting the locations of nonzero
entries of po.

Theoretically, one should choose the `0-norm as an ideal
measure of sparsity. However, the `0-norm minimization
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problem is nonconvex, NP-hard, and mathematically
intractable. Following [22]–[24] and considering the effect
of finite snapshots, one can relax this to a simpler reweighted
`1-norm constrained optimization problem, that is,

min
po

∥∥Wpo
∥∥
1 , s.t.

∥∥∥ ˆ̄y− B (Θ) p̄
∥∥∥2
2
≤ α (18)

where W is a diagonal matrix containing weights
{
wg
}G
g=1,

which can more closely resemble the `0-norm and further
enforce the sparsity, and α is the threshold parameter which
determines the upper bound of the fitting error. The selection
ofW and α, which guarantees robust sparse recovery, is spec-
ified in the following section.

The weights
{
wg
}G
g=1, diagonal entries of W, play an

essential role in the sparse reconstruction since they tune
the entries of po. An inappropriate selection of wg may
produce prominent pseudo spikes in the spatial spectrum.
A selection guidance we find intuitively plausible is that
wg can adaptively penalize nonzero entries in the sparse
vector po, that is, large weights punish the entries which
are more likely to be zeros, whereas small weights preserve
the large entries. Besides, these weights should adapt to the
signal environments. By this means, the introduced W can
enhance the sparse solution. To this end, we begin with
the selected covariance vector Giy = ĀPei, where Gi =[
0M̄×(M (i−1)+P−1), IM̄ , 0M̄×(M2−Mi+P−1)

]
∈ RM̄×M2

with

M̄ = M −2P+2 and Ā = ḠAD with Ḡ =
[
IM̄ , 0M̄×(2P−2)

]
and D = diag

{
τ (θ1)βP−1(θ1), · · · ,

τ (θN )βP−1(θN )
}
, since the ‘‘middle subarray’’, of size M −

2P + 2, preserves the Vandermonde structure of the array
response [3], [4], and Giy is immune to the mutual coupling
and nonuniform noise effects when {i}P−1i=1 ∪{i}

M
i=M−P+2. Then

an average matrix can be constructed as

R̄ =
P−1∑
i=1

GiyyHGT
i +GM−P+1+iyyHGT

M−P+1+i

= Ā

(
P−1∑
i=1

PeieTi P
H
+ PeM−P+1+ieTM−P+1+iP

H

)
ĀH

= ĀR̄sĀH (19)

where R̄s =

(∑P−1
i=1 PeieTi P

H
+ PeM−P+1+ieTM−P+1+i P

H
)
.

It should be noted that R̄ is rank deficient. To recover the
rank deficiency, one can perform the well-known forward-
backward spatial smoothing [25] on R̄ as

R̄fb =
1
2l

l∑
i=1

Ei
(
R̄+ FR̄∗FT

)
ETi

= E1Ā

[
l∑
i=1

8i−1R̄s8
1−i
+82−m̄−iR̄∗s8

i+m̄−2

]
×ĀHET1 (20)

where Ei =
[
0m̄×(i−1), Im̄, 0m̄×(l−i)

]
, m̄ and l are the number

of elements of a subarray and smoothing times, respectively,

satisfying m̄ = M̄ + 1 − l, and F ∈ RM̄×M̄ denotes
an exchange matrix that has unity entries on the cross
diagonal and zeros elsewhere. Referring to [25], one knows
that the rank deficiency has been successfully recovered,
i.e., rank

{
R̄fb
}
= N , provided that m̄ ≥ N+1 and 2l ≥ Pmax

where Pmax = max {P1,P2, · · · ,PK }. Then we propose to
make wg the following form

wg =
∥∥∥ŪH

n ă
(
θ̃g

)∥∥∥
2
, g = 1, 2, · · · ,G (21)

where Ūn is the eigenvector matrix associated with
the smallest m̄ − N eigenvalues of R̄fb and ă(θ) =
[1, β(θ ), · · · , βm̄−1(θ )]T .Without loss of generality, the over-
complete dictionary B(Θ) can be partitioned into two matri-
ces along the columns, one, denoted as B1, is assumed to
contain the N steering matrices of the true DOAs, and the
other, denoted as B2, consists of the remaining steering
matrices corresponding to the zero entries in the recovered
vector p̄. Denote w = [w1, · · · ,wG]/max{w1, · · · ,wG} =
[w1,w2]/max{w1, · · · ,wG}. As only B1 is the array
manifold of the true DOAs, its corresponding weights
in w1/max{w1, · · · ,wG} should be smaller than those
in w2/max{w1, · · · ,wG}. In particular, w1/max{w1,

