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ABSTRACT Model Predictive Control (MPC) has its reputation since it can handle multiple inputs and
outputs with consideration to constraints. However, this comes at the cost of high computational complexity,
which limits MPC to slow dynamic systems. This paper provides an overview of the available methods
to accelerate the MPC process. Various parallel computing approaches using different technologies were
proposed to speed up the execution of MPC, some of these approaches are focused on building dedicated
hardware for MPC using field programmable arrays (FPGA), and others are focused on parallelizing
MPC computation using multi-core processors (CPUs) and many-core processors (GPUs). The focus of
this survey is to review the available methods for accelerating MPC process. A brief introduction to the
theory of MPC is provided first followed by a description of each approach. A comparison between the
different methods is presented in terms of complexity and performance followed by a valid application for
each approach. Finally, this paper discusses the challenges and requirements of MPC for future applications.

INDEX TERMS Control systems, FPGA, GPU, multi-core processing, quadratic programming.

I. INTRODUCTION
Model Predictive Control (MPC) is a control method based
on optimization of a cost function subject to plant dynamics
and constraints [1]. MPC was developed to control power
plants and petroleum refineries [2], now MPC can be found
in a wide range of applications involving mechanical and
electrical systems in addition to industrial process control,
such as vehicle traction control [3], suspension [4], auto-
motive powertrains [5], autonomous driving [6], agricultural
greenhouse [7], aerospace [8], and revenue management [9].

MPC strategy depends on solving an online optimization
problem at every sampling time to minimize a specified cost
function over specific horizon. The cost function defines the
control steps overhead to reach a certain goal. The result
is a sequence of optimal control steps for the whole hori-
zon, only the first control step is applied to the system
and the whole process is repeated for the next sampling
time. The optimization problem of the cost function forms a
quadratic programming (QP) problem since the cost function
is in quadratic form in most cases or a linear programing
problem (LP).

LP could be solved using simplex method. The sim-
plex method is an optimization algorithm for solving Linear
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Programming (LP) problems presented in 1947 [10]. The
method searches the feasible point one by till it match the
criteria of optimization, the iteration is done on the vertices
of the simplex area. A more efficient version known as the
revised simplex method was developed later. The simplex
method could be found in many commercial LP solvers.
Solving the QP problem for every sample takes long time
and it involves complex computations. This has limited the
range of applications to which MPC can be applied; such
applications should have slow dynamics and slow sampling
time. One way to enhance the speed of MPC is to solve
QP problem offline starting at an initial state and then provid-
ing the solution as a lookup table [11]. This method is known
as ‘‘explicit MPC’’ but it is limited to small problems with no
more than five states.

Due to the scientific and technological advancement and
the industrial development, the requirement on control is get-
ting higher and higher. Optimization provides a powerful con-
trol technique in order to achieve better performance within
certain constraints. Optimization in MPC or other control
strategies is restricted by increasing number of factors and
constraints. The constraints could be physical such as tanks
sizes and actuators characteristics or related to safety, energy
consumption, etc. Combining high requirement and more
complicated constraints is a big challenge for optimization
based control strategy such as NMPC.
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MPC technology achieved great success and gained a good
reputation as an advanced control strategy that can deal with
online optimization control for constrained MIMO systems
in systematical pattern, but the bottle-necks of the current
algorithms limit MPC to slow dynamics application, most of
the existing model predictive control algorithms are designed
to work for slow dynamic processes. In general, MPC algo-
rithms functions better on high performance computers which
makes it practically difficult to generalize its application
into a wide scope of fields and scenarios. Ideally, a typical
industrial application of MPC results in a heavy compu-
tation burden and considerable calculation time spans that
define a significant computation complexity. In this regard,
MPC emerges and only suitable for slow dynamic pro-
cesses that have a larger sampling period. Consequently,
the approach is also not conducive for an execution environ-
ment configured with low performance computing technolo-
gies. For this reason, the application of theMPC is commonly
applied in the process industry. Another challenge for
MPC relates to the fact that algorithms mainly focus on linear
processes. As such, related technologies and software appli-
cation are designed to handle linear systems. Despite the exis-
tence of non-linear systems developed by software vendors,
the bulk of model predictive systems consist of linear tech-
nologies and capabilities. The existing non-linear systems are
also limited to industrial processes that demonstrate weak
nonlinearity and thus the application of the model predictive
control in strongly non-linear processes or industries remains
rare. The reason behind this is that it is extremely difficult,
expensive, and time consuming to develop and implement the
non-linear model predictive control.

To the best of our knowledge, a survey of parallel imple-
mentations for MPC does not exist in the literature. Thus,
the main objective of this paper is to fill in this gap.

In this paper, we review various parallel computing
approaches that can speed up the computations of MPC.
These approaches will be categorized in three different
groups: multi-core processors accelerated MPC, GPU accel-
erated MPC, and FPGA accelerated MPC.

The remainder of this paper is organized as follows.
Section II provides a general overview of model predictive
control, and then the three categories of MPC acceler-
ation approaches with a summary table of their perfor-
mance speedup enhancement are reviewed in Section III.
In Section IV, a discussion of the challenges and requirements
of MPC for future applications is presented. This section will
also discuss the advantages and disadvantages of using each
parallel computing approach to accelerate the computations
of MPC. Finally, the paper is concluded in Section V. In order
to help the reader navigate through the paper, Fig. 1 provides
an overview of the overall organization of the paper in form
of a chart.

