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ABSTRACT A new construction of a blind signature scheme based on braid groups is proposed. In the
random oracle model, the proposed scheme is provably unforgeable against chosen message attacks,
assuming that the one-more matching conjugate problem in braid groups is intractable. Furthermore, in the
infinite group model, the scheme is proved to be perfectly blind. Our construction represents a technique to
lift a braid group to its conjugate subgroups for particular applications. The proposed scheme is very fast
in signing but relatively slow in verifying and is thus suitable for scenarios that require signing as soon as
possible but permit a slight delay in verifying. In addition, our proposal is invulnerable to known quantum
attacks and therefore would be a good alternative to RSA-based and DLP-based blind signatures in the
post-quantum era.

INDEX TERMS Blind signature, non-commutative cryptography, lightweight, quantum attack resistant.

I. INTRODUCTION
A. BACKGROUND, MOTIVATION AND CONTRIBUTIONS
The concept of blind signatures was invented by Chaum [1] as
a key ingredient for anonymous electronic cash applications.
Blind signatures allow a signer to issue signatures without
knowing the content of the signed documents while simul-
taneously preventing users from forging signatures [2]–[9].
In general, a blind signature σ on a given message m is
produced in three steps:
1) Blinding: The user transforms m into m̂ by employing a

random and secret factor b, usually called a blind factor,
and then sends m̂ to the signer.

2) Signing: Upon receiving a signing request on m̂,
the signer produces signature σ̂ on m̂ and then sends σ̂
to the user.

3) Unblinding: Upon receiving σ̂ , the user removes the
blind factor b involved in σ̂ and then obtains the
signature σ on the message m.

According to the scenario, a blind signature scheme allows
users to output signatures that are not signed by the signer.
Thus, we should assign new secure semantics to blind signa-
tures. On one hand, a blind signature scheme is unforgeable if
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there is no adversary that can, with non-negligible probability,
fulfill the so-called one-more forgery attack [2], which states
that an adversary, usually modeled as a probabilistic poly-
nomial time algorithm, breaks the unforgeability of a blind
signature scheme if he/she can output at least l + 1 valid sig-
natures after requesting l signing queries to the signer. On the
other hand, as a restriction towards the signer, the blindness
property of a secure blind signature scheme requires that a
malicious signer has no more advantage than guessing to
determine the order in which the messages are signed by
interaction with an honest user [1], [3], [9]. The blindness
property is an abstraction of two basic requirements of paper-
made cash systems: unlinkability and untraceability.

Numerous blind signature schemes have been constructed
based on the integer factoring problem (IFP), discrete loga-
rithm problem (DLP), and other variant assumptions related
to the IFP or DLP [4]–[7], [10], [11]. However, these schemes
are vulnerable to the quantum algorithmic attacks invented
by Shor [12], Kitaev [13], and Proos and Zalka [14]. Thus,
a fundamental idea for securing electronic cash applications
in the post-quantum era is to design new blind signature
scheme based on new hard problems. In addition to the well-
known lattice problems, such as the shortest vector prob-
lem (SVP), the closest vector problem (CVP) [15] and the
learn with error (LWE) problem [16], [17], the conjugacy
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problems from some non-commutative groups also have
potential advantages in resisting quantum attacks [18].

Our motivation is to design a quantum-secure blind signa-
ture scheme based on braid groups. Two key techniques were
employed for ensuring the security of our design: a blinding
technique embedded in the homomorphic property of the
conjugate operation and a hash function that maps every
message to the conjugate subgroup of the underlying group.
These two techniques are not new: the former can be found
in [19] and [20], and the latter first appeared in [21]. Our
contribution is, for the first time, to couple the techniques to
ensure the blindness property.

In brief, our work includes three aspects. First, a new blind
signature scheme based on braid groups is presented. Next,
a technique to lift the braid group to its conjugate subgroups
for particular purposes is proposed. Finally, comparisons and
evaluations of parameter selection, performance, and security
levels are provided.

B. RELATED WORK
In 2008, Verma [22] proposed two blind signatures using
braid groups. Unfortunately, Verma’s schemes are insecure:
they are linkable since the signer can decide the order in
which the blind signatures are produced by judging the
conjugate relationships between the blinded and unblinded
signatures. Similar attacks onVerma’s schemes were reported
by Kumar [23]. In our opinion, Verma’s schemes are insecure
because they fail to combine the aforementioned two tech-
niques in [19], [20], and [21]. Beyond [21], we provide a
further investigation of the security of the involved hash
function.