· · · ,wG} → 0 when the number of snapshots L → ∞.
The weighting matrix can be constructed as W , diag{w}
accordingly, and an adaptive penalization of nonzero entries
in po is achieved.

Referring to [26], if p̄ is exactly reconstructed, ˆ̄y−B (Θ) p̄
is amenable to asymptotically normal (AsN) distribution

ˆ̄y− B (Θ) p̄ ∼ AsN
(
0Q(M−1)×1, R̄

)
(22)

where R̄ = 1
L J
(
RT
⊗ R

)
JT , so it can be deduced that

R̄−
1
2

(
ˆ̄y− B (Θ) p̄

)
∼ AsN

(
0Q(M−1)×1, IQ(M−1)

)
(23)

which directly results in∥∥∥R̄− 1
2

(
ˆ̄y− B (Θ) p̄

)∥∥∥2
2
∼ Asχ2 (Q(M − 1)) (24)

whereAsχ2 (Q(M − 1)) represents the asymptotic chi-square
distribution withQ(M−1) DOFs.We introduce the parameter

β such that the inequality
∥∥∥R̄− 1

2

(
ˆ̄y− B (Θ) p̄

)∥∥∥2
2
≤ β is

satisfied with a high probability p̃, that is,

Pr
{
χ2
Q(M−1) ≤ β

}
= p̃, β = χ2

p̃ (Q(M − 1)) (25)

where Pr{·} denotes the probability of an event. Let ˆ̄R =
1
L J
(
R̂T
⊗ R̂

)
JT be the estimate of R̄. Combining the above

derivation and analysis, we arrive at a statistically robust and
more tractable formula for DOA estimation as follows

min
po

∥∥Wpo
∥∥
1 , s.t.

∥∥∥ ˆ̄R− 1
2

(
ˆ̄y− B (Θ) p̄

)∥∥∥
2
≤
√
β. (26)

It is apparent that problem (26) is a second-order cone pro-
gramming problem and can be efficiently solved by an off-
the-shelf optimization solver such as SeDuMi [27].
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The major computations involved in the proposed method
are to perform the construction of the covariance matrix R̂x ,
the eigen-decomposition of R̄fb, a one-dimensional spectral

search of
∥∥∥ŪH

n ă
(
θ̃g

)∥∥∥
2
, and sparse reconstruction in (26),

and it thus requires O
(
LM2
+ m̄3

+ Gm̄2(m̄− N )+ Q3G3
)

flops in total. Here, a flop stands for a complex-valued float-
ing pointmultiplication operation, whereas the computational
load of other sparse recovery approaches in [10] and [12]
are O

(
L(M − 2P+ 2)2 + LN (M − 2P+ 2)+ N 3G3

)
and

O
(
LM2
+MLN + N 3(2P− 1)3G3

)
, respectively.

It is worth noting that the proposed method is devel-
oped on the prerequisite τ (θ ) 6= 0. If the condition
is not satisfied, i.e., the so-called ‘‘blind angle’’ occurs,
the middle subarray cannot receive any signals from those
blind angles, resulting in a failure of detection as discussed
in [3]. For the issues investigated in this paper, leveraging
the whole array of a ULA has a similar problem. As a
result, when the incident signals come from any of the
blind angles, the proposed algorithm as well as its state-of-
the-art counterparts, e.g., [10], [12], [15], [16], fails to iden-
tify the DOAs, please refer to [3] and [10] for detailed
discussion.