II. MODEL PREDICTIVE CONTROL
Model Predictive Control (MPC) computes the optimal con-
trol input for a system, by using a model of the system,

FIGURE 1. The organization of the paper.

which describes system dynamics, to predict the future states
and output. MPC succeeded as a control algorithm due to
the following factors. 1) The use of plant model in the
algorithm enables MPC to consider all the plant dynamics.
2) MPC works over a receding horizon, which means that
the future effect of control can be anticipated with consid-
eration to plant behavior, leading to better control toward
the desired trajectory. 3) MPC calculations consider input
and output constraints, leading to optimal constrained con-
trolled for the process. This is the most desired feature
in MPC.

In MPC formulation three main approaches were used to
build the model of the plant under control, finite Impulse
response and step response models [12], transfer function
models [13] and state-space models [14], [15] which have
seen a growing popularity in the last two decades.

The formulation of MPC problem for a plan model pre-
sented by the state space equations for a plant that has
m inputs, q outputs and n1 states:

xm (k + 1 ) = Amxm (k)+ Bmu (k)+ Bdω(k) (1)

y (k) = Cmxm (k) (2)

where xm is the state variable, u is the manipulated vari-
able (input variable), ω(k) is the input disturbance related
to a zero-mean white noise sequence ε(k) as in equation 3,
y is the system output, and Am is the state matrix
with dimension n1 × n1 , Bm is the input matrix with
dimension of n1×m,Bd is the disturbancematrix with dimen-
sion of n1×m and Cm is the output matrix of dimensions of
q× n1.

ω (k)− ω (k − 1) = ε(k) (3)

starts by defining the difference equation for the state
variable xm as follows:

xm (k ) = Amxm (k − 1)+ Bmu (k − 1) + Bdω (k − 1)

(4)

Then by defining 1xm (k) = xm (k) − xm (k − 1) and
1u (k + 1) = y (k + 1) − y (k) , subtracting 3 from 1
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leads to:

1xm (k + 1) = Am1xm (k)+ Bm1u (k)+ Bdε (k) (5)

Now y(k) can be related to the defined variable 1xm(k) as
follows:

1y (k + 1) = Cm1xm (k + 1) = CmAm1xm (k)

+CmBm1u (k)+ CmBdε (k) (6)

where 1y (k + 1) = y (k + 1)− y (k).
Introducing the new variable x(k) = [1xm(k)T y(k)T ]T ,

the state space model in matrix form for MPC is:[
1xm (k + 1)
1y (k + 1)

]
=

[
Am oTm

CmAm Iqxq

] [
1xm (k)
y (k)

]
+

[
Bm
CmBm

]
1u (k)+

[
Bd

CmBd

]
ε (k) (7)

y (k) =
[
om Iqxq

] [1xm (k)
y (k)

]
(8)

where Iq×q is the identity matrix with dimensions q× q, and
om is q × n1 zero matrix. For simpler notation equations 7
and 8 are rewritten in the following form:

x (k + 1 ) = Am (k)+ Bu (k)+ Bdω(k) (9)

y (k) = Cx (k) (10)

where A,B and C are the system matrices.
Having the model in 9 and 10 and the measured state

variable at time ki the future predictions of the systemwith the
future control inputs could be calculated. The future control
steps and state variables are denoted by:

1u (ki) 1u (ki + 1) · · · 1u (ki + Nc − 1) (11)

x (ki + 1| ki) , x (ki + 2| ki) ,

· · · , x (ki + m| ki) , · · · , x
(
ki + Np

∣∣ ki) (12)

where Nc is the control horizon which defines the number of
control steps applied to the system, and Np is the prediction
horizon which defines the number of future state predictions
to be computed. The notation x(ki + m|ki) points to the state
variable predicted at time ki+m for the givenmeasuredmodel
state at ki.
Based on the state space model, the future state variables

are calculated sequentially, defining the vectors1U and Y as
follows,

1U = [1u (ki)T 1u (ki + 1)T · · · 1u (ki + Nc − 1)T ]T

(13)

y = [y(ki + 1|ki)T y(ki + 2|ki)T y(ki + 3|ki)T

. . . y(ki + Np|ki)T ]T (14)

the expectation operator is expressed as:

Y = Fx(ki )+ φ1U (15)

where

F =


CA
CA2

CA3
...

CANp

 ; (16)

φ =


CB 0 0 . . . 0
CAB CB 0 . . . 0
AS2B CAB CB . . . 0
...

CANp−1B CANp−2B CANp−3B . . . CANp−NcB


(17)

For a given set of target trajectories RTs =
[
r1 r2 . . . rNp

]
the goal of MPC is to minimize the error between the system
output and the given trajectories vector (Y − Rs) using the
optimized control steps (1U ) within a certain constraints
on the output and control steps. Now the MPC problem is
expressed in the following form:

min J (1U )

s. t. Y = Fx(ki)+ φ1U

Umin ≤ U ≤ Umax
1Umin ≤ 1U ≤ 1Umax
xmin ≤ x(ki) ≤ xmax
Ymin ≤ Yt+k ≤ Ymax (18)

where J is the cost function over the receding horizon of
P samples, Y is the constrained output vector of the sys-
tems described by the constrained state x and controlled by
constrained input 1U control steps vector, The cost func-
tion J can be formed in different ways to penalize certain
terms or control actions, the usually used form is:

J = (Rs − Fx (ki))T (Rs − Fx (ki))

− 21UTφT (Rs−Fx (ki))+1UT (φTφ+ R̄) 1U (19)

where R̄ is a Nc × Nc diagonal matrix used for tuning,
The control and prediction horizons are illustrated in Fig. 2.
In order for the MPC process to achieve its goals,
MPC controller, which is illustrated in Fig. 3, should follow
a specific strategy, which is described below:
1) At each instant ki, the current state of the system x(ki)

is sampled and used as the base to compute the future
outputs of the system for a horizon of Np.