Other constructions of braid-based blind signatures have
been reported. Yun et al. [24] proposed a strong blind sig-
nature scheme over braid groups. Their main contributions
are based in two aspects: simultaneously working on four
separate subgroups of Bn and using additional randomness to
avoid the weakness of simultaneous conjugating. Li et al. [25]
proposed a proxy blind signature by laying the security on the
hardness of the conjugacy problem, simultaneous conjugacy
problem and root problem. Ren and Chang [26] further built
a threshold proxy blind multisignature over braid groups.
However, all these designs need to be completed by, for
example, providing more rigorous security proofs and more
elaborate performance evaluations.

C. ORGANIZATION
The remaining content is organized as follows. The necessary
preliminaries on braid groups and related hard problems are
presented in Section II. Our main contributions, including
the design of the building blocks, the intended braid-based
blind signature scheme and the involved hash function, are
given in Sections III, IV and V, respectively. A performance
evaluation is presented in Section VI. Finally, all proofs of the
theorems are provided in Appendix.

II. PRELIMINARIES
For n ≥ 2, one can define the braid group Bn = 〈A|R1,R2〉
by n−1 Artin generators A = {a1, · · · , an−1}with two types
of generating relations: R1 = {aiaj = ajai : |i − j| > 1}
and R2 = {aiajai = ajaiaj : |i − j| = 1}. For n ≥ 3, Bn is
not commutative, and its center is an infinite cyclic subgroup.
Two braids x, y ∈ Bn are said to be conjugate, written as
x ∼ y, if y = zxz−1 holds for some braid z ∈ Bn (here, z or z−1

is called a conjugator of x and y). Over the braid group Bn,
we can define the following cryptographic problems related
to conjugacy [27]:
• Conjugacy Decision Problem (CDP): Decide whether
x ∼ y holds for a given instance (x, y) ∈ B2n.

• Conjugator Search Problem (CSP): Find z ∈ Bn such
that y = zxz−1 holds for a given instance (x, y) ∈ B2n
with x ∼ y.

• Generalized Conjugator Search Problem (GCSP): Find
z ∈ Bm (m < n) such that y = zxz−1 holds for a given
instance (x, y) ∈ B2n with x ∼ y.

• Matching Conjugate Problem (MCP): Find y′ ∈ Bn such
that y ∼ y′ and xy ∼ x ′y′ for a given instance (x, x ′, y) ∈
B3n with x ∼ x ′.

At present, we know that all the above problems are solv-
able; however, in general cases, we do not know whether they
are tractable. In the worst case, all the problems appear to be
intractable [27], [28]. The assumption of intractability of the
CSP is the common basis of most, if not all, existing braid-
based cryptosystems. In their pioneering paper [27], Ko et al.
proposed a one-way function based on the assumption of
the intractability of the GCSP. Moreover, they defined an
algorithm, Kgcsp, for sampling hard GCSP pairs. The MCP
was first formulated and proved to be equivalent to the CSP
in [29]. A probabilistic algorithm for solving the CDP with
high accuracy and acceptable complexity was proposed [29]
(See Section VI). This algorithm is crucial for braid-based
signature schemes that need to determine whether two given
braids are conjugate.

III. THE BUILDING BLOCK
Our building block, denoted by V-SCSS, is a variant of the
simple conjugate signature scheme (SCSS) [29]. Suppose that
integer n is the braid index and the security parameter. Let Bn
be the underlying group andM = {0, 1}∗ the message space.
For a given braid p ∈ Bn, Hp :M→ pBn is a cryptographic
hash function that maps an arbitrary message to a braid
conjugate to p. Here, p is the parameter braid that is fixed
and made public in advance. Now, suppose (n,Bn,M,H(·))
is the system public parameters, whereH(·) indicatesHp when
p is unspecified or indifferent. Then, V-SCSS consists of the
following algorithms:

• G(1n), a probabilistic key generating algorithm that
takes as input the security parameter n and then

invokes Kgcsp(n). Suppose (p, q, s)
$
←− Kgcsp(n). Then,

the signer takes s and the pair (p, q) as her (private)
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signing key and (public) verifying key, respectively.
According to the definition of Kgcsp(n), we know that
s ∈ Bbn/2c, (p, q) ∈ B2n and (p, q = sps−1) is a GCSP-
hard pair. Furthermore,H(·) is parameterized toHp when
p is published.

