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ABSTRACT Extracting indicative characteristics from the sensor data provide diverse avenues for improving
the well-being of the elderly people living alone in their homes through understanding and identifying
their behavioral patterns while considering any environmental changes. In this paper, we present a new
model to explore the challenges associated with mining patterns from the body sensor data and their
potential use in discovering regular human routines through mining periodic patterns from a non-uniform
temporal database. The non-uniform nature of the temporal database adds more challenges to the mining of
periodic patterns as the items may have different periodicity and frequency occurrences. Another challenge
is how to discover the correlation between the discovered patterns. In addition, we examine the context-
enriched periodic patterns which provide more insights about residents’ health. A new algorithm for the
contextualized-correlated periodic pattern mining from a non-uniform temporal database is presented along
with an extensive evaluation of its performance using a real-life dataset.

INDEX TERMS Activity monitoring, Apriori, body sensors, FP growth, productive periodic frequent
patterns, smart data, temporal database.

I. INTRODUCTION
Wearable body sensors have generally been utilized along
with data analytics to monitor and track human behaviors.
Wearable health devices such as fitness trackers and smart-
phones with embedded sensors have been greatly influential
and have increased the accuracy of tracking and monitoring
one’s health conditions. For healthcare domains, sensors data
analytics can help caregivers evaluate and provide personal-
ized patient assistance through monitoring of patient body
sensor data [1]–[3]. Such application can help prevent neg-
ative health outcomes in elderly people who live alone in
their homes or detect any abnormal lifestyle-related activities
that can be early signs of cognitive diseases [4]–[8]. More
specifically, analysis and learning of human behavior must
be performed to enable users to retain smart digital assistance
related to their personal lifestyle [9]–[12].

The associate editor coordinating the review of this manuscript and
approving it for publication was Giancarlo Fortino.

Activity tracking applications such as Fitbit and Argus add
more insights to improve user well-being and self-knowledge
by continuously monitoring the diverse space of users’ cur-
rent actions at any point including sleeping, exercising, diet,
or even commuting actions. When people with cognitive
impairment fail to complete their activities of daily living
(such as ‘use-toilet’ or ‘taking medication’ at the right time),
caregivers are typically responsible for tracking their behav-
ior and taking the proper action [13]–[17]. For example, when
‘‘diabetic glucose’’ measurements increase or decrease from
the regular daily values, a prompt is sent to provide assistance.
Additionally, if the heartrate (HR) increases sharply multiple
times after exercising, there is no need for any abnormality
alarm as the context of the patient has been changed by doing
exercises.

However, there are some challenges associated with the
monitoring of patient performance using body sensor data,
which impact behavior learning and tracking. In particular,
the captured sensor data contain (1) periodic parameters,
(2) interdependency, and (3) time-variance based on context.
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First, people are creatures of habit [15] and exhibit regularity
in following their normal lifestyle [9], [10], [16]. For exam-
ple, the normal blood sugar (BS) level is less than 100 mg/dL
before eating meals for at least 8 hours. Within 2 hours after
eating, the level should be less than 140 mg/dL. During the
day, the normal BS levels tend to be at their lowest values
just before meals. Therefore, normal human behavior often
follows a pattern of periodic recurrence in which the same
action tends to recur at certain, regular intervals. Second,
some of these periodic behaviors are interdependent and co-
occur frequently with other actions in the short and long term
(e.g., increase in BS after eating, reading before going to bed,
or using the toilet after waking up) [18], [19]. It is important
to exploring the correlations of actions to provide users with
what they need or prompt the right action at the right time
without asking them explicitly. For example, while modeling
the user actions in exercising, certain actions will follow such
as drinking water or the HR falling off sharply after running.
Third, over time, contextualized and accurate learning of
collected user data could further help health providers accu-
rately understand or detect any abnormality in users’ health
conditions. For example, the caregivers may need to modify
the diagnostic paradigm to suit the evolving characteristics
in patient performance. Thus, a context-aware approach is
required [20]–[22].