2) The set of optimal control signals 1U is obtained by
optimizing the cost function J to drive the predicted
output to the desired reference Rs. The cost function
includes the error from reference deviation penalty
in addition to other costs like control effort. Here,
the problem of MPC becomes a quadratic programing
(QP) problem.An important assumption is the resulting
QP here is feasible which means that there is a solution
to the QP under the desired constraints.
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FIGURE 2. MPC receding horizon strategy [16].

FIGURE 3. MPC structure.

3) The first control signal u(ki) is taken as the MPC out-
put to the process, while the other control signals are
dismissed. Then the whole process is repeated again at
the next sampling step.

Various strategies are used to enable MPC to be used
for fast sampled systems; the following subsections provide
an overview of the main methods that are presented in the
literature.

A. EXPLICIT MPC
The goal of explicit MPC is to get off the solution of an
optimization problem online, and carry the computational
burden offline. The optimal control actions are determined
as a function of the state for a given predefined set, known as
explicit solution, which can be computed by means of para-
metric programmingmethods. ExplicitMPCoffers extremely
high sampling rates, making it possible for MPC to be used
for high speed systems. Explicit MPC offers advantages
like closed-loop feasibility, stability, and robustness. Another
important advantage for explicit MPC is its implemented
using a look-up table which can be easily implemented in
hardware or software. Explicit MPC has also limitations,
the computation time and solutions size grow in the worst
case exponentially with the problem size. This limits explicit
MPC to relatively small problem dimensions.

The limitation of explicit MPC increased the interest to
come up with newmethods to approximate explicit solutions.
Approximate explicit MPC strategies stand in the middle
between the advantages of explicit MPC and the complexity
of the explicit solution. These methods try to keep the advan-
tages of explicit MPC while eliminating the main disadvan-
tages. As in [17] where the authors reduced the complexity
of MPC by deriving a minimal representation of the explicit
solution. In [18], they used region elimination to reduce the
number of regions based on stability existence using neigh-
boring control law.

B. ONLINE MPC
Online MPC methods can handle any problem size. In the
cost of higher computation and memory requirement. It is
the general MPC case, where the problem is solved online
without any prior online calculations. Different methods were
presented to accelerate online MPC computations. Many
methods adopted the idea of taking advantage of sparsity
nature of the optimization problem presented in MPC in
order to reduce the computation complexity. Other methods
focused on reducing the number of optimization iterations
by finding an initial point to start the optimization. In the
following subsections, some techniques are discussed given
the optimization method used in each one.

1) INTERIOR-POINT METHODS
In Interior-Point Methods (IPMs), the effort for finding the
optimal solution for a problem grows polynomially with the
size of the optimization problem and the termination con-
dition [19]. IPM iterations are computationally expensive;
this is because of the Newton step computations, where the
matrices have to be factorized at each iteration. Computa-
tion complexity reduction could be achieved by utilizing the
structure and sparsity. The linear system in IPM could be
solved using minimal residual (MINRES). MINRES is an
iterative algorithm for solving linear systems with indefinite
symmetric matrices suitable to run in parallel.

2) ACTIVE SET METHODS
Active Set Methods (ASMs) require a larger number of
iterations, but compared to IPMs these iterations are less
expensive. The active set method can be used either for the
sparse or dense structures. Active set methods can utilize a
feasible starting point. The main computational effort in an
active set process is the solution of the Karush-Kuhn-Tucker
(KKT) system for computing the search step direction. There-
fore, most of the research effort is concernedwith the efficient
computation of the step direction [20]. Other approaches
for fast MPC are proposed in literature, like the dual gra-
dient projection method for QP [21] and the fast gradient
method [22].

3) FINITE CONTROL SET MPC (FCS-MPC)
FCS-MPC approach is used for application with finite num-
ber of control actions, as in power converters. Such system
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has a limited number of switching states. Therefore,
MPC optimization problem has a fixed number of predictions
for the system. Then, to solve the problem, the perditions cost
functions are evaluated and the one with the minimum cost
function is used. FCS-MPC is widely used in power converter
and drive applications [23]–[25].

4) NEURAL NETWORK METHODS
The neural networkmethods are now thought to be a powerful
approach for online optimization. Neural network basedMPC
might use plant data as a training set to predict the plant
output. The training set could be a real measurement of inputs
and outputs for the plant using an open loop control or con-
ventional controllers, as in [26] without the need to know
anything about the dynamics of the plant. Other approaches
use the primal-dual neural network [27] to solve the QP in
MPC as in [28]–[31]. The following section presents an extra
level of MPC acceleration using hardware accelerators.

III. HARDWARE PARALLEL ACCELERATORS FOR MPC
The traditional way software works is based on serial compu-
tations. That means the instructions that solves the problem
are executed sequentially one after the other, once at a time
on a single processor. The first steps toward parallelism were
in the instruction level (ILP) such as pipelining, superscalar,
very long instructionWord (VLIW), single InstructionMulti-
ple data (SIMD). In addition to other areas focusing on longer
pipelining, larger registers and cache. These techniques rely
on the possibility to increase circuit density as Moore’s Law
suggested. Increasing the number of transistors in the cir-
cuit led to a higher frequency and better performance but
processor clock speeds began to flatten due to the limita-
tions imposed because of power and heat that limits clock
frequencies.

