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ABSTRACT An online method for fault diagnosis on a wound rotor induction generator using stator voltage
and current, and rotor current are investigated. The diagnostic method comprises processing of the generators
signals and classification of the machine’s condition according to healthy or specific fault type. The signal
processing phase of the intelligent fault diagnosis process extracts features, which are frequency-based,
interrelated to specific fault modes, i.e., stator winding, rotor winding, and brush faults. Finite element
modeling of a wound-rotor induction generator is carried out under normal and different fault conditions for
the purpose of conducting preliminary design and testing of the classification system. An experimental setup
is then used to validate the computational results and verify the diagnostic method. The results indicate that
the stator voltage, stator current, and rotor current modalities exhibit patterned sensitivities to the investigated
faults. It is found that the classifier works well with a large number of features offered by the combination
of these modalities yielding a best overall diagnostic accuracy of 99% in an experimental setting.

INDEX TERMS Condition monitoring, wound-rotor induction generator, fault diagnosis, classification.

I. INTRODUCTION

Wound-rotor induction generators (WRIG) are simple, robust
and can be driven at varying speeds and still provide a
stable supply. Furthermore, WRIGs allow dynamic rotor
resistance control which improves output power harnessing
over a wide range of speeds - hence their suitability for
use in wind turbines [1]. However, in some applications,
excessive power or stability problems in the system may
necessitate standalone operation of the WRIG. In these cases,
WRIGS can be operated as an isolated generator with capac-
itors to supply reactive power required by the generator and
loads [2]. Despite the aforementioned relatively robust nature
of this machine, there are still a variety of faults that do
occur in practice. Recently, more attention is being given to
research of WRIG condition monitoring methods [3]. Abnor-
mal behaviours in WRIGs under faulty conditions may cause
damage to the turbine and interconnected equipment, further
resulting in production loss due to unscheduled repairs [4].
The ability to accurately diagnose different types of faults is
therefore an ongoing research challenge.
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The research presented in this paper aims at developing
an online method for diagnosis of stator and rotor winding
inter-turn short-circuit, and brush faults on a WRIG. Machine
learning classifiers are adopted to identify these faults based
on features extracted from multiple electrical signals - i.e. sta-
tor voltage and current, and rotor current signals. For the
classification, a comparative analysis of Bayesian classifica-
tion, Artificial Neural Networks (ANN) and Support Vector
Machines (SVM) is carried out. The harmonics of these
signals are also analysed for patterned sensitivities to the
different investigated faults to serve as suitable features. First,
modelling of the WRIG under healthy and fault conditions
is performed. These results are then validated experimen-
tally by carrying out real measurements on a WRIG. The
results from the model simulation and experimental results
are then used to train and test the classification system. To the
best of the authors’ knowledge, this type of multiple fault
diagnosis investigation, using multiple modalities, on WRIGs
has not yet been presented and will definitely enhance
the incipient fault detectability and identification procedure
on these machines. In the subsequent section, different
faults, measurement modes, and methods of fault detec-
tion and diagnosis relevant to WRIGs are briefly reviewed.
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Section III describes the methodology, modelling, experi-
mental configuration, and development of the fault classifica-
tion system. This is followed by validation of the numerical
results with experimental results and testing of the fault clas-
sification system in Section I'V. Finally, a brief conclusion and
summary of the research is given.

Il. BACKGROUND

In general, predictive maintenance has two major objectives,
that is, to detect and diagnose problems - at an incipient stage -
through suitable techniques and then to act accordingly to
avoid fault progression and unplanned downtime [5]. While
application of various techniques on induction motors have
received significant attention, there is unsubstantial research
pertaining to application of the same on the WRIG. As with
most research areas of electrical machines — such as design
and control - condition monitoring is also evolving into the
fourth industrial revolution. There is a greater need for accu-
rate and reliable condition monitoring and analytics systems
to be developed. Thus, intelligent systems have to be built
around the aforementioned existing techniques, through data
fusion of machine signals [3], to provide incipient diagnosis
and detectability of multiple fault mechanisms.