In light of wearable smart sensors and ambient assisted
living, great advances have been made in modeling human
behavior patterns, in particular in the space of activ-
ity modeling and tracking or recommender systems [23].
These works have focused in modeling human behavior
through repeated actions from captured videos, images,
or websites [20], [24]–[27]; action prediction [20], [28], [29];
periodic action prediction [16], [25], [26]; or learning context
[20]–[22]. These works have not jointly modeled all these
key aspects of user actions (periodicity, interdependence, and
context variation). However, failing to account for any of
the action characteristics results in degradation in prediction
performance.

Consider the following scenario, which illustrates how
personal actions are periodic and correlated and can change
depending on the context. Sara lives alone in her house. Every
morning, Sara goes to the park for a walk and does some
exercise. She returns home and takes a shower, then starts
eating her lunch. However, on Monday, she has a family visit,
and they eat lunch outside her house. Sometimes, when it
rains, she doesn’t leave the house and watches TV.

If we want to model a schedule for ‘‘exercise’’ activity,
we have to model the periodicity of exercising (i.e., every
day except in raining weather) and the following activities
(‘‘enter home’’, ’’take a shower’’, then’’ eat’’). The routine
will be changed if it is raining.

In our current work, we present a new model for the task
of modeling users’ actions. First, we handle the temporal fea-
tures of human activity patterns through mining periodic pat-
terns from a temporal sensor database. A temporal database is
a collection of dissimilar patterns (in terms of support count

and periodicity) matching usual human behavior ordered by
their timestamps. Determining the periodic patterns in a given
temporal database has two important sub-tasks: the first task
is how to determine the periodic interestingness of patterns
and then how to find the periodic patterns using such an inter-
estingness measure. Seminal works have considered pattern-
growth and its variation to find the periodic patterns from
transnational data or time series data. However, determining
the periodic interestingness of the patterns from temporal
database is a non-trivial task since there are multiple items
with the same inter-arrival time. Moreover, there are usually
time gaps between consecutive observations. The current
line of periodic pattern mining approaches has made a great
achievement in discovering temporal patterns. Unfortunately,
such approaches assess the interestingness of a pattern by
only taking its support into account. Another major limitation
of these studies is that they consider time series as a symbolic
sequence of itemsets and ignore the temporal occurrence
information about events in a series. This paper addresses
these challenges by exploring a new measure(s) to explore
the periodic interestingness of the patterns discovered from
temporal databases while considering the multiple patterns
occurrences timestamps and allow time gabs. Unlike exist-
ing periodic-mining algorithms, a new model is presented
to discover correlated periodic patterns from non-uniform
temporal databases. For each database item, the user has to
identify a maximum activity observation time (MAOT) to
the database. Thus, different patterns may satisfy different
period depending on their items’ MAOT values.Additionally,
a new periodicity measure (namely, the interested-recurrence
period of activity (IRPER)) is used to to extract the elapsed
time between pairs of database items. Thus, the non-uniform
distribution of items in a database is captured efficiently using
user-defined arrival time value and periodicity measures.
We also propose a new tree structure and a pattern-growth
algorithm that discovers the complete set of periodic patterns.
As the dependency between patterns varies across actions,
a productivity test is used to find the correlation between
various numbers of activity patterns.

Nevertheless, learning context during periodic patternmin-
ing will increase the accuracy and productivity of the min-
ing results. In different applications domains [30]–[32], [32],
context encoded as Features for the model and the model
variables must be represented in a single scale. For example,
considering only day as a context variable as opposed to the
whole weekend. However, this can be risky in light of the fact
that themost reasonable scale depends on the feature selected.
Moreover, these models will not scale well with the addition
of more context features, and still need still require further
research to be applicable to real-world applications. Also,
Context are modeled as rules in the model analysis which
limits the model’s flexibility by adding more factors to the
context learning process. Finally, some approaches model the
context as a slicing dimension in the data-preprocessing step
by creating a different model for each context variable. This
methodology has been proven to be more effective in context
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learning process. In our current work, we extend the regular
pattern mining algorithm by adding the context as a slicing
dimension to provide a continued learning process of human
behavior patterns without storing the monitored data. A new
tree structure is defined to capture the context variation of
users. To the best of our knowledge, this is the first study that
considers the problem of finding contextualized correlated
periodic patterns of temporal databases.