High-Performance Computing (HPC) refers to a class of
computing where a complex problem or a problem with
huge amount of data to process is broken down to a smaller
pieces; tasks wise or data wise; using the software level
then each piece is processed by a multi-core CPU units.
Having multiple cores lets the CPU process multiple chunks
of data or multiple tasks at one time. Getting more cores
solves the problem of struggling to get higher speed fre-
quencies, even with slower multi-core processors the over-
all throughput is higher than high speed frequency single
core where problem parallelization is possible. Increasing
the number of processor cores is a cost effective way to
increase the performance even that single core processors are
cheaper.

Fig. 4 shows the differences between the CPU and GPU
architectures. The many-core processors like GPUs, takes the
high-performance parallel computing one step further. Focus-
ing more on throughput of large number of working threads
executed by large number of cores. These cores aremuch sim-
pler than the ones in general purpose CPUs. In 2016, the ratio
of peak floating-point calculations throughput between GPUs
and multi-core CPUs reach 10.

FIGURE 4. CPU vs GPU Architecture [33].

The software for GPU’s should be written using a large
number of parallel threads [32]. So the hardware could effec-
tively utilize the work to be done and compensate for the
latency due to memory access, in GPU’s a cache memory is
used to minimize the number of times that the threads need to
access the DRAM. This approach is referred as throughput-
oriented design, where a large amount of data is expected
to be processed by a large number of threads while each
individual thread is allowed to take long time for execution.
On the other hand, CPUs are strongly designed to minimize
the latency for a single thread by reducing the memory access
time using larger sizes for cache memories. The design of the
arithmetic logic units and data registers is also harnessed to
reduce thread latency. The trade-off here; due to this imple-
mentation of many optimization techniques, is a larger chip
area and power. This design approach is referred as latency-
oriented approach.

Another form of parallel processing is the use of Field-
Programmable Gate Array (FPGA). As a high level defi-
nition, FPGAs are reconfigurable chip using pre-built logic
blocks. FPGAs are parallel by nature, different processing
operations are built using dedicated resources on the chip
while designing, so they do not have to compete for the same
resources while operating. As a result the performance of any
part of an application built on FPGA is not affected when
extra processes are added. FPGA design is cost effective but
at the same time a developer might be limited by the number
of available logic units in the chip.

The recent MPC research status shows a huge interest in
MPC to solve more complex problems in increasing num-
ber of fields. However, new approaches and new methods
are required to overcome the limitations of the existing
MPC theory. Studies on efficient MPC structures and strate-
gies have been reported in order to handle large scale opti-
mization problems as in traffic management and wastewater
treatment [34], [35] such problems have complex models and
huge number of variables. One way to reduce the computa-
tional complexity in large-scale system, is using distributed
structure [36], this strategy decomposes the large-scale
MPC problem into smaller scale problems. Another group
of studies focused on making improvements for the stan-
dard optimization algorithm as in [37]. More efficient per-
formance for real-time applications is required and therefore
the research became more interested in hardware accelerated
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MPC such as programmable logic controller (PLC) [38],
FPGA, multi-core CPU and GPUs as listed in this survey.

MPC complexity is a function of the number of states,
constraints, the length of the control, and prediction horizons.
Running MPC on machines with high resources for a slow
dynamics in the order of hundreds of milliseconds to second
like in industry process is acceptable, but for processes with
fast dynamics in the order of milliseconds the optimization
result should be ready in a short sampling time of the order
of millisecond.

There has been a lot of activity over the last two decades
on parallel implementations for MPC. A quick reference for
the reviewed work in terms of the used hardware accelerator,
the main focus of the work and the performance enhancement
is shown in Table 1.

The following subsections discuss the main hardware
accelerators that are used to improve the computations of
MPC. These subsections also describe the related work
review for each one.

A. MULTI-CORE PROCESSORS ACCELERATED MPC
The use of two or more Central Processing Units (CPUs) in
a system to share the workload is a well-known approach to
solve problems in parallel in a reduced time. This section is
devoted to the review of the literature on MPC acceleration
using multi-core processors. Dividing a MPC problem into
sub-problems having a smaller scale [39] or lower com-
plexity [40]–[42] is the main idea behind MPC parallelism.
Smaller and simpler problems can be solved with the given
resources in parallel in a faster and more efficient way. The
solution for the MPC is the combination of all the generated
sub-problems.

Newton step computations optimization gained a
lot of interest since it is the main computational
effort in interior point or active set methods.
Soudbakhsh and Annaswamy [40] introduced an extended
Parallel Cyclic Reduction algorithm to reduce the compu-
tation to a simpler system of equations that can be solved
in parallel. The computational complexity of this algorithm
is reported to be O (log N), where N is the prediction
horizon. In [39] a tailored, non-iterative parallel algorithm
for computing the Newton step using the Riccati recursion
is proposed. The choice of Riccati recursion is because it
can be solved in parallel. The authors reduced the MPC
problem into smaller problems with a shorter prediction hori-
zons, more details on problem formulation to solve (KKT)
system and dividing could be found in [39]. The proposed
algorithm solves the Newton step arising in MPC problems
in O (log(N)). Decomposing MPC to smaller sub-problems is
also presented by Kögel and Findeisen [42] using an alterna-
tive directions multiplier. MPC problem is decomposed along
the time axis into smaller sub-problems. OpenMPI is used
to implement the parallel computation. The authors tested
the implementation on Intel Core 2 Quad Q6600 CPU with
2.4GHz and an Intel Xeon X5675 CPU with six cores at
3.46GHz. The reported speedup on X5676 is 4.3x when using

the six cores compared to single core on the same processor
and 3.1x speedup on Q6600 four cores compared to the single
core on the same processor. Splitting method is also used in
Ferranti andKeviczky [41]. The proposed approach combines
Alternating Direction Method of Multipliers (ADMMs) and
Dual Fast Gradient (DFG) methods. The authors compared
their work to the one in [43] and reported a speedup of 230x.