IV. SIMULATION RESULTS AND DISCUSSION
In this section, we present simulation results to show the
performance of the proposed sparsity-aware estimator. Sim-
ulations are carried out for an eight-element ULA with
half-wavelength spacing between adjacent elements. It is
assumed that P = 2 and the mutual coupling coef-
ficient is c1 = 0.1545 + 0.4755j. The noise is spa-
tially nonuniform and its covariance matrix is Q =

diag {10, 12, 1.5, 2.5, 5, 1, 1.5, 3}. The approaches in [10]
and [12], referred to as Dai’s method and Wang’s method,
respectively, and the Cramér-Rao lower bound (CRLB) of
DOA estimates derived in Appendix are chosen for compari-
son. To reduce the computational complexity and improve the
estimation accuracy, we first use a coarse grid in the range of
[−90◦, 90◦] with a step size of 1◦, and then set a refined grid
spacing of 0.02◦ around the estimated peaks. The probability
p̃ for β in all the three algorithm is set at 0.999. The accuracy
of the DOA estimate is measured from 500 Monte Carlo
runs in terms of the root mean-square error (RMSE) which
is defined as

RMSE =

√√√√ 1
500N

500∑
n=1

N∑
i=1

(θ̂ (n)i − θi)
2 (27)

where θ̂ (n)i is the estimate of θi for the n-th trial.
Fig. 1 depicts the spatial spectrum versus DOA for two

coherent signals from [−36◦,−18◦] where the red dash lines
mark the true DOAs. The fading coefficients of the coher-
ent signals are

[
0.6595+ 0.7517j, âĹ′0.3621+ 0.599j

]
. The

SNR, L, and Q are fixed at 8 dB, 300, and 3, respectively.
It can be seen that the proposed method has clear advantages
on accuracy and resolution of estimation whereas the other

FIGURE 1. Normalized spatial spectra versus DOA. SNR = 8 dB and
L = 300. The dashed lines mark the true DOA positions.

two approaches are also able to detect the two signals but with
higher estimation bias.

FIGURE 2. RMSE of the proposed method with different Q versus SNR.
SNR = 8 dB and L = 300.

The estimation performance of our sparse recovery algo-
rithm is now examined with diverse choices on the value ofQ.
Other parameters are set the same as the previous scenario.
Fig. 2 shows that Q = 6, 8 slightly outperform Q = 3 while
almost the same accuracy achieved byQ = 6, 8. This implies
that, in general, the larger Q is, the better accuracy one can
obtain, but at a cost of greater computations, because more
columns offer a better robustness to the errors introduced by
the finite snapshots, while the computational complexity of
solving (26) involves O

(
Q3G3

)
flops. Therefore, Q = 3 is

a reasonable tradeoff between the estimation accuracy and
computational efficiency.

The statistical performance of the three algorithms as well
as CRLB as a function of SNR and L in the first scenario
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FIGURE 3. RMSE of the DOA estimates versus SNR when L = 300
and Q = 3.

FIGURE 4. RMSE of the DOA estimates versus the number of snapshots
when SNR = 10 dB and Q = 3.

is illustrated in Figs. 3 and 4. The resultant RMSE versus
SNR for 300 snapshots is compared in Fig. 3. It is noticed
that the proposed method outperforms its counterparts for all
SNRs as the former exploits reweighted `1-norm to enhance
the reconstruction sparsity and the linear transformation to
eliminate the main contribution of the nonuniform noise,
but there is still a clear margin between the DOA estimates
of sparsity-aware technique and the CRLB, while the latter
underestimates the noise variance and has relatively large
errors, especially at low SNRs. Additionally, Dai’s technique
performs better thanWang’s algorithm up to 4 dB, but slightly
worse above 6 dB, and the RMSEs of Dai’s and Wang’s
approaches at high SNRs tend to saturate to 0.9◦ and 0.65◦,
respectively, as SNR increases.

The results in Fig. 4 demonstrate that the RMSE of DOA
estimation of the three techniques, fixing SNR = 10 dB,
asymptotically approach the CRLB as L increases, and the
proposed method is still superior to the other two approaches
for all snapshot sizes. We also note that Wang’s algorithm

has lower RMSEs than Dai’s approach as the former takes
advantage of the whole array aperture, which is consistent
with the tests in [12].