Our proposed model flexibly mine the temporal database
with the specified users’ constraints for the arrival time
interval of each activity with one database scan over the
collected data. Additionally, the correlation between the dis-
covered patterns is identified, and any random pattern is dis-
carded. Finally, we manage the different context parameters
for exploring the unnoticed interestingness of the discovered
periodic patterns.

A. CONTRIBUTIONS
1) We explore the problem of mining and assessing

the periodic interestingness of human actions through
mining a non-uniform temporal database of human
actions using a novel tree-based data structure called
a Temporal Correlated-Periodic tree (TECP-tree) with
a single database scan. Our algorithm allows database
items to have different periodicity values by let-
ting the user specify an inter-arrival time for each
item.

2) We then design an efficient FP growth-inspired algo-
rithm TECP-growth to recursively mine the TECP-tree.

3) We model the interdependency between the discovered
patterns through a productiveness test to ensure only
the correlated users’ actions are discovered.

4) To adapt the user context to the mined patterns,
we model the context variation of users’ actions that
may otherwise go unnoticed in the TECP-tree and
devise a new-context TECP-tree.

5) We demonstrate the usefulness of the proposed algo-
rithm throughmining various users’ activities and daily
routines and comparing the findings with the current
existing algorithms.

II. RELATED WORK
Over the last few decades, body sensor data mining has led
to many accomplishments and solutions for understanding
human life routines. Furthermore, temporal features discov-
ered from body sensor patterns add more important insights
for the purpose of monitoring human daily life and wellness
tracking. For instance, these data can help provide a complete
view of the patient’s situation and determine the regular val-
ues of body measurements [33], [34]. In this section, we will
review some of the recent work related to learning human
behavior patterns. First, we will review some recent human
behavior learning and monitoring approaches. Then, we will
review some of the work related to human behavior pattern
mining from sensor data.

A. LEARNING AND MONITORING HUMAN
BEHAVIOR APPROACHES
The scientific research community has effectively addressed
the idea of remotely monitoring patients’ health status using
smart wearable sensors.

With the widespread development of Internet of Things
technologies in the context of wellness and healthcare,
the remote screening of human daily life has led to improved
quality of life by reducing or even preventing critical events
(e.g., preventing the most probable death causes like heart
attack).1

A real-time analysis for processing and extracting knowl-
edge fromwearable sensors (such as accelerometers, proxim-
ity sensors, HR-monitoring chest straps, and gyroscope data)
guided various innovations and improvement in tracking
health conditions and diagnostic procedures. Greco et al. [1]
proposed an Internet of Medical Things architecture for real-
time analysis of a stream of data from wearable sensors. The
architecture is composed of 4 layers: sensing, pre-processing,
cluster processing, and persistence. After collecting and pre-
processing the data, the cluster processing layer is used to
collect semantic data and detect any abnormality. Finally,
any further analysis needed can be done using the collected
data stored at the persistence layer. Similarly, Suryadevara
and Mukhopadhyay [2] present a monitoring system based
on Wireless Sensor Network technology. The system is capa-
ble of monitoring home residents’ vital signs like HR and
motion rate. The system prompts an alert for any connected
caregivers if it detects any abnormality event in body mea-
surements due to falls, tachycardia, or bradycardia. Elbay-
oudi et al. [35] introduce a new approach for understanding
any progressive changes in human behavior. The proposed
approach can find the relationship between the gathered sen-
sory data and interpret them in a meaningful manner using
trend analysis techniques when interpreting human behavior.
In [36], the Walking and Transition Irregularity Detection
using an Artificial Neural Network model is designed to
determine abnormalities in walking and transition pattern.
The experimental analysis of the proposed model shows that
the model can accurately determine the irregularities with
100% accuracy in the postures. Kim and Cho [37] present a
new system for web traffic anomaly detection. Web traffic
data are the amounts of website data sent and received by
online users. The proposed system uses a hybrid of the con-
volutional neural network and the long short-term memory
recurrent neural network known as C-LSTM.