A. INDUCTION MACHINE FAULTS

Several studies have been carried out on induction motors to
categorise types of fault as a ratio of total fault occurrences.
The most common problems in induction machines are inter-
turn faults on stator and rotor windings, broken rotor bars and
end rings, static and dynamic air-gap irregularities, bowed
shaft, bearings misalignment and mechanical imbalances as
discussed in [6]. Current spectrum analysis is the most popu-
lar fault detection method used on induction machines and has
been covered in many works as discussed in [7]. This method
of fault detection can employ different signal processing
techniques. The signal processing techniques that are most
commonly used for this purpose are the frequency domain
Fast Fourier Transform (FFT), time-frequency domain Short-
Term Fourier Transform (STFT) and wavelet transform [8].

TABLE 1. Summary of types of faults occurring on induction machines.

Fault type Percentage of total fault occurrences
Bearing 40%
Stator 35%
Rotor 10%
Eccentricity 10%
Other 5%

According to the IEEE standard 493-1997, the categorisa-
tion of faults occurring on induction motors in practice are
presented in Table 1 [9]. A report on the survey conducted
by the Electric Power Research Institute (EPRI) also pro-
vides comparable results [10]. Bearing faults account for the
majority of faults occurring on induction machines. Brush or
slip-ring faults also feature as a major fault category besides
bearing and winding faults. Although these statistics provide
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some insight into the frequency of types of faults experienced
in practice, it should be noted that most faults are inter-
linked through fault mechanisms. For instance, misalignment
or eccentricity can progressively lead to bearing faults or
failure. In view of the cascading nature of faults, it should be
highlighted that this categorisation of fault types is dependent
on mode and time of discovery of the fault. Simply put, this
categorisation of fault occurrence is not necessarily indicative
of root causes. Therefore, early diagnosis of fault is crucial in
halting fault progression and avoiding the cascading effects
thereof.

In practice, WRIGs exhibit a variety of faults of both
mechanical and electrical categories. Stator winding inter-
turn faults arise due to insulation deterioration and these faults
result in the short-circuiting of the phase winding [10]. Rotor
winding inter-turn faults or brush failure are due to insulation
failure, noise and vibration. These faults can result in unbal-
anced resistances and magnetic forces leading to further fault
progression [4], [11]. Eccentricity faults occur in three forms
namely static, dynamic and mixed. These faults are due to air-
gap irregularities and may lead to unbalanced magnetic pull
and even shaft bending [12], [13]. Misalignment and unbal-
anced magnetic pull result in bearing faults which eventually
lead to increased vibration and noise levels [14].
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FIGURE 1. Overview of typical modern condition monitoring architecture.

B. CONDITION MONITORING SYSTEM ARCHITECTURE

In general, modern condition monitoring systems for electri-
cal machines typically follow a layered architecture compris-
ing subsystems that are specific to maintenance requirements
of the application. Figure 1 gives a general overview of this
typical layered architecture of a fault diagnosis system. The
measurement modality subsystem in the architecture repre-
sents the parameter or signal, either through direct or indirect
measurement or inference, that could be inter alia thermal,
chemical, mechanical, electrical etc. Thereafter, processing
is employed to extract features of the parameter or signal
form the first layer and could be in the form of transforms or
simple threshold or range checking. Some common examples
of these processing methods are given in Figure 1. Modern
fault diagnosis systems are now employing an intelligence
layer which uses features obtained from the preceding layer
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to accurately infer or predict the condition of the machine.
The intelligence provides the opportunity for data fusion of
multiple signals and embedding analytics thereby enabling
reliable incipient fault diagnosis. The presented fault diagno-
sis system follows this modern architecture.

C. MEASUREMENT MODALITY

The measurement modality component is the principal source
of information used to make an inference about the state of
an electrical machine. A single condition-monitoring system
may use a combination of different methods of measure-
ments. The suitability of a specific measurement modality
depends on the required information and application of the
machine. The measurement modality’s sensitivity to the fault
condition ultimately determines the early fault detection abil-
ity of a condition monitoring system. Condition monitoring
via chemical-based techniques are used for detecting insula-
tion deterioration resulting from high temperatures thereby
yielding a number of chemical products in gas, liquid and/or
solid states. These chemical products can be detected by these
techniques to determine early signs of insulation failure [15].
Thermal methods typically employ three different approaches
namely embedded temperature detectors for local measure-
ments, thermography for hot-spot detection [16] and tempera-
ture measurement of coolant fluids [17]. Mechanical methods
usually comprises monitoring of vibration, noise discharges,
torsional oscillation and shock pulses. The interrelated faults
are eccentricity and bearing misalignment that will in turn
bring about vibration [18]. Electrical measurement modalities
include flux, current, voltage and power which are commonly
used for online monitoring [19]. More recently, multiple
modalities have been used together to perform condition
monitoring such as presented in [20], which utilises electri-
cal and mechanical measurement modalities of a WRIG to
diagnose problems with the drivetrain gearbox.