V. CONCLUSION
This correspondence has exhibited a novel sparsity-aware
DOA estimator for coherent signals under the coexistence
of mutual coupling and nonuniform noise. Our study indi-
cated that the issue can resolved by a group sparsity recon-
struction for multiple measurement vector that results from
the noise-free covariance vectors, by decoupling the virtual
steering vector from the MCM with a banded symmetric
Toeplitz structure. Since the proposed technique leverages
the whole array aperture and mitigates the nonuniform noise,
better estimation performance is provided without mutual
coupling compensation. Simulation results demonstrate that
the proposed method bears a distinct advantage over state-of-
the-art solutions.

APPENDIX
DERIVATION OF STOCHASTIC CRLB FOR THE COHERENT
SIGNALS UNDER THE COEXISTENCE OF MUTUAL
COUPLING AND NONUNIFORM NOISE
In the problem of DOA estimation of coherent signals under
the coexistence of mutual coupling and nonuniform noise,
the vector including the unknown parameters of interest is

η =
[
θT , cT , σ T

]T
(28)

where θ = [θ1, · · · , θN ]T , c = [c1, · · · , cP−1]T , and σ =[
σ 2
1 , · · · , σ

2
M

]T
are the vectors of unknown DOAs, mutual

coupling coefficients, and noise powers, respectively.
If the observations follow random zero-mean Gaussian

processes, then the (m, n)-th entry of the Fisher information
matrix (FIM) is given by [28]

Fmn =
∑L

i=1 tr
{
R−1x

∂Rx
∂ηm

R−1x
∂Rx
∂ηn

}
(29)

For convenience of formulation, we define the following
notations:

Ȧ =
[
da(θ )
dθ

∣∣∣
θ=θ1

,
da(θ )
dθ

∣∣∣
θ=θ2

, · · · ,
da(θ )
dθ

∣∣∣
θ=θN

]
(30)

Rc = 0Rs0
H . (31)

Additionally, define κ = [κ1, · · · , κP−1]T , Re {c}, ς =
[ς1, · · · , ςP−1]T , Im {c}, and

Ċκi = Toeplitz
{[
0, ēTi , 01×(M−P)

]}
(32)

Ċςi = jToeplitz
{[
0, ēTi , 01×(M−P)

]}
(33)

where ēi ∈ RP−1 is a column vector with 1 at the i-th entry
and 0 elsewhere.

In this appendix, we derive all blocks composing the
FIM with the unknown parameters to calculate the CRLB.
The idea of deriving the blocks follows the norm in [28],
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so the detailed deducing is omitted here for succinctness.

Fθθ = 2LRe
{(

RcAHCHR−1x CȦ
)
�

(
RcAH

×R−1x CȦ
)T
+

(
RcAHCHR−1x CARc

)
�

(
ȦHCHR−1x CȦ

)T}
(34)

Fκiκj = 2LRe
{
tr
(
R−1x ĊκiARcAHCHR−1x Ċκj

×ARcAHCH
)
+ tr

(
R−1x ĊκiARcAHCH

×R−1x CARcAH ĊH
κj

)}
(35)

Fςiςj = 2LRe
{
tr
(
R−1x ĊςiARcAHCHR−1x Ċςj

×ARcAHCH
)
+ tr

(
R−1x ĊςiARcAHCH

×R−1x CARcAH ĊH
ςj

)}
(36)

Fσσ = L
(
R−1x �

(
R−1x

)T)
(37)

Fθκj = 2LRe
{
diag

(
RcAHCHR−1x ĊκjARcAH

×CHR−1x CȦ
)
+ diag

(
RcAHCHR−1x C

×ARcAH ĊH
κj
R−1x CȦ

)}
(38)

Fθςj = 2LRe
{
diag

(
RcAHCHR−1x ĊςjARcAH

×CHR−1x CȦ
)
+ diag

(
RcAHCHR−1x C

×ARcAH ĊH
ςj
R−1x CȦ

)}
(39)

Fθσ = L
{(

RcAHCHR−1x
)
�

(
R−1x CȦ

)T
+

(
ȦHCHR−1x

)
�

(
R−1x CARc

)T}
(40)