The goal of human tracking is to identify the next event
based on occurrences of past events [33], [38], [39]. The
Active LeZi (ALZ) algorithm [40] approaches have achieved
great success in this area. Without requiring any domain-
specific information, the ALZ algorithm provides an online
sequential activity prediction framework for tracking human
behavior. The developed sequential prediction algorithm was
experimentally analyzed on MavHome smart home environ-

1World Health Organization Statistics, 2017, http://www.
who.int/mediacentre/factsheets/fs310/en/
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ment collected data [41]. In [42], the researchers presented
LeZi-update, an algorithm for the prediction of a resident’s
location as application in cellular communication-connected
networks. The LeZi-update model uses an unsupervised
pattern-matching algorithm to provide an alphabetic symbol
representing the sensed smart environments. In this way,
the algorithm is a string of symbols capturing the resident’s
movement history.

Furthermore, Cook et al. [41] propose an architecture to
detect any abnormal situation in smart environments using a
multi-agent architecture. This architecture has a component
layer for human activity prediction that works in a simi-
lar way as the active LeZi algorithm. Additionally, Tapia
et al. [43] introduce a prompt system using the activity-
prediction component. The system automatically fires a tex-
tual or verbal prompt to prevent accidents. Additionally,
Mahmoud et al. [44] build a prediction model for predicting
elder behavior in smart environments. The researchers also
employ a different type of artificial neural network to build
their model. The experiment analysis claims that the recurrent
neural network can achieve seminal results in the discovery
of temporal relationships between activity patterns.

To overcome the offline data segmentation limitation of the
proposed work, the researchers in [45] discuss an extension
of their approach to provide a real-time general activity-
prediction model. A sliding-window technique was used to
extract activity features over the real-time collected data.
Recently, an activity-forecasting algorithm was proposed by
Minor and Cook [46] for activity prediction from a smart
home. The algorithm can automatically forecast the time
of the resident’s activities using a regression tree classifier.
Additionally, Kurashima et al. [9] discuss a model for pre-
dicting the higher set of resident actions that will occur such
as going for a run or watching a movie.

Despite the great ability of the proposed models to pre-
dict activity patterns, many of them are typically designed
for constrained situations with pre-segmented data. More-
over, many other works cannot discover the periodic behav-
ior routine and ignore the interestingness of adding context
to human behavior while discovering their habits. More-
over, some approaches use Markov models to capture the
dependencies between human actions with works such as
Unix commands [47], interface adaption [48], clicks on web
search [49], user behavior anomalies, and future location-
based check-ins [47], [50], [51]. However, Markov models
are inefficient in capturing the dependences in huge search-
space since the overall state-space will grow exponentially in
the number of time steps considered [51].

B. PATTERN-MINING APPROACHES
Another set of approaches for modeling and predicting
human situations is based on mining behavioral patterns.
An infinite sequence of collected data generated from res-
ident tracking and monitoring wearable devices is defined
as a stream. Several researchers have focused on automatic
recognition of simple and complex daily life activities from

stream data [42], [52], [53], such as walking, cooking, and
taking medication.