D. SIGNAL PROCESSING TECHNIQUES

The signal processing phase of the condition monitoring
system extracts the features or markers from the parameter/s
or signal/s. The objective is to extract features which are
related to specific generator fault modes. A feature extrac-
tion technique is needed for signal processing of recorded
time-series signals to acquire appropriate feature parameters.
These techniques make it feasible to detect changes in sig-
nals arising from fault mechanisms. Specific dissimilarities
between signals under normal and fault scenarios indicate
changes in the machine’s condition. There are some com-
monly used signal processing techniques, mostly with the aim
of generating amplitudes of the frequency components from
the measured signatures. The Fast Fourier Transform (FFT)
is the most popular method used for frequency analysis of
current signals forming the basis of online condition moni-
toring techniques as explained in [21]. FFT techniques can be
used to give information about different faults and can detect
low level fault signatures. For steady-state analysis where
the load is constant, the FFT technique is most appropriate.
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Researchers have discovered that the FFT technique does not
work well when applied under variable loads, dynamic (tran-
sients) conditions and no-load conditions. Only the frequency
statistics can be provided with FFT technique, but the time
statistics cannot be provided [22].

Short-Term Fourier Transform (STFT) based techniques
are time-frequency domain based. STFT techniques are
applied to overcome some of the disadvantages of FFT
technique. The STFT reveals time information and can be
applied under dynamic conditions, and also provides time-
frequency domain characteristics simultaneously thereby
enabling 3 dimensional analysis as discussed in [23]. How-
ever, the STFT technique does pose the disadvantage of poor
frequency resolution. Some research has attempted to resolve
the problem of poor frequency resolution by using the alter-
native Wavelet transform (WT). WT is also a time-frequency
domain method which uses narrow windows for high fre-
quency components. The technique decomposes the signal
into a set of non-sinusoidal waveforms and has been applied
by for motor current signature analysis (MCSA) [24], [25].
Wavelet transforms can be applied for time-frequency or
time-scale domain with multi-resolution as described in [26].
However, with wavelet techniques, the scale domain is
referred to as the inverted frequency rather than the frequency.
Variable resolution can also be achieved which is particularly
useful at higher frequencies as explained in [27].

Park’s Vector Transformation (PVT) techniques require
the current to be monitored on all three-phases. It can be
generated from the symmetrical three-phase current system
and, after the transformation, results in Park’s vector com-
ponents iz and iy as described in [28]. This method can
also be generated using voltage rather than current, however
this measurement modality has the disadvantage that it is
not as sensitive to torque fluctuations [29]. There has also
been efforts to apply more robust signal feature extraction
methods for condition monitoring on induction motors such
as presented in [30] which uses Multiple Signal Classification
technique.

E. INTELLIGENCE METHODS

In general, machine learning methods have been employed
to automate the decision making stage of diagnostic sys-
tems to indicate the fault condition, and/or determine root
causes [13]. Some examples of these techniques include
inter alia Bayesian classification, artificial neural net-
works (ANN), fuzzy logic, decision trees, support vector
machines, K-means clustering etc.