In a different approach Buchner and Skworcow [44] used
the dSpace multi-processor system for a three-tank control
problem using MPC with the Danzig QP-Solver. The authors
divide the tasks of MPC into six smaller tasks, and ana-
lyzed different scheduling setups the best achieved speed up
was 1.8x. The communication overhead between the real-
time processors made the implemented algorithm slower than
the same one implemented on a single core. The authors
recommend reducing the communication between the proces-
sors or using parallel QP algorithm [45].

B. GPU ACCELERATED MPC
Graphical Processing Units (GPUs) have massively parallel
architecture. Such architecture provides high floating point
operations performance for certain numerical operations.
This comes at the cost of more algorithms rewriting to suit
the nature of GPU, and more restriction on the workload that
can be accelerated by the GPU because not all numerical
operations are equally enhanced using GPUs.

Two programing models are available to run a heteroge-
neous system; where CPUs and GPUs cooperate to process
certain computations, Compute Unified Device Architecture
(CUDA) [33] and Open Computing Language (OpenCL)
[46]. CUDA is developed by NVidia and works only on
NVidia GPUs while OpenCL can work on GPUs from dif-
ferent vendors. OpenCL was initiated by Apple Inc. and
then maintained by the Khronos Group as an industry stan-
dardAPI. This section is devoted to the review of the literature
on MPC acceleration using GPUs.

The main enhancement GPU processing provides is
related to matrix-matrix, matrix-vector and vectors-vector
operations. This enhancement can be utilized using a
well optimized linear algebra libraries like cuBLAS as
in [47] or by writing special kernels as in [48]–[50].
Gade-Nielsen et al. [48] implemented a GPU accelerated lin-
ear programing solver for interior point method to solve linear
optimization problems with inequality constraints. In their
work, the authors implemented different solvers usingMatlab
and Matlab GPU in addition to CUDA C version.

Their CUDA C implementation on the NVIDIA Tesla
C2050 GPU showed a speedup of 6x compared to Matlab
version running on Intel Core i7 930 CPU. While the built-in
GPU accelerated Matlab function showed a speed up of 2x.

Yu et al. [49] implemented and analyzed the perfor-
mance of Parallel Quadratic Programing (PQP) and Alter-
nating Direction Method of Multipliers (ADMM) solvers to
solve MPC QP, both methods are gradient based. In their
work, they used the NVIDIA Jetson TX1, for single thread
implementation and multithreaded implementation where the
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TABLE 1. Performance enhancement and speedup of the reviewed work.
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baseline comparison was the ARM Cortex A57 in TX1.
Based on the analysis, the authors decided that the most
computationally intensive routine inside the iterations is
matrix-vector multiplication and therefore they developed
more efficient SGEMV kernel that outperformed cuBlas
library on the TX1 by a factor of 2.3x. Overall, the authors
were able to achieve 46.6x speed up over the single thread
CPU for ADMM and 2.7x speed up over the optimized Open-
BLAS version, while for PQP the peed was 41.2x over the
single threaded CPU version and 4.2x over the OpenBLAS
version.

Gang and Minggunang [50] proposed MPC acceleration
on GPU by solving the equations using parallel Gaussian
elimination the simulation is conducted on AMD Athlon64
3000+, DDR400 1 GB and NVIDIA GeForce 8800GT. The
reported acceleration using the system in 20 with different
horizon lengths was valid only for prediction horizon greater
than 42 the speed up was 1.4x and for N = 682 the speed up
was 30x.ẋ1ẋ2
ẋ3

=
0 1 0
0 −1.0860 4.287925
0 −1.0909 −1.4545

x1x2
x3

+
 0

0
3.6363

 u
(20)

Sampathirao et al. [47] proposed GPU accelerated MPC
for the application of controlling drinking water networks.
The authors propose an accelerated dual proximal gradient
algorithm for the solution of the optimal control problem
resulted in the formulated stochastic MPC and compared the
acceleration to CPU-based optimizer. The proposed control
algorithm is applied to the data of drinking water network of
the city of Barcelona. The authors used cuBLAS library to
perform the matrix vector computations and compared it to
interior-point solver of Gurobi. The used hardware was Intel
i5 machine with 8GB of RAM for the CPU computations
and NVIDIA Tesla C2075 for the GPU computations. The
reported speed up was up to 22.6x.

Nonlinear MPC acceleration is studied in [51], the authors
implemented MPC on the NVIDIA Jetson TK1 for
autonomous navigation of a groundmobile robot. The authors
used hybrid data-parallel and problem-parallel approach for
nonlinear system. In their implementation the control vector
is generated offline then copied into GPU, after that MPC
optimization will look through this vector to find the con-
trol candidate sequence that entails the minimum cost. The
focus of this implementation is adopting CUDA optimization
techniques to get the best performance. The used robot
is four-wheel Robotnik Summit XL with maximum linear
speed of 1 m/s and radial speed of 0.5rad/s, which made
the execution time of 250 ms for MPC, meets the real-time
requirement. For speed up measurements, the authors ran the
equivalent C++ code on Intel Xeon W3520 @ 2.67 GHz.
The measurement variable was the data vector length, for
smaller data the CPU showed faster execution because of the
higher frequency of the CPU and higher available memory
resources. However, the GPU performance is getting better

for larger data size compared to CPU, where it is kept
under 250ms and the CPU start increasing exponentially for
data vector length of sizes more than one million.