FP-mining algorithms discover the frequently occurring
patterns in a given dataset. An item is considered a fre-
quent pattern by counting repetitions with respect to the
given user constraint. Frequent patterns can efficiently model
human behavior [54], [55]. In the activity tracking and mod-
eling applications, if a resident’s behavior has occurred
enough times, it is considered a frequent behavior pattern.
Recently, there is an increasing trend of using sequential
FP-mining algorithms from smart home data. Moreover,
the mining algorithm can be adequately performed on small
computing devices such as mobile phones [55]. FP-mining
approaches [56] have been applied in smart home stream
data to generate sequential patterns through multiple passes.
Some of the streaming FP algorithms use a sliding-window
technique to keep the most recent frequent pattern. When a
new observation is inserted into the database, the older data
are discarded, and new data are added. Thewindow size keeps
growing to adapt to the incoming data [57], [58]. Despite
the seminal work achieved through sequential FP-mining
approaches in learning human behavior, some particular-
ities are not handled by these common algorithms like
handling the ordering of activities, dependences, and user
context.

TiMe [59] is an efficient framework for mining FP from
stream smart home data. TiMe is an unsupervised pattern-
growth-inspired approach. A prefix-tree is used to summa-
rize the stream data considering both time and context data.
A sequential pattern learned through the model can help
to schedule the resident’s activities efficiently. Additionally,
the context variation can be added to accurately model human
behavior.

The discovery of temporal relation between human pat-
terns can add more insights into human life; for example,
‘‘Dressing’’ and ‘‘Leaving the House’’ activities often co-
occur in the morning. In [60], the researcher presented an
algorithm to define the temporal resident activities given a
user-defined calendar schema. An association rule mining
algorithm is used to define the temporal relation between user
patterns during time intervals. Although mining temporal
association rules is well defined and researchers have devised
a number of algorithms in the literature to efficiently discover
temporal activities patterns, some challenges remain.

Nazerfard [33] proposed a Temporal Features and Rela-
tions Discovery of Activities (TEREDA) framework for pre-
dicting human behavior considering the temporal features
of activity pattern. An FP growth-inspired algorithm is used
to find association rules of human patterns, and then the
Expectation Maximization (EM) clustering method, is used
to classify the discovered activities based on the time of
their occurrence. The discovered temporal relations can be
used to detect any abnormality or prevent any health obsta-
cles. For example, the ‘‘Eating’’ activity has a 50% likeli-
hood of being a successive activity of ’’Taking Medication’’.
However, while the discovered patterns well addressed the
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dependencies between human patterns, the number of gen-
erated patterns could be cumbersome and confuse the care-
givers regarding how to choose or expect the next activity
between the discovered patterns. Additionally, the mining
time will increase with the number of observed stream data.

In [59], the Extended Episode Discovery algorithm is
described to detect regular activity patterns in smart homes.
The algorithm first searches sequentially for frequent
episodes characterizing human patterns using an FP growth-
mining algorithm. Then, a Gaussian Mixture Model searches
for the periodic episodes to discover the most interesting
ones, which increase the computation and evaluation time of
the episode’s discovery process.

Similar to our problem, a number of seminal works have
considered the task of discovering periodic patterns from
a transactional database. The periodic-frequent pattern is
defined as an important class of interesting patterns that occur
frequently and periodically in time series data. A great deal
of attention has been paid to the problem of finding these
patterns [62], [64], [65]. All of these studies have considered
time series as a symbolic series, and the events’ temporal
occurrence information has been ignored. Tanbeer et al. [62],
[65] have devised many algorithms for periodic pattern min-
ing from a transactional database.

A prefix-tree structure is used to compress the given
dataset, and then a pattern-growth is used to discover periodic
patterns using double scan over the given data. The periodic-
ity measure that was used, MaxPer , cannot discover patterns
that occur partially in the database and, thus, could lead
to missing important patterns. To overcome the mentioned
limitations, a number of studies have considered different
periodicity measures to characterize the periodic pattern, but
still, the non-uniform nature of the temporal database has not
been resolved. A temporal database has different observations
with the existence of timestamps. Different items may occur
with different inter-arrival times to the database and, thus,
different periodicity values. Venkatesh et al. [63] provide a
new algorithm to mine the periodic patterns from a temporal
database. A new measure, periodic-ratio, is used to record
the different pattern periodicities. The algorithm devises a
simplified model to discover interesting periodic patterns,
but it does not consider the correlation between the discov-
ered patterns. Moreover, the double passes over database
items make it difficult to apply over stream data, as in our
case [63], [66], [67].