Bayesian classification is a commonly used machine
learning technique that applies logical calculus for making
decisions under uncertainty. The advantages of Bayesian
classification is its strong theoretical foundation and math-
ematical computation to make predictions, which makes it
more transparent and easily accessible relative to other sim-
ilar techniques. Furthermore, it may be used together with
other classifiers to improve accuracy and performance for
prediction [31], [32]. Bayesian classification employs Bayes

32335



IEEE Access

E. F. Swana, W. Doorsamy: Investigation of Combined Electrical Modalities for Fault Diagnosis on a WRIG

theorem which is an algebraic model from fundamental of
probability of hypothesis (H) and evidence (E) is expressed
in (1):
P(E|H) x P(H)
PH|E) = ——F ey
(E)

where P(H) and P(H|E) are the prior and posterior proba-
bilities respectively, P(E|H) and P(E) are the likelihood and
evidence, respectively. A key benefit of this type of classifier
in relation to others is that if an instance is predicted to fall
into a certain fault category, it offers the additional quantita-
tive measure of the classification [33]. The classifier yields
a probability associated with each instance thereby giving an
indication of accuracy as well as if there is a need to improve
it through additional learning instances. The Naive Bayes
classifier (NBC) is efficient in terms of time, CPU usage and
memory. NBC performs well even with small training sets,
applies strong independence assumptions through use of an
independent feature model [34]. Due to these advantages,
the presented work applies Bayesian classification for the
intelligence stage of the fault diagnosis method.

Artificial neural networks (ANN) are becoming more pop-
ular in condition monitoring and is essentially a computa-
tional intelligence method with an ability to accumulate and
assemble data processing. These networks comprise process-
ing units known as neurons which are arranged inside in a
structure similar to human brain processes. This method also
needs training for all possible operating conditions of the
machine [13], [35]. An example of application of ANN is
given [36], where the frequency components of the current
data are extracted by a pre-processor and are classified into
four classifications based on importance level with the rule-
based frequency filter. Reference [37] is another recent exam-
ple of application of ANN in condition monitoring. SVM has
also been shown to perform well for intelligent fault classifi-
cation on a wind turbine drivetrain gearbox in [38] and [39].
The performance of ANN and SVM is also tested - together
with NBC - in the presented work for the purpose of intelli-
gent fault classification on the WRIG. Fuzzy logic has also
been applied for decision making in machine condition mon-
itoring [40] and basically consists of membership functions,
which show the level of possibility that an object is an element
of a certain class. Fuzzy logic is particularly useful where
system information is limited or unclear.

ill. METHODOLOGY

A. OVERVIEW

Typically, the success of spectrum analysis in condition mon-
itoring depends on clear identification of variation trends in
specific spectrum components. In the case where these trends
occur as variation patterns across multiple components of a
signal spectrum, it becomes challenging to detect or analyse.
It is even more difficult to detect these patterns if they occur
across multiple components of different signals’ spectra. The
presented methodology firstly investigates the presence of
such variation patterns in multiple signals of a WRIG under
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different conditions through use of a finite element model and
an experimental setup. Thereafter, a classification system is
developed and tested to verify if those patterns can be learned
so that new unknown instances of the measured signals can
be used to predict the condition of the WRIG.

TABLE 2. Specifications of experimental induction machine.

Description Value
Rated power 1 kW
Frequency 50 Hz
Power factor 0.8
Synchronous speed 1500 rpm
Rated voltage 380 V
Number of poles 4
Number of phases 3
Number of stator slots 36
Number of rotor slots 24
Stator outer diameter 140 mm
Stator inner diameter 103 mm
Rotor outer diameter 102.2 mm
Rotor inner diameter 32 mm
Length 90 mm

Stator slot

Stator core

Rotor core

Shaft

Rotor slot

Afr-gap

FIGURE 2. Finite element model geometry of wound-rotor induction
generator used in investigation.

B. MACHINE AND FAULT MODELLING

The specifications of the WRIG machine used in the inves-
tigation is given in Table 2. The machine model was created
using ANSYS Maxwell. The geometry of the WRIG model
is shown in Fig. 2.

The faults considered are inter-turn short circuits on the
stator windings and the rotor windings, and brush faults.
These faults are considered separately and therefore multiple
models were created - i.e. healthy, stator fault, rotor fault and
brush fault. The WRIG machine has three phase windings
on both the rotor and stator. Faults are modelled through
short-circuiting the turns of one of the phase coils. Three and
six turns are short-circuited in each case to incorporate the
different levels of the same fault type. Figure 3 shows the
geometric model indicating the points of faults.
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Rotor winding inter-turn fault

Stator winding inter-turn fault

FIGURE 3. Rotor and stator winding faults as modelled on machine
geometry.
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FIGURE 4. External circuit model of machine.