Fκiςj = 2LRe
{
tr
(
R−1x ĊκiARcAHCHR−1x Ċςj

×ARcAHCH
)
+ tr

(
R−1x ĊκiARcAHCH

×R−1x CARcAH ĊH
ςj

)}
(41)

Fκiσ = L
{
diag

(
R−1x ĊκiARcAHCHR−1x

)T
+diag

(
R−1x CARcAH ĊH

κi
R−1x

)T}
(42)

Fςiσ = L
{
diag

(
R−1x ĊςiARcAHCHR−1x

)T
+diag

(
R−1x CARcAH ĊH

ςi
R−1x

)T}
. (43)

As a result, the FIM can be expressed as

F =


Fθθ Fθκ Fθς Fθσ
FTθκ Fκκ Fκς Fκσ
FTθς FTκς Fςς Fςσ
FTθσ FTκσ FTςσ Fσσ

. (44)

Consequently, the CRLB can be obtained by taking the
inverse of the FIM as

CRLBθ =
√

1
N

∑N
i=1

[
F−1

]
ii. (45)

ACKNOWLEDGMENT
The authors would like to thank Mr. Matthew Trinkle from
the University of Adelaide for his constructive suggestions
and comments that helped to improve the quality of the paper.

REFERENCES
[1] R. O. Schmidt, ‘‘Multiple emitter location and signal parameter estima-

tion,’’ IEEE Trans. Antennas Propag., vol. AP-34, no. 3, pp. 276–280,
Mar. 1986.

[2] R. Roy and T. Kailath, ‘‘ESPRIT—Estimation of signal parameters via
rotational invariance techniques,’’ IEEE Trans. Acoust., Speech, Signal
Process., vol. 37, no. 7, pp. 984–995, Jul. 1989.

[3] Z. Ye and C. Liu, ‘‘On the resiliency of MUSIC direction finding against
antenna sensor coupling,’’ IEEE Trans. Antennas Propag., vol. 56, no. 2,
pp. 371–380, Feb. 2008.

[4] B. Liao and S.-C. Chan, ‘‘Adaptive beamforming for uniform linear arrays
with unknown mutual coupling,’’ IEEE Antennas Wireless Propag. Lett.,
vol. 11, pp. 464–467, 2012.

[5] M. Hawes, L. Mihaylova, F. Septier, and S. Godsill, ‘‘Bayesian com-
pressive sensing approaches for direction of arrival estimation with
mutual coupling effects,’’ IEEE Trans. Antennas Propag., vol. 65, no. 3,
pp. 1357–1368, Mar. 2017.

[6] H. Chen, W. Liu, W.-P. Zhu, M. N. S. Swamy, and Q. Wang, ‘‘Mixed rec-
tilinear sources localization under unknown mutual coupling,’’ J. Franklin
Inst., vol. 356, no. 4, pp. 2372–2394, Mar. 2019.

[7] J. Dai and Z. Ye, ‘‘Spatial smoothing for direction of arrival estimation of
coherent signals in the presence of unknown mutual coupling,’’ IET Signal
Process., vol. 5, no. 4, pp. 418–425, Jul. 2011.

[8] W. Mao, G. Li, X. Xie, and Q. Yu, ‘‘DOA estimation of coherent signals
based on direct data domain under unknown mutual coupling,’’ IEEE
Antennas Wireless Propag. Lett., vol. 13, no. 7, pp. 1525–1528, Jul. 2014.

[9] Y. Wang, M. Trinkle, and B. W.-H. Ng, ‘‘DOA estimation under unknown
mutual coupling and multipath with improved effective array aperture,’’
Sensors, vol. 15, no. 12, pp. 30856–30869, Dec. 2015.

[10] J. Dai, D. Zhao, and X. Ji, ‘‘A sparse representation method for DOA esti-
mation with unknown mutual coupling,’’ IEEE Antennas Wireless Propag.
Lett., vol. 11, pp. 1210–1213, 2012.