As certain patterns may have some correlation with some
other patterns, another line of work considers the correla-
tion between periodic patterns to eliminate the randomly
generated patterns. In [61] and [67]–[69], the body sensor
data correlation is examined, and the correlation (high HR,
high blood-pressure) can be efficiently discovered and mod-
eled. However, how to discover such information from a
temporal database is an open issue that must be resolved.
Context-aware batch learning algorithms have also been
proposed [21], [22], [70]. To sum up, the discovered chal-
lenges are as follows:

• First, the body sensor dataset includes timestamps. The
timestamps imply the time of activity occurrence or,
specifically, the sensor triggering time. Moreover, each
dataset item can have different time gaps and regularity
values. Despite the great achievement of the proposed
works, this issue is neglected.

• Second, how to discover the temporal dependencies
between discovered patterns from a non-uniform tem-
poral database.

• Third, context-aware mining algorithms use batch pro-
cessing and have not adapted to stream-mining algo-
rithms. Thus, an algorithm to consider stream mining of
contextualized behavior patterns is important to provide
accurate learning of behavior patterns.

This paper addresses these challenges. Unlike existing
periodic-mining algorithms, a new model is presented to dis-
cover correlated periodic patterns from non-uniform temporal
databases. For each database item, the user has to identify its
arrival time to the database, and a new periodicity measure
is used to assess the different period of each database item.
Thus, the non-uniform distribution of items in a database is
captured efficiently using user-defined arrival time value and
periodicitymeasures to extract the elapsed time between pairs
of actions. We also propose a new tree structure and a pattern-
growth algorithm that discovers the complete set of periodic
patterns. As the dependency between patterns varies across
actions, a productivity test is used to find the correlation
between various numbers of activity patterns. Finally, a new
tree structure is defined to capture the context variation of
users. To the best of our knowledge, this is the first study that
considers the problem of finding contextualized correlated
periodic patterns of temporal databases. Table 1 summarizes
the major characteristics of the proposed work compared to
activity-monitoring and pattern-mining approaches.

III. PROBLEM DEFINITION AND PROPOSED
FRAMEWORK
This section presents the definitions used for modeling and
factorization of human behavior to retrieve interesting pat-
terns and their occurrences. Let a set of user activity labels
A = {a1, a2, . . . , an} be generated from a set of sensors
S = {S1, S2, . . . Sn} disseminated in a smart home. A set
of activities ai is called a pattern. A pattern containing k
items is called a k-pattern. The length of this pattern is k for
an epoch epch = (epid; ts;Y ) such that X ∈ Y , the sen-
sors’ generated events (epoch) are composed of the triggered
sensor’ identifier (epid), an occurrence’ timestamp (ts) and
Y is an itemset occurring in an epoch. An activity pattern ai
may have multiple inter-arrival time intervals (MIAT) during
the day - for example, a MIAT in the morning or noon.
A temporal Sensor database TSDB is an ordered set of epochs,
i.e. TSDB = {epch1, epch2.epchm}, where the m = |TSDB|;
represents the size of TSDB. Let the maximum and minimum
timestamp in TSDB is tsmax , and tsmin respectively. Let the
ordered list of observations’ timestamps of activity ai in
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TABLE 1. Summary of the characteristics of activity mining and monitoring approaches.

FIGURE 1. Toys’ story input stream.

TSDB be COVts(X ) = (tsXa, tsXb, . . . , tsXc), abc. The support
count of ai in TSDB is the total coverage of ai in TSDB divided
by the database size and is denoted as

SuptSDB(ai) =
COVts(ai)
|TSDB|

. (1)

Example 1: A toy example dataset with 15 events span-
ning four days (d1; d2; d3; d4) presented in Figure 1. Five
activity labels (i.e. ‘‘Enter Home’’, ‘‘Cooking’’, ‘‘Eating’’,
‘‘Take Medication’’, ‘‘Relaxing’’) are used as a running
example.