• S(s,m), a deterministic signing algorithm that takes as
inputs the signing key s and the message m ∈ M and
outputs

σ = s · Hp(m) · s−1 (1)

as the signature on m.
• V(p, q;m, σ ), a deterministic verifying algorithm that
takes as inputs the public key pair (p, q) and the
message-signature pair (m, σ ) and outputs 1 if

σ ∼ Hp(m) and qσ ∼ pHp(m) (2)

hold simultaneously, or 0 otherwise.

A. CONSISTENCY AND SECURITY
Theorem 1 (Consistency of V-SCSS): The proposed signa-

ture scheme V-SCSS is consistent, i.e., if the signer follows
the signature generation protocol, the resulting signature
satisfies the verification with probability 1.

Proof: See Appendix A.
Theorem 2 (Unforgeability of V-SCSS): Suppose n is the

security parameter and H(·) is a random oracle. The above
signature scheme is existentially unforgeable against cho-
sen message attack (EUF-CMA) under the intractability
assumption of the matching conjugate problem over the braid
group Bn.

Proof: See Appendix B.
Remark 1: Note that in the verification formula (2),

the first conjugate relationship is necessary for resisting the
following forgery: σ ∗ = q−1b−1 ·pHp(m) ·b for some b ∈ Bn.
The first verification condition is seemingly unnecessary
since all signatures and all hash values on arbitrarymessages
are conjugate to each other; in fact, this is not the case. The
forger can set σ = q−1 · pHp(m) = s−1p−1s · pHp(m), and
we can see that σ satisfies the second conjugate relationship.
However, this type of forgery cannot pass the checking on
the first conjugate relationship because s−1p−1spHp(m) ∼
Hp(m) is unlikely to hold or to holds only with negligible
probability.

IV. THE MAIN CONSTRUCTION
A. SCHEME DESCRIPTION
Suppose (n,Bn,M,H(·)) is the system public parameters as
defined in the above section. Our braid-based blind signature
scheme, denoted by B3S, consists of the following compo-
nents:
• G(1n), a probabilistic key generating algorithm that is the
same as G(1n) of V-SCSS.

• Blind signature issuing protocol:
– blinding(p,m), a probabilistic algorithm executed

by the user that takes as inputs the public key p and

the original message m and performs the following
steps:

(i) Selects a braid b ∈ RB(bn/2c + 1, n − 1) at
random;

(ii) Computes the blind message braid

m̂ = b−1 · Hp(m) · b, (3)

where RB(j, k) (j < k) is the subgroup generated
by Artin generators aj, aj+1, · · · , ak ;

(iii) Sends m̂ to the signer.

– signing(s, m̂), a deterministic algorithm executed
by the signer that takes as inputs the signing key
s and the blinded message m̂ and replies to the user
with the blinded signature

σ̂ = s · m̂ · s−1. (4)

– unblinding(̂σ , b), a deterministic algorithm exe-
cuted by the user that takes as inputs a blinded
signature σ̂ and the corresponding blind factor b and
outputs

σ = bσ̂b−1 (5)

as the (unblinded) signature on the original
message m.

• V(p, q;m, σ ), a deterministic verifying algorithm that is
the same as V(p, q;m, σ ) of V-SCSS.

B. CONSISTENCY AND SECURITY
Theorem 3 (Consistency of B3S): If the signer and the

user follow the blind signature issuing protocol, the resulting
signature satisfies the verification with probability 1.

Proof: See Appendix C.
Theorem 4 (Unforgeability of B3S): Suppose n is the

security parameter and H(·) is a random oracle. The pro-
posed blind signature scheme B3S is existentially unforge-
able against chosen message attack (EUF-CMA) under the
intractability assumption of the matching conjugate problem
over braid group Bn. More specifically, if there is a one-more
forger F that can break B3S, then there also exists a forger
F ′ that can break V-SCSS.