[11] Z.-M. Liu and Y.-Y. Zhou, ‘‘A unified framework and sparse Bayesian per-
spective for direction-of-arrival estimation in the presence of array imper-
fections,’’ IEEE Trans. Signal Process., vol. 61, no. 15, pp. 3786–3798,
Aug. 2013.

[12] Q. Wang, T. Dou, H. Chen, W. Yan, and W. Liu, ‘‘Effective block sparse
representation algorithm for DOA estimation with unknown mutual cou-
pling,’’ IEEE Commun. Lett., vol. 21, no. 12, pp. 2622–2625, Dec. 2017.

[13] P. Chen, Z. Cao, Z. Chen, L. Liu, and M. Feng, ‘‘Compressed sensing-
basedDOA estimationwith unknownmutual coupling effect,’’Electronics,
vol. 7, no. 12, p. 424, Dec. 2018.

[14] P. Chen, Z. Chen, X. Zhang, and L. Liu, ‘‘SBL-based direction find-
ing method with imperfect array,’’ Electronics, vol. 7, no. 12, p. 426,
Dec. 2018.

[15] D.Meng, X.Wang,M. Huang, C. Shen, and G. Bi, ‘‘Weighted block sparse
recovery algorithm for high resolution DOA estimation with unknown
mutual coupling,’’ Electronics, vol. 7, no. 10, p. 217, Sep. 2018.

[16] Y. Wang, L. Wang, J. Xie, M. Trinkle, and B. W.-H. Ng, ‘‘DOA
estimation under mutual coupling of uniform linear arrays using
sparse reconstruction,’’ IEEE Wireless Commun. Lett., to be published.
doi: 10.1109/LWC.2019.2903497.

[17] B. Friedlander and A. J. Weiss, ‘‘Direction finding in the presence
of mutual coupling,’’ IEEE Trans. Antennas Propag., vol. 39, no. 3,
pp. 273–284, Mar. 1991.

[18] M. Pesavento and A. B. Gershman, ‘‘Maximum-likelihood direction-of-
arrival estimation in the presence of unknown nonuniform noise,’’ IEEE
Trans. Signal Process., vol. 49, no. 7, pp. 1310–1324, Jul. 2001.

[19] B. Liao, L. Huang, C. Guo, and H. C. So, ‘‘New approaches to direction-
of-arrival estimation with sensor arrays in unknown nonuniform noise,’’
IEEE Sensors J., vol. 16, no. 24, pp. 8982–8989, Dec. 2016.

VOLUME 7, 2019 40277



Y. Wang et al.: Sparsity-Inducing DOA Estimation of Coherent Signals

[20] L. Wan, X. Kong, and F. Xia, ‘‘Joint range-Doppler-angle estimation for
intelligent tracking of moving aerial targets,’’ IEEE Internet Things J.,
vol. 5, no. 3, pp. 1625–1636, Jun. 2018.

[21] B. Friedlander and A. J. Weiss, ‘‘Direction finding using spatial smoothing
with interpolated arrays,’’ IEEE Trans. Aerosp. Electron. Syst., vol. 28,
no. 2, pp. 574–587, Apr. 1992.

[22] Z. Shi, C. Zhou, Y. Gu, N. A. Goodman, and F. Qu, ‘‘Source estimation
using coprime array: A sparse reconstruction perspective,’’ IEEE Sensors
J., vol. 17, no. 3, pp. 755–765, Feb. 2017.

[23] C. Zhou, Y. Gu, X. Fan, Z. Shi, G. Mao, and Y. D. Zhang, ‘‘Direction-of-
arrival estimation for coprime array via virtual array interpolation,’’ IEEE
Trans. Signal Process., vol. 66, no. 22, pp. 5956–5971, Nov. 2018.

[24] Y. Wang, A. Hashemi-Sakhtsari, M. Trinkle, and B. W.-H. Ng, ‘‘Sparsity-
aware DOA estimation of quasi-stationary signals using nested arrays,’’
Signal Process., vol. 144, pp. 87–98, Mar. 2018.

[25] S. U. Pillai and B. H. Kwon, ‘‘Forward/backward spatial smoothing tech-
niques for coherent signal identification,’’ IEEE Trans. Acoust., Speech
Signal Process., vol. 37, no. 1, pp. 8–15, Jan. 1989.