The simulation model includes an external circuit of a self-
excited wound-rotor induction generator. The circuit model is
used to build the external circuit for the generator and modify
the electrical parameters accordingly with respect to each
fault scenario. The brush fault is simulated by connecting a
0.5 € aresistor in series with the brush rotor external circuit
as presented by Fig. 4 to create an imbalance that often occurs
in practice. When repeating simulations to obtain different
instances of each condition, the value of the capacitor excita-
tion was randomly varied by £2% for the purpose of creating
a normal distribution of several different data instances under
each condition. The machine is operated at synchronous
speed for the simulation scenarios - i.e. 1500 rpm.

C. EXPERIMENTAL CONFIGURATION, FAULT
IMPLEMENTATION AND TESTING

The laboratory setup used the in the investigation is pre-
sented in Fig. 5. It consists of a three-phase, 1kW, 380V,
4-pole wound-rotor induction machine, capacitor bank, cir-
cuit breakers, prime mover (larger induction machine and
variable speed drive), variable resistors, voltage and current
transducers, shaft encoder and data acquisition card which
enables real-time interface with a computer.
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DAQ card
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stator
windings

FIGURE 6. Experimental implementation of stator winding inter-turn
short-circuit fault.

The three-phase, 4-pole squirrel cage induction machine,
380V, 50Hz 1.5kW is used a prime mover. The variable speed
drive is used to control the speed by adjusting the frequency.
The capacitor bank is used to initiate voltage build up and
maintain output voltage. It is also used to produce reactive
power to supply load requirements as required. An absolute
encoder is used to monitor shaft speed and angular position.
The data acquisition card enables direct interface to a com-
puter with LabView which is used for the online analysis,
testing and validation of condition monitoring system. The
voltage differential probes are used for the measurements of
induced voltages on the stator winding and the current probes
are used for the measurements of stator and rotor winding
currents.

The WRIG setup is modified to account for the three fault
conditions considered in this research which are inter-turn
short circuits on the stator windings and rotor windings, and
the brush fault. The inter-turn winding faults for the stator and
rotor are implemented on the overhangs of the stator and rotor
windings by shorting 3 and 6 adjacent windings as shown
in Figures 6 and 7. These faults are implemented by creating
a contact between the windings. During this experimental
procedure, care was taken to ensure that each fault was imple-
mented and removed such that the short-term effects of fault
were minimal to none on the condition of machine - to achieve
maximum fault scenario independence. The brush fault is
established through an imbalance in the brushes’ resistances
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Shorted
rotor
windings

FIGURE 7. Experimental implementation of rotor winding inter-turn
short-circuit fault.

and is implemented by connecting a 3.7€2 variable resistor in
series with the ‘faulty’ brush. The experimental WRIG was
operated at a speed of 1500 rpm.

The stator voltage, and stator and rotor currents were
recorded under no-load and load conditions for each of the
healthy and fault scenarios. For each of the generator tests,
the procedure is repeated until at least 20 instances/sets of
measurements for each scenario is recorded.

D. FAULT CLASSIFICATION

The data acquired through the FE model and experimental
measurements were processed and used for training and test-
ing the classifier. The harmonics of each phase voltage and
current (11 orders in total from DC component to 10, order
or 500 Hz) were extracted and used as features or attributes
of the classifier.

The FFT is applied to signals recorded from the cases for
healthy, stator- and rotor- winding inter-turn and brush faults.
The generated single-sided amplitude spectrum contains the
information regarding the different frequency components
or harmonics of the signal. The harmonics X; (magnitude
of signal at frequency k) obtained from the FFT are then
normalized Xy with respect to the maximum and minimum
harmonic, as given by (2). Hence, when normalized, the mag-
nitude of all harmonics orders are calculated with respect to
the maximum value, which is the fundamental. This means
that the fundamental itself is equal to 1 when normalized. The
normalization is done for the following reasons:

o Feature scaling and normalising data for building
classifier.

« Provision of better resolution of harmonics which are
relatively small compared to the fundamental.

o Fundamental harmonic is treated as only having relative
significance. This has the potential benefit of account-
ing for variations in operating conditions such as shaft
speed, although this is not treated within the scope of
the presented work.