Proof: See Appendix D.
Theorem 5 (Blindness of B3S): The proposed blind signa-

ture scheme B3S is blind assuming that the GCSP over braid
groups is intractable. Furthermore, B3S achieves perfect
blindness in the infinite group model.

Proof: See Appendix E.
Remark 2: Here, the infinite group model means that we

take the whole braid group Bn as the background for con-
structing our proof, which is different from reality in that
Bn is replaced by a finite chopped subspace. However, if we
choose a truncated braid group that contains all our inputs
and outputs under the chosen security parameters, all the
theories developed in the whole braid group should hold [30].
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TABLE 1. Parameter selection.

TABLE 2. Complexities and security levels.

V. DESIGN OF Hp
Both V-SCSS and B3S use a special hash function Hp that
maps the message spaceM to pBn . In the above sections, Hp
is modeled as a random oracle for security reductions. For
practical purposes, we need to discuss how to implement Hp.
In 2000, Ko et al. [27] described an implementation of

cryptographic hashes that map bit strings to braids. However,
the images of these hashes are not necessarily conjugate to a
common braid p that is fixed and made public in advance;
therefore, we cannot use Ko et al.’s constructions directly.
Instead, we must proceed further. Let Bn be the underlying
group and M = {0, 1}∗ the message space and suppose
that we already have a hash function h : M → Bn that
maps an arbitrary message to a random braid [27], [31]. Then,
a practical instantiation of the parameterized hash functionHp
can be defined as follows:

Hp :M→ pBn , m 7→ h(m)ph(m)−1. (6)

That is, Hp(m) is a braid that is conjugate to the braid p by
taking h(m) as the conjugator. Note that from the perspective
of implementation, both Bn and pBn are replaced by some
finite subsets of Bn.
Sibert et al. [21] used a similar method for hashing from

braids to braids, but our main motivation for using this hash
is to ensure blindness. Furthermore, we prove the following
theorems on the security of this design.
Theorem 6: Suppose p is fixed and public. Then, we have

(i) If h is one-way, so is Hp;
(ii) If h is second pre-image resistant, so is Hp, assuming

that the GCSP in the braid groups is intractable;
(iii) If h is collision resistant, so is Hp.

Proof: See Appendix F.

VI. PERFORMANCE EVALUATION
The complexities of braid operations, including multipli-
cation and canonical form transformation, are bounded by
O(l2 n log n) in the sense of bit operations [32] and [33],
where n and l are the braid index and canonical length of
the involved braids, respectively. In addition, the verifying
process of our schemes needs to solve the CDP. Ko et al. [29]
invented a probabilistic algorithm that can solve the CDPwith

complexity O(rln3), and the probability for making an erro-
neous decision, denoted by perr , is bounded by ( ln

2

2p )
r , where p

and r should be sufficiently large such that perr is acceptable.
Here, the complexity for deciding conjugacy is evaluated in
the basic operation in finite field Fp that takes O(log2 p)
bit operations in turn. Thus, the total complexity would be
O(rln3 log2 p) in the sense of bit operations. Typically, if we
set p to be a prime that closes to 2ln2 and r = n, then perr is
bounded by ( 12 )

2n, and the total bit complexity for deciding
conjugacy is O(ln4 log2(ln2)), which is proportional to 238

when n = 50 and l = 100.
A braid in Bn with l canonical factors can be represented

by a bit string of size ln log n [27], and for generic choices of
b, x ∈ Bn, the canonical length of bxb−1 can be assumed to
be between 2l and 3l or, equivalently, 2(ln log n) ∼ 3(ln log n)
bit size. Thus, when n = 50 and l = 100, the sizes of the
private key and public key are approximately 16K and 128K
bits, respectively (See Table 1 for details). Clearly, the keys
are considerably large. At present, all braid-based cryptosys-
tems suffer from this disadvantage.

The security levels of the proposal can be evaluated from
two different aspects. First, according to [33], the bit com-
plexity of existing heuristic attacks (say towards the weak
keys) can be evaluated by

( 50
150

)
≈ exp(92.80). Furthermore,

if the private keys are selected carefully, all known heuris-
tic attacks on braid-based cryptographic schemes would be
frustrated [34]. Then, according to [27], the hardness for con-
ducting a brute force attack is proportional to exp( 12 ln log n).
Thus, when n = 50 and l = 100, the security level against
brute force attack is proportional to exp(978). This result
suggests that it is impossible to launch exhaustion attacks on
our scheme in the foreseeable future.