The core of MPC is the optimization problem, in the
literature a lot of work regarding accelerating optimization
problem solvers has been reported without involving the
MPC problem itself. Accelerating interior point method for
linear programing is presented in [65] and [66]. In [65] a
linear programing solver based on interior point method is
proposed, the authors used GPU to accelerate tasks related
to matrix assembly, Cholesky factorization, and forward and
backward substitution. The used GPU is NVIDIA GeForce
7800 GTX compared to Intel Xeon 3.0GHz (1MB L2 cache,
8GB DDR2 dual channel memory, 400MHz effective mem-
ory clock cycle and 800 MHz FSB), the reported speed up
was better than CPU version for large problems only. For
a medium-sized Netlib LP the speed up was up to 1.4x,
detailed speed up timing results are available in [65]. In [66],
Smith et al. proposed matrix-free interior point method
approach. The purpose is to avoid the explicit use of the
problem matrices in the iterations; the iterations require only
the results of Ax and AT y but not the matrix A where A is the
matrix of constraint coefficients. The author compared their
results to the simplex method and IPM. The used hardware is
AMDOpteron 2378 (Shanghai) quad-core processors, 16 GB
of RAM and a Tesla C2070 GPU with 6 GB of RAM. Their
computational results revealed a maximum speed up of 10x
on large sparse LPs compared to single core CPU and 6x
using multi-core CPU implementation. Cholesky decompo-
sition is the usual method of solving for the search direction.
Acceleration using GPU for solving dense linear system has
been also investigated in [67] and [68].

Simplex method for optimization parallelization using
GPU was presented in [69]–[73]. In [69], CUBLAS
library [74] is used to implement the Simplex method on
Tesla S1070 GPU card to speed up the pivoting step in a
multi-GPU structure, the reported speed up was up to 4x.
In [70], a parallel implementation using CUDA of Simplex
algorithm for dense LP problems was developed, the tested
hardware setup is 3 GHz Xeon Quadro INTEL processor
and a GTX 260 GPU with a reported speed up of 12.5x in
double precision. Ploskas and Samaras [71] proposed parallel
implementation of primal-dual exterior point Simplex Algo-
rithm on GPUs using Matlab’s parallel computing toolbox.
It was the first parallel implementation for exterior point
algorithm. The implementation showed significant computa-
tional result compared to sequential implementation of the
same method and Matlab’s sequential interior point method,
the results obtained tests performed on randomly generated
optimal sparse and dense Linear Programing (LP) problems
in addition to a set of benchmarks. The reported speed up was
181x on dense LPs and 20x on sparse LPs.

Spampinato and Elstery [72] presented an implementation
of the Revised Simplex Algorithm with NVIDIA CUBLAS
and NVIDIA LAPACK libraries [75]. Their implementation
speed up was 2.5x on large random LPs with 2000 variables
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compared to CPU implementation. Another parallel imple-
mentation of the Revised Simplex Algorithm on GPU is
presented in [73]; to evaluate their implementations the
authors measured the execution time against the correspond-
ing serial implementation of the GNU Linear Programming
Kit (GLPK). The reported speed up was up to 18x, the used
hardware is Intel Core Duo E8400 and NVidia GeForce
9600 GT GPU.

C. FPGA ACCELERATED MPC
Modern FPGA technology provides inexpensive devices
with high resources and keeps advancing. This opens
the fields for applications with high resources demand.
In addition, FPGA technology supports optimized use
of parallel computations. This made FPGA capable of
providing a performance level higher than other fixed
architecture like microcontrollers. Because of FPGA tech-
nology advances, FPGA becomes suitable for MPC con-
troller implementation, due to the high performance at MHz
and low cost, even more for cost efficient industrial
scale, MPC on chip system could be built on Applica-
tion Specific Integrated Circuits (ASIC). This section is
devoted to the review of the literature on FPGA based
MPC implementations.

Interior point methods is implemented on FGPA with
different optimization techniques like customized floating
point [53], pipelining [53], [57], and for loops optimiza-
tion [54]. Wills et al. [53] reported FPGA based interior point
using customized floating point format (24 bits). Pipelin-
ing and parallel computation were used in matrix-vector
multiplication. The hardware consists of Altera Stratix III
EPSL150F115C2 FPGA, which is interfaced to external
A/D and D/A circuit in order to read system status and output
control actions. Working with fewer bits to represent a num-
ber decreases the arithmetic circuit size, power consumption
and computation time. The author’s experimental setup was
the control of lightly damped resonant structure, with objec-
tive pf disturbance rejection. The reported required time for
the control action is less than 200us. In [54] where the author
focused on the FOR loops optimization including combining
and parallelizing. Matlab runtime for two implementations of
interior point method and active set method was recorded and
compared to the FPGA implementation, the achieved speed
up was up to 2x.

Jerez et al. [57] proposed MPC algorithm based on Mul-
tiplexed MPC (MMPC) [76]. The concept behind MMPC is
that, it updates one input at a time, of a multi-input controlled
plant. This results in a smaller QP at each sampling instant.
The authors use MMPC as independent blocks to optimize
each plant input independently and in parallel. FPGA imple-
mentation adopted (MINRES) method to solve Newton’s
step in IPM. This requires indefinite symmetric matrices
which should be obtained in a prior step by row reordering.
MINRES iterations are preferred because the required
matrix-vector multiplication is easily parallelized on FPGA.
The reported achieved frequency running the implementation

on a Virtex 6 VSX 475T is up to 150 MHz. Benchmarked to
Intel Core2 Q8300 with 3GB of RAM, 4MB L2 cache, and
a clock frequency of 2.5GHz running Linux. The smallest
achievable sampling time on the FPGA was 0.344 seconds
while on the CPU it was 0.775 seconds.