X — Xmi
Xy = _tk = Amin_ 2)
Xmax - Xmin
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Each of the first 10 harmonic orders and DC component -
i.e. DC component and 50 Hz upto and including 500 Hz
of the 3 phases of the generated voltage, and stator and
rotor currents were extracted and processed as above. The
total features in each modality group consisted of 3 by 10
(11 orders excluding fundamental due to normalization). This
yields a total of 90 features in total when the modality groups
are combined. These features were extracted from the sim-
ulation and experimental data and used to train and test the
Naive Bayes, ANN and SVM classifiers in Matlab. Table 3
gives the four different classes corresponding to each of the
investigated machine conditions.

TABLE 3. Class assignment of different generator conditions.

Class label Generator Condition
1 Healthy
2 Brush fault
3 Inter-turn short-circuit fault (stator-winding)
4 Inter-turn short-circuit fault (rotor-winding)
0.025
Il Healthy
[ IBrush fault
0.0z Il Stator fault
I Rotor fault

0.015

Normalised Magnitude (stuN)
o
2

o
=)
S
W

1 2 3 4 5 6 7 8 9 10
Harmonic order

FIGURE 8. Simulated magnitude of phase U stator voltage harmonic
orders (excluding the fundamental due to normalization) for healthy and
fault conditions.

IV. RESULTS AND ANALYSIS

A. SIMULATION

Figures 8, 9 and 10 show one instance of simulated normal-
ized magnitudes of one phase of each modality - i.e. stator
voltage, stator current, and rotor current - for healthy and
each of the fault conditions. Multiple variation patterns across
different harmonics for each of the cases are observed. Only
the first 3 harmonic orders of the rotor current are shown
in Figure 10 as the other orders are relatively small to analyse
graphically. However, these harmonic orders are incorporated
into the classification system as they still provide valuable
variation pattern information.

Pattern classification is the act of assigning a class label to
an object, physical process or an event, based on some prior
information [32]. The behaviours of the phase harmonics of
each generator parameter measured display specific patterns
corresponding to each fault presented in this investigation.

VOLUME 7, 2019



E. F. Swana, W. Doorsamy: Investigation of Combined Electrical Modalities for Fault Diagnosis on a WRIG

IEEE Access

Il Healthy

0.045 1 [ IBrush fault||
0,041 I Stator fault | |
I Rotor fault
0.035

o
f=)
bl

0.025

0.02

Normalised Magnitude (XscuN)
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0
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FIGURE 9. Simulated magnitude of phase U stator current harmonic
orders (excluding the fundamental due to normalization) for healthy and
fault conditions.

0.6 T
Il Healthy

05k [ IBrush fault| |
Il Stator fault
[ Rotor fault

<
IS
T

Normalised Magnitude (chkN)
(=]
W

1 2 3
Harmonic order

FIGURE 10. Simulated magnitude of phase K rotor current harmonic
orders (excluding the fundamental due to normalization) for healthy and
fault conditions.
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FIGURE 11. Scatter plot of simulated instances indicating ground truth
and relationship between feature harmonics (induced stator voltage -
phase V).

These patterns are more noticeable in the scatter plots shown
in Figures 11, 12 and 13 which were generated using the
simulated data. The instances used in these scatter plots
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FIGURE 12. Scatter plot of simulated instances indicating ground truth
and relationship between feature harmonics (stator current - phase V).
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FIGURE 13. Scatter plot of simulated instances indicating ground truth
and relationship between feature harmonics (rotor current - phase L).

are shown in terms of only three features grouped accord-
ing to the different machine conditions. It should be noted
that despite analysing this small group of features, a varia-
tional trend between each of the machine conditions can be
observed. These preliminary simulation results indicated the
potential suitability of the selected modalities for classifying
the specific fault treated in this work.