In brief, we can summarize the performance comparison
for two cases: Case I takes the currently acceptable parameter
settings and Case II increases the security level of RSA-based
systems to exp(92.80). The results are shown in Table 2.
In both cases, our scheme is very fast in signing and accept-
ably slow in verifying.
Remark 3: About 10 years ago, we [35] made the per-

formance evaluation on braid-based signature schemes in
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similar angles. But in today’s view, the results presented
in [35] is too optimistic to be secure. The main difference
is the setting on the parameter l, i.e. canonical length of
working braids. In [35], we set l = 10 by taking into con-
sideration of Maffre’s suggestion [33] and the feasibility of
Ko’s CDP algorithm [29], while neglected the probability of
keeping random working braids non-commutative. Now, with
the purpose of ensuring the collision resistance property of
braid-lifting hash function Hp, we suggested to set l = 100 so
that the probability of two random braids being commutative
vanishes.

VII. CONCLUSIONS
Blind signatures have been used in numerous applications,
most prominently in anonymous voting systems and anony-
mous e-cash systems. However, the development of quantum
computation creates distrust in most number-theory-based
blind signature schemes. In this paper, we proposed a new
blind signature scheme based on hard braid problems. The
scheme has several merits: round optimal (in communica-
tions), perfectly blind (in the infinite group model), invulner-
able to known quantum attacks, etc. Our scheme is very fast in
signing and acceptably slow in verifying and is thus suitable
for scenarios that require promptness of signature generation
but tolerate a delay in verifications. An observable inferiority
of our scheme is that the private/public keys are large.

APPENDIX
PROOFS OF THE THEOREMS
A. PROOF OF THEOREM 1

Proof: The first conjugate relationship σ ∼ Hp(m) is
apparently implied by the formula (1). The second can also
be immediately derived from

qσ = sps−1 · sHp(m)s−1 = sp · Hp(m)s−1 = s · pHp(m) · s−1.

B. PROOF OF THEOREM 2
Proof: First, let us introduce an one-more version of the

MCP, i.e., the one-more matching conjugate problem (OM-
MCP), whichwas introduced in [19] based on the correspond-
ing intractability assumption. Ko et al.’s simple conjugate
signature scheme (SCSS) was first proved to be unforgeable
against chosen message attacks (UF-CMA) in the random
oracle model (ROM). The OM-MCP is defined via an experi-
ment involving aGCSP-hard pair generatorKgcsp and anOM-
MCP attacker A are involved:
• Kgcsp is a probabilistic polynomial-time algorithm that
takes as input the security parameter n and outputs a
triple (p, q,w) ∈ Bn×Bn×Bbn/2c such that q = wpw−1

and (p, q) is a GCSP hard pair, i.e., finding a conjugator
w′ ∈ Bbn/2c for the pair (p, q) is intractable.

• A is a probabilistic polynomial-time algorithm that
receives input p, q and has access to two oracles —
the matching conjugate oracle Omc(·) and the challenge
oracle Och() — and wants to win the experiment.

FIGURE 1. One-more matching conjugate experiment.

The verb win means that A succeeds in matching conjugates
with all η(n) braids output by the challenge oracle Och()
but submits strictly less than η(n) queries to the matching
conjugate oracle Omc(·), where η : N→ N is arbitrary poly-
nomials over N. The formal definitions of the experiment,
the oracle Omc(·) and the oracle Och() are depicted in Fig.1.

(The symbol x
$
←− X indicates the process of random braid

sampling by a probabilistic procedure X or from a subset
X ⊆ Bn.

The OM-MCP advantage of A is defined by

Advom−mcpKgcsp,A (n) = Pr[Eom−mcpKgcsp,A (n) = 1], (7)

i.e., the probability that the above experiment returns 1,
taken over the coins of Kgcsp, the coins of A, and the coins
used by the challenge oracle across its invocations. The one-
more matching conjugate assumption states that the one-
more matching conjugate problem associated with Kgcsp is
intractable, i.e., Advom−mcpKgcsp,A (n) is negligible with respect to
the security parameter n for all probabilistic polynomial-time
adversaries A.