Gradient based methods were investigated in [55]
and [58]–[60]. Combining specialized hardware and optimiz-
ing techniques allowed Bleris et al. [55] to reach sampling
time of 1 ms for a system with four states, control horizon
of 3 steps and prediction horizon of 10 steps. The authors
divided the tasks of the optimization problem into five main
operations. The operations are initialization, gradient vector
and hessian matrix computing, matrix inversion and New-
ton’s iteration to find the search direction. Based on the tasks
analysis, the authors decided to implement and optimize the
gradient and hessian on custom hardwarewhile using amatrix
processor for the rest of operations.

In another work, Jerez et al. [58] provided custom archi-
tecture for Fast Gradient Method (FGM) and Alternating
Direction Method of Multipliers (ADMM) in a fixed-point
arithmetic format. The paper presents error analysis of both
methods. In addition to balancing the minimum number of
bits, solver iterations and the amount of required resources
to get a satisfactory closed-loop performance. Implemented
on a 400MHz clocked Xilinx’s Virtex 6 chip and 230 MHz
Xilinx’s Spartan 6 chip the achieved sampling times are
1.8MHz for Virtex 6 and 700KHz for Spartan 6 using FGM
while for ADMM it was 200kHz for Virtex 6 and 117kHz for
Spartan 6.

Patrinos et al. [59] proposes a Dual Gradient Projection
(DGP) algorithm tailored for implementation on fixed point
hardware. The authors used minimum number of decimal and
integer bits that guarantee convergence. The used hardware is
32-bit Atmel SAM3X8E ARM Cortex-M3 processing unit.
Using QP problem size ranging from 10 to 60 variables
and 20 to 120 constraints, the reported speed up was up to
4x compared to floating point implementation. In addition
to reduced code size to the half. The authors implemented
this approach as a control for spacecraft attitude tracking with
reaction wheels actuators [77]. In order to reduce the compu-
tational load, a reduced control model is selected, in addition
to a modified cost function with reduced prediction horizon.

Peyrl et al. [60] proposed parallel implementation using
fast gradient method to solve liner QP in MPC. The authors
provided fixed point FPGA and multi-core solutions and
compared both implementations. The used hardware was
Cyclon V FPGA and Freescale P4080 @1.2 GHz. Experi-
ments showed that problems could be solved two times faster
on the FPGA compared to single core implementation on
the used multicore processor. The authors pointed that the
overhead caused by the data transfer between cores requires
big problems size to be ignored and make use of the paral-
lelization.

Longo et al. [56] proposed Parallel Move Blocking (PMB)
algorithm computing architecture that reduces the compu-
tational load of solving MPC optimization problem online
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using Move Blocking (MB) strategy. In MB, the predicted
control trajectory is forced to remain constant over some
steps; therefore, the degrees of freedom are reduced by fix-
ing some optimization variables. In their implementation,
the authors took the standard MPC problem and converted it
into one with blocking allowing faster sampling compared to
the standard MPC. The author’s future work is to implement
this approach on parallel hardware like FPGA and GPU.

Implementing Nonlinear Model Predictive (NMPC) con-
trol is investigated in [61]–[63], [78], and [79]. In [61] the
authors used MATLAB HDL Coder and Vivado HLS for
parallel implementation of MPC on FPGA. To solve the con-
trol problem in MPC the authors used optimality conditions
based on Hamiltonian [80]. Fixed-point iteration method is
used to make use of parallel processing of the FPGA to
compute numerical integrations. The reported results show
3-5 times faster performance when using fixed-point iteration
vs sequential computation on FPGA and 1.4-2.6 times faster
compared to Intel Core i5 at 2.67GHz and 4GB memory.
In Knagge et al. [78] proposed implementation of MPC on
FPGA and Application Specific Integrated Circuit (ASICs).
Nocedal and Wright used Sequential Quadratic Programing
(SQP) method to solve MPC [81]. The authors made benefit
of parallelism features in FPGA and ASIC devices in order
to get efficient and high performance MPC controller. The
authors did not report speedup results.

Vouzis et al. [64] presented a hardware architecture for a
System on Chip (SoC) embedded real time implementation
of MPC. The proposed system consists of a general-purpose
microprocessor in addition to a matrix coprocessor devoted
for matrix operation as addition, multiplication and inversion.
The coprocessor performs and stores the matrix operation
required byMPC process and communicates with the general
microprocessor for reading the inputs and sending back the
result. Arnold and Shuler [82] used VITO tool in the pro-
cess of designing the matrix processor. The used language
for the design is Verilog, and the used hardware is Xilinx
FPGAML401 board equipped with XC4VLX25-FF668-10C
Virtex-IV FPGA. The reported speedup compared to the
Motorola’s 32-b MPC 555 processor running at 40 MHz is
up to 30x.

Xu et al. [79] presented a fast NMPC algorithm imple-
mented on FPGA that employs a Particle Swarm Optimiza-
tion (PSO) with the penalty function approach is used as
the embedded optimization algorithm. PSO is stochastic
optimization technique inspired by the social behavior of
bird flocking and fish schooling. The system is seeded with
a population of random solutions then searches for optimal
by updating new generations. The nature of PSO provides
parallel capabilities, which is necessary for real time oper-
ation, and suitable for the parallel architecture of FPGA.
The authors reported the timing to be 0.8s for the system
for engine to track the reference speed in their experimental
setup. PSO is also used in [83] in a control approach under
actuated overhead crane system for limiting the swings. The
error in the position of the crane is optimized using PSO.