[26] B. Ottersten, P. Stoica, and R. Roy, ‘‘Covariance matching estimation tech-
niques for array signal processing applications,’’ Digit. Signal Process.,
vol. 8, no. 3, pp. 185–210, Jul. 1998.

[27] J. F. Sturm, ‘‘Using SeDuMi 1.02, a MATLAB toolbox for optimiza-
tion over symmetric cones,’’ Optim. Methods Softw., vol. 11, nos. 1–4,
pp. 625–653, 1999.

[28] P. Stoica, E. G. Larsson, and A. B. Gershman, ‘‘The stochastic CRB
for array processing: A textbook derivation,’’ IEEE Signal Process. Lett.,
vol. 8, no. 5, pp. 148–150, May 2001.

YUEXIAN WANG received the B.Sc. degree
in electronics and information engineering from
Northwestern Polytechnical University, China,
in 2006, and the M.Eng. and Ph.D. degrees in
electrical and electronic engineering from The
University of Adelaide, Australia, in 2012 and
2015, respectively, where he was a Postdoctoral
Fellow, from 2015 to 2017. Since 2018, he has
been with the School of Electronics and Informa-
tion, Northwestern Polytechnical University. His

current research interests include array signal processing, compressed sens-
ing, and their applications to radar, sonar, and wireless communications.

XIN YANG received the B.Sc. and M.Sc. degrees
in communication engineering from Xidian Uni-
versity, in 2011 and 2014, respectively, and the
Ph.D. degree from Northwestern Polytechnical
University, China, in 2018. From 2016 to 2017,
he was a Visiting Ph.D. Student with the Uni-
versity of California at Santa Cruz, Santa Cruz,
USA. Since 2018, he has been with the School of
Electronics and Information, Northwestern Poly-
technical University. His recent research interests

include wireless communication, mobile wireless sensor networks, Ad hoc
networks, communication protocols, and LTE/LTE-A.

JIAN XIE received the M.Sc. and Ph.D. degrees
from the School of Electronic Engineering, Xidian
University, in 2012 and 2015, respectively. He is
currently an Assistant Professor with the School of
Electronics and Information, Northwestern Poly-
technical University. His research interests include
wireless communication, antenna array process-
ing, and radar signal processing.

LING WANG received the B.Sc., M.Sc., and Ph.D.
degrees from Xidian University, China, in 1999,
2002, and 2004, respectively, all in electronic engi-
neering. From 2004 to 2007, he was with Siemens
and Nokia Siemens Networks. Since 2007, he has
been with the School of Electronics and Informa-
tion, Northwestern Polytechnical University, and
was promoted to a Professor, in 2012. His cur-
rent research interests include array processing and
smart antennas, wideband communications, cog-

nitive radio, adaptive anti-jamming for satellite communications, satellite
navigation, and date link systems.

BRIAN W.-H. NG was born in Hong Kong,
in 1974. He received the B.Sc. degree in mathe-
matics and computer science, the B.Eng. degree
(Hons.) in electrical and electronic engineer-
ing, and the Ph. D. degree in electrical and
electronic engineering, under the supervision of
A. Bouzerdoum, from The University of Adelaide,
Australia, in 1996, 1997, and 2003, respectively,
where he is currently a Senior Lecturer with the
School of Electrical and Electronic Engineering.

His research interests include radar signal processing and wavelets and
terahertz (T-ray) signal processing. He is currently an active member of
the South Australian Chapter of the IEEE. He received the University of
AdelaideMedal for the TopGraduate in electrical and electronic engineering.

40278 VOLUME 7, 2019


	INTRODUCTION
	PROBLEM FORMULATION
	PROPOSED DOA ESTIMATOR USING SPARSE RECONSTRUCTION
	NONUNIFORM NOISE MITIGATION
	DOA ESTIMATION USING SPARSE RECONSTRUCTION

	SIMULATION RESULTS AND DISCUSSION
	CONCLUSION
	REFERENCES
	Biographies
	YUEXIAN WANG
	XIN YANG
	JIAN XIE
	LING WANG
	BRIAN W.-H. NG