Wang et al. [19] presented a sufficient discussion of
the OM-MCP assumption and the relationship between the
OM-MCP and CSP (also GCSP). Note that in one-more
type experiments, the adversaries are not permitted to choose
challenges by themselves, but they can submit queries on their
own choices. The adversaries win the experiments only if the
number of submitted queries is strictly less than the number
of correctly answered challenges [19], [36].

Next, let us sketch the proof of the theorem. SupposeH(·) is
parameterized by p. That the forger F can (t, qh, qs, ε)-break
V-SCSS means that F can output a forged signature (m∗, σ ∗)
successfully with probability at least ε after he has made qh
hash queries and qs signing queries and then obtained the
corresponding signatures σi for messages mi, i = 1, · · · , qs.
A successful forgery σ ∗ on message m∗ means that σ ∗ ∼
Hp(m∗) and qσ ∗ ∼ pHp(m∗) hold while F has never made
signature query on message m∗.
The key idea of the proof is that we can construct another

algorithm A that can win the one-more matching conjugate
experiment with probability at least ε′ = ε by taking the
forgery F as a subroutine.

Let A engage in an interactive process with adversary F
and record all necessary information. Whenever F invokes a
hash query, A calls the oracle Och and forwards its response
to F . Whenever F invokes a signature query on some
message m, then A performs the following steps:
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• Finds1 the response c for the corresponding hash query
on m;

• Sends c to the oracle Omc;
• Obtains the response braid b and forwards b to F as the
request signature.

Note that the probability that F forges a valid signature
without invoking a hash query is negligible since the hash
function is modeled as a random oracle. Then, whenever F
finally outputs a forgery that can pass the validation, this
forgery enables A to win the experiment Eom−mcpKgcsp,A (n).

C. PROOF ON THEOREM 3
Proof: According to the unblinding formula (5),

the signing formula (4) and the blinding formula (3), the first
conjugate relationship σ ∼ Hp(m) holds apparently.
Note that RB(dn/2e, n−1) is generated by Artin generators

adn/2e, adn/2e+1, · · · , an−1 and Bbn/2c is generated by Artin
generators a1, a2, · · · , abn/2c−1. From the relations in the
definition of braid groups, we know that for ∀s ∈ Bbn/2c and
∀b ∈ RB(dn/2e, n − 1), sb = bs holds. Thus, the second
conjugate relationship can also be immediately derived from

qσ = sps−1 · bσ̂b−1

= sps−1 · b · s · m̂ · s−1 · b−1

= sps−1 · b · s · b−1 · Hp(m) · b · s−1 · b−1

= sps−1 · s · b · b−1 · Hp(m) · b · b−1 · s−1

= s · pHp(m) · s−1

∼ pHp(m).

D. PROOF OF THEOREM 4
Proof: According to the semantics of the non-

forgeability of blind signatures, we know that the one-more
forger F can (t, qh, qs, ε)-break B3S means that within time
t ,F can output qs+1 valid signatures with probability at least
ε after he has made qh hash queries and qs signing queries.
Now, we can construct a forger F ′ as follows:
(1) Let F ′ engage in an interactive process with F ′ and the

signer of V-SCSS, denoted by SV−SCSS , and record all
necessary information. In fact,F ′ will intercept all com-
munications betweenF’s and the signer of B3S, denoted
by SB3S . F ′ will attempt to simulate the behavior of
SB3S for F , i.e., to provide responses to F’s signing
query on behalf of SB3S . Moreover, sinceH(·) is modeled
as a random oracle, F ′ can control H(·) and provide
responses on hash queries H(·) for all participants.

(2) F ′ will maintain a hash list, denoted by H-List, of the
whole interactive process. H-List is initialized as empty,
and the items in H-List consist of two fields: m − field
and h− field .

(3) When SV−SCSS publishes his verifying key (p, q) and
the system parameters (n,Hp), F ′ forwards all these

1A can assume that F has already made the hash query on m. Otherwise,
A can make this query on behalf of F .

parameters toF and claims that they areSB3S ’s verifying
key and the corresponding system parameters.