B. EXPERIMENTAL

As with the simulation results, the variation patterns observed
across the different features were observed in the experi-
mental resulrs. Figures 14, 15 and 16 show one instance
of simulated normalized magnitudes of one phase of each
modality - i.e. stator voltage, stator current, and rotor current -
for healthy and each of the fault conditions. Here also, mul-
tiple variation patterns across different harmonics for each
of the cases are observed. The first 3 harmonic orders of
the rotor current are shown in Figure 16, as similarly with
the simulation results, the other orders are relatively small to
analyse graphically but are incorporated into the classifica-
tion system. Some of the experimental results are shown in
the form of scatter plots in Figures 17, 18 and 19.
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FIGURE 14. Experimental magnitude of phase U stator voltage harmonic
orders (excluding the fundamental due to normalization) for healthy and
fault conditions.
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FIGURE 15. Experimental magnitude of phase U stator current harmonic
orders (excluding the fundamental due to normalization) for healthy and
fault conditions.

C. FAULT DIAGNOSIS PERFORMANCE

The variation patterns observed in the simulation results
showed a strong case for building and testing of the classi-
fication system. The simulated data instances were thus split
and 80% were used training and 20% for testing. The sum-
mary and diagnostic accuracy of the classification system,
based on the simulation data, is given in Table 4. The best
overall accuracy achieved for the simulation case was 86%
with NBC. As this formed preliminary assessment of the
methodology, it was determined that the accuracy of the clas-
sification system could be improved and more experimental
instances for training and testing were therefore planned and
executed. The experimental data instances were split 75% for
training and 25% for testing. A summary of the experimental
classification system and diagnostic accuracy is also given
in Table 4. Overall, it was found that the incorrect fault diag-
noses occurred in the form of false negatives in cases of rotor-
winding inter-turn short circuit faults - i.e. rotor faults were
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FIGURE 16. Experimental magnitude of phase K rotor current harmonic
orders (excluding the fundamental due to normalization) for healthy and
fault conditions.
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FIGURE 17. Scatter plot of experimental instances indicating ground truth
and relationship between feature harmonics (induced stator voltage -
phase V).
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FIGURE 18. Scatter plot of experimental instances indicating ground truth
and relationship between feature harmonics (stator current - phase V).

present but were incorrectly classified as healthy. It should
be noted that ground truth in these cases were 3-turn faults
on the rotor winding thereby indicating that the presented
methodology may exhibit inaccuracy for lower level rotor
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TABLE 4. Summary of classification results.

Parameter Simulation data  Experimental data
No. of instances 60 120
No. of attributes 90 90
No. of train instances 48 96
No. of test instances 12 24
Accuracy
NBC 86% 99%
ANN 78% 99%
SVM 68% 50%
Overall error
NBC 0.09 0.019
ANN 0.12 0.008
SVM 0.16 0.25

winding faults or rotor winding faults at an earlier stage of
progression. Comparatively, ANN and NBC achieved the best
accuracy for experimental classification.

V. CONCLUSION

This paper presents an investigation of using a combination of
electrical signatures or modalities for diagnosis of stator and
rotor winding, and brush faults on a WRIG. It is shown that
the normalised frequency-based magnitudes of several har-
monic orders of the stator voltage and current, and rotor cur-
rent exhibit patterned variations under the investigated fault
conditions. The combined signals’ spectra information are
used as features to develop a classifier for fault diagnosis. The
results of the classifier training and testing, using instances
generated from a simulation model and complete experimen-
tal setup, is presented. The performance of the measurement
modalities, signals processing, and classifier for fault diag-
nosis yields a best experimental accuracy of 99%. The major
findings of the presented work are summarised as follows:

« The WRIG stator voltage and current, and rotor current
exhibit differing responses to each of the investigated
fault conditions. More specifically, the normalised har-
monic orders of the frequency spectra of the various
signals show grouped responses corresponding to the
ground truths or each of the conditions - i.e. healthy,
stator winding fault, rotor winding fault, and brush fault.
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« Due to high dimensionality of the response variations,
a suitable machine learning technique must be employed
to model the variation patterns. The combined use of the
spectrum information of the WRIG stator voltage and
current, and rotor current as features of a classification
system provide good fault resolution and high accuracy
fault diagnosis.

o The lower accuracy fault diagnosis for the specific case
of the rotor winding 3-turn inter-turn short-circuit fault -
i.e. false negative diagnosis - indicates that the presented
combination of signals does exhibit some weakness in
determining lower-level or earlier-stage rotor winding
faults.
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