The authors reported successful control in terms of
limiting the payload deflection and reducing residual vibra-
tion. In terms of timing the proposed approach recorded faster
settling time than Fuzzy Gain Scheduling (FGS) and zero
vibration derivative (ZVD) methods, for more details on the
results refer to [83].

[62], [63] a parallel real-time implementation of NMPC
with constrains on FPGA proposed as controller for
3-dimensional trajectory planning in a fixed wing Unmanned
Aerial Vehicle (UAV). Two IPs were implemented one to
interface with the sensor and the second id for NMPC,
parallel Euler integration is implemented in the NMPC IP.
The implementation on Xilinx Spartan 3E 1600 FPGA
required 5.1ms compared to 111ms for the sequential imple-
mentation on a Microblaze processor.

IV. DISCUSSION OF CHALLENGES AND REQUIREMENTS
OF MPC FOR FUTURE APPLICATIONS
ImplementingMPC on parallel processors is not an easy task.
MPC compatible implementation requires finding concur-
rency in the algorithm then dividing it into sub-processes that
can be done in parallel. These tasks are profiled and analyzed
in order to achieve the best optimization and know which
should be accelerated. MPC structure involves a lot of linear
algebra operations applied on large matrices, like matrix-
matrix multiplication, matrix-vector multiplication, matrix
inverse and matrix decomposition in addition to operations
like reduction to find the minimum element or maximum ele-
ment in a vector. CPU linear algebra libraries like BLAS and
LAPACK provides a lot efficient and well optimized matrix
operations, these libraries are extended to GPU with high
performance and efficiency as in CUBLAS and MAGMA.

This structure of MPC is suitable for the both approaches
of algorithm acceleration, the problem-parallel approach and
the data parallel approach. in data parallel approach implies
that the same operation is executed on multiple data sections
as the case in matrix multiplication for example. In problem
parallel approach the MPC problem is divided into smaller
problems with the same size solved using the same algorithm
steps. Combining both approaches on hardware accelerators
provides more utilization of the available resources in these
accelerators.

Decomposing MPC into smaller sub-problems on GPUs,
by dividing the prediction horizon will suffer from the latency
of working threads and the overhead of dynamic parallelism
where the thread is in need to launch other threads to execute
different operations required by MPC. On the other hand this
implementation on FPGA will be limited by the number of
programmable units and available memory. The reason is the
need for multiple copies of the sub-problem solver unit which
involves multipliers and other units.

FPGA implementations reported promising results but
faces many challenges. Problem size in terms of the num-
ber of variables form the biggest challenge. The FPGA is
a resource limited system especially if the division and
root operations are extensively required as reported in [54].
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TABLE 2. Hardware accelerators overview.

FPGA implementation was outperformed by Pentium CPU
due to the usage of straightforward Gaussian elimination
method to solve a linear system of matrices. On the other
hand fitting the design on the FPGA is big challenge too,
93% utilization is achieved in [84] to achieve a maximum
frequency of 88.2MHz using Altera DE2 development board.
Other points to present here are FPGA implementation for
MPC is application specific leading to loss of flexibility,
any model changes require new design and route operations.
In systems where FPGA is used with a co-processor of the
communication between the FPGA and the co-processor is a
negligible overhead for a small problem size but should be
considered for large problems especially if the communica-
tion is performed for each iteration, this applies also for MPC
parallel implementation on multi-core processors. One of
the used techniques to improve performance in FPGA MPC
implementation is using fixed or custom numbers format.
When using interior point method, MPC solution depends on
the precision and the criteria used in the convergence test.

Implementing MPC on a GPU has its own challenges also,
implementing parallel kernels in a well-optimized way is a
hard task. Kernel calling is considered an overhead especially
for simple operations where the time of the processing is less
than the kernel call delay. Developers avoid kernel overhead
by combining multiple operations in a single kernel to maxi-
mize the GPU utilization. This technique is known as kernel
fusing. GPUs are optimized for throughput, making them
suitable for large problem size with a noticeable speed up that
can’t be achieved for a smaller problem. On the other hand,
problem size presents another challenge; the data copying
overhead between the host CPU and the GPU. Developers
are encouraged to minimize the copying as much as possible
in the process of solving MPC problem especially with the
iterations involved. In some cases a developer might use more
than one library to perform a specific operation and here the
conversion between the different types of data will not be an
easy task, however a high level library like Thrust [85] should
avoid that inconvenience. Table 2 provides a summary for the

key advantages and disadvantages of the reviewed hardware
accelerators for MPC.

V. CONCLUSION
The acceptance of the model predictive control system in new
emerging fields has demonstrated the various challenges and
limitations inherent to the traditional approaches to model
predictive control. In light of identified challenges, different
actors in a variety of industries have come to the realization
that the MPC is applicable in a variety of industries. Schol-
ars and researchers should strive to bridge the gap between
theory and practice. In terms of coming up with more suit-
able strategies for parallel computing to achieve real-time
performance.

In this survey, different approaches were presented from
the literature for efficient MPC acceleration in terms of new
ideas and methods in the theory and structure of MPC.
This survey presented the reported speedup for each study.
However, application areas are in continuous growth with
a higher demand on more efficient algorithms that meet
real-time requirements. This has opened the doors for hard-
ware accelerated implementations, where fast MPC ideas are
implemented to get even faster performance.

Hardware accelerators could be very efficient in the search
operation in explicit MPC. This is because the parallel
architecture is very suitable for a super-fast search and
cost function computations. But as stated before, explicit
MPC memory requirement grows exponentially for larger
MPC problem which indeed takes the focus back to parallel
computed online MPC.
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