(4) Whenever F or SV−SCSS makes a hash query on
m ∈M, F ′ executes the following steps:

(i) Tries to locate m in the m-field of H-List;
(ii) If found, obtains h from the corresponding h-field;

otherwise, randomly selects a braid x ∈ Bn, com-
putes h = xpx−1, and adds a new item (m, h) into
H-List;

(iii) Replies h to the corresponding requester, i.e., F or
SV−SCSS .

(5) Similarly, whenever SV−SCSS makes a hash query onm′,
F ′ executes the following steps:

(i) Tries to locate m′ in the m′-field of H-List;
(ii) If found, obtain h′ from the corresponding h′-

field; otherwise, randomly selects a braid y ∈
Bn, computes h = ypy−1, and adds a new item
(m′, h′,m′, h′) into H-List;

(iii) Replies to SV−SCSS with h′.
(6) Whenever F makes a signing query on a blinded

message braid m̂, F ′ executes the following steps
(See Fig.2):

(i) Randomly selects a message m′ ∈M such that m′

does not appear in them−field of H-List,2 and then
adds a new item (m′, m̂) to H-List;

(ii) RequestsSV−SCSS to signm′. According to the sign-
ing protocol, SV−SCSS will ask for the hash value on
the message m′. Therefore, upon receiving the hash
query on m′, F ′ replies m̂;

(iii) Upon receiving the signature σ ′ of the message m′

from SV−SCSS , F ′ forwards it to F as the response.

(7) After obtaining qs signatures on messages m1, · · · ,mqs ,
F outputs his forgery σ ∗ on the messagem∗. If σ ∗ is not
a valid signature on m∗, or if F has made signing query
on m∗ in the previous phases (i.e., there exists some 1 ≤
j ≤ qs such thatmj = m∗), thenF ′ aborts the simulation;
otherwise, F ′ outputs (m∗, σ ∗) as his own forgery.

From the perspective of F , F ′’s responses to the hash
and signing queries are perfect, and from the perspective of
SV−SCSS , F ′’s responses to the hash queries are also perfect.
Even if F and SV−SCSS are allowed to compare their hash
values, they cannot distinguish the responses from the output
of a real hash Hp. Clearly, F ′ must intercept all signing
queries from F and prevent SV−SCSS from directly replying
to F’s signing queries. This agreement is rational because
SV−SCSS is not the signer of the scheme that F implements.
In brief, F ′ directly forwards F’s forgery as his own forgery
since B3S and V-SCSS share the same verification algorithm
and essentially similar signing protocols. F ′’s advantage is
F’s advantage.

2Note that m′ coincidentally appears in the m− field of H-List with only
a negligible probability.
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FIGURE 2. F ’s simulation of the production of blind signatures for F .

E. PROOF OF THEOREM 5
Proof: According to the definition of blindness,

the attack objective of the adversarial signer A is to dis-
tinguish the order of the production of the signatures. For
every message m, Hp(m) ∈ pBn holds. Then, every signature
σ conjugates to p and thus also conjugates to each other.
Thus, A cannot break blindness by determining whether
two braids are conjugate. Further, A cannot break the
blindness by determining whether two braids are identical
since A does not know the original messages he signed.
A’s signing was performed on the blinded messages; thus,
A’s has no means to extract the corresponding original
messages.

Further, let us prove that in the infinite group model,
even if A has the capability to solve the GCSP, he has no
advantages to break the blindness of B3S. W.l.o.g., given
two message-signature pairs (m0, σ0) and (m1, σ1), we will
prove that A’s success probability for determining which
of them is produced earlier is no more than 1/2. Note that
conjugators are always not unique for a given conjugate pair,
and all valid signatures, all blind message braids, and all hash
values of the original messages in our schemes are conjugate
to each other. Therefore, we obtain a commutative diagram
(8) in which double links indicate conjugate relationships.
(Conjugate relationships are equivalent; thus, some double
links are omitted for clarity.)

m0 −−−−→ Hp(m0) m̂0 σ0∥∥∥ ∥∥∥ ∥∥∥
m1 −−−−→ Hp(m1) m̂1 σ1

(8)

Suppose thatA has sufficient memory to record all blinded
message braids m̂i (i = 1, 2, · · · ) according to the time
sequence of receiving them, i.e., m̂0 appeared before m̂1

from A’s perspective. For a successful, he needs to find
a witness that supports the correlativity between Hp(m0)
and m̂0 and simultaneously denies the correlativity between
Hp(m0) and m̂1; or vice versa. However, no well-defined
concept exists for this type of correlativity. Even if A has
worked out a blind factor b0 ∈ RB(bn/2c + 1, n − 1) that
conjugates Hp(m0) to m̂0, he cannot determine that σ0 is
produced earlier since RB(bn/2c + 1, n − 1) is infinite and
A has no reason to exclude the possibility of the existence
of another blind factor b1 ∈ RB(bn/2c + 1, n − 1) that
conjugates Hp(m0) to m̂1. All real used blind factors are
selected by the users and kept unknown toA. Thus,A has no
more advantage than guessing to decide whether m0 or m1 is
the original message corresponding to blinded message braid
m̂0 or m̂1.

F. PROOF OF THEOREM 6
Proof: The proof consists of three steps.
• One-wayness of Hp. If there is an adversary A that
can derive m from Hp(m) (i.e., h(m)ph(m)−1) with non-
negligible probability, then we can construct another
adversary B that can also extract m from h(m) with non-
negligible probability, as follows:
(1) Upon receiving challenge h, B computes A’s chal-

lenge H = hph−1;
(2) B calls A to derive m with the input H ;
(3) Upon receiving response m fromA, B outputs m as

the reply.
Clearly, ifAwins its challenge, so does B; thus, the one-
wayness of h implies the one-wayness of Hp.

• Second pre-image resistance ofHp. For a givenm1, only
if one could find m2(6= m1) such that
(1) h(m1) = x 6= y = h(m2) and xpx−1 = ypy−1 or
(2) h(m1) = x = h(m2)
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hold, can he successfully break the second pre-image
resistance of Hp.
In general, given x and p, it is difficult to find y( 6= x)
such that xpx−1 = ypy−1 since extracting such y from
the pair (x, xpx−1) is equivalent to solving a GCSP
instance. Therefore, no polynomial adversary can break
the second pre-image resistance ofHp by taking Case (1)
as the starting point.
As for Case (2), a successful attack means the breaking
of the second pre-image resistance of h, which is a
contradiction.

• Collision resistance of Hp. First, for randomly chosen
braids x, y ∈ Bn, let us calculate Px↔y, the probability
that (xy)p = p(xy). Let us use Pi↔j to denote the
commutative probability of two randomArtin generators
ai and aj (i, j ∈ {1, · · · , n− 1}). Apparently, we have

Pi↔j , Pr[aiaj = ajai : i, j ∈ {1, · · · , n− 1}]

= Pr[|i− j| > 1 : i, j ∈ {1, · · · , n− 1}]

= 1− Pr[|i− j| = 0 : i, j ∈ {1, · · · , n− 1}]

−Pr[|i− j| = 1 : i, j ∈ {1, · · · , n− 1}]

= 1−
n− 1

(n− 1)2
−

2(n− 2)
(n− 1)2

=
(n− 2)(n− 3)

(n− 1)2

<
(n− 2)2

(n− 1)2
< 1.

Suppose that x = x1 · · · x|x| and y = y1 · · · y|y|, where
each xi and yj are Artin generators. W.l.o.g., we assume
that each xi (i = 1, · · · , |x|) and each yj (j = 1, · · · , |y|)
are independent. Then,

Px↔y , Pr[xy = yx : x, y ∈ Bn]

=

|x|∏
i=1

|y|∏
j=1

Pr[xiyj = yjxi]

= (Pi↔j)|x||y|

=

(
n− 2
n− 1

)2|x||y|

.

For typical parameter settings, such as n = 50 and |x| ≈
|y| ≈ 100, the above probability vanishes.
Next, for two given random messages m1 6= m2,
we have Hp(m1) = h(m1)ph(m1)−1 and Hp(m2) =
h(m2)ph(m2)−1. If Hp(m1) = Hp(m2), we have
h(m1)ph(m1)−1 = h(m2)ph(m2)−1; then, we have
h(m2)−1h(m1)p = ph(m2)−1h(m1). If h is collision
resistant, then we have h(m2)−1h(m1) 6= 1Bn with over-
whelming probability. Let h(m2) = x and h(m1) = y.
Then, we have x−1yp = px−1y. However, according
to the above calculation, this occurs only with negli-
gible probability, which suggests that Hp is collision
resistant. �
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