Table 2 is the TSDB extracted from Fig1. In the first
sequence of activities, epch1 = (S1;1; ‘‘Enter Home’’,
‘‘Cooking’’, ‘‘Eating’’, ‘‘Take Medication’’), S1 represents
the epchid , 1 represents the occurrence’ timestamp of this
epoch and the remaining labels represents the activities occur-
ring in this transaction. Other epochs in this database follow
the same representation. The TSDB database size is m =
12. The minimum timestamp tsmin = 1, and maximum

TABLE 2. Sequence of epochs generated from Fig. 1.

timestamps tsmax = 12. Many routine behavior observa-
tions can be extracted from the database, such as (Enter
Home, Relaxing, or Cooking and Eating). The pattern P(Ce);
‘‘Cooking’’, ‘‘Eating’’ occurs three times in epochs whose
timestamps are 1, 4 and 10, respectively, with MIAT occurred
in full-day constraints. Therefore, Ts(Ce) = (1, 4, 10). The
length of this pattern is 2, and Sup(Ce) = 3/12.
Definition 1 (A Frequent Activity Pattern ai): is an activ-

ity ai that has a total number of observations greater than or
equal to the minsup(ai) value given by a user in specific time
points in a circular time space, i.e. every day.

To achieve the goal of having lower periods of frequent
candidate activities and, at the same time, increasing the
period for frequently occurring activities without missing any
values, we allow the user to identify his or her preferable
maximum activity observation time.
Definition 2 (Period of Activity ai): Let MAOT be the

user-defined maximum activity observation time for an activ-
ity ai. The period of pattern X , denoted as PER(X), represents
the maximum occurrence timestamp of all item in X ;

PER(X ) = max(MAOT (Y ,Z )), (Y ,Z ) ∈ X ). (2)

Example 2: Let the MAOT values for the activities
‘‘Cooking’’, ‘‘Eating’’ be 5 and 10, respectively. The period
of the pattern ‘‘Cooking’’, ‘‘Eating’’, i.e., PER(Cooking, Eat-
ing) = max (5; 10) = 10.
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Definition 3 (The Interested-Recurrence Period of Activity
ai): Let ts(j+1)(ai) and ts(j)(ai); represent the consecutive
timestamp occurrence of activity ai in TSDB. The period of
activity ai denoted as PR1(ai) = ts(j+1)(ai) − ts(j)(ai), rep-
resents the difference between two consecutive occurrences
of the activity in a cyclic period. The period of activity
of interest ai, denoted as IRPER(ai), represents all periodic
values PR(ai) for activity ai whose value are less than or equal
PER(ai):

IRPER(ai) = (PR1,PR2..PRn), (∀PR(ai) 6 PER(ai)).

(3)

Example 3: From Example 2, the MAOT values for the
activities ‘‘Cooking’’, and ‘‘Eating’’ is 4. The occurrence
period of the pattern Ts(Ce); (Cooking, Eating) = {1, 4,10}
and PER(Cooking, Eating) = {3, 7}. Now the interesting-
recurrence period IRPER(Ce)= {3, 7} as their values are less
than MAOT(CE) = 10.

Based on the toy dataset, one can observe that, for normal
daily behavior, humans follow different routine activities
within a day (e.g., Entering Home, Cooking, Eating, Relax-
ing). Moreover, each activity has a preferential occurrence
time (mean), and it can vary (standard deviation) within a day,
for example, sleeping in the afternoon (for 1 hour) or sleeping
in the night (for 7 hours). To allow such flexibility, we use the
following formalism.
Definition 4 (The Occurrence Interval of Activity ai): Let

(IPX∈ Per(X)) be the set of interested periods such that,
∀p ∈ IPX , p 6MOST. Then the periodicity of activity ai
is defined as occurred in time interval [ts − σ, ts + σ ] with
average periodicity (ts) with standard deviation σ . where
ts = avg(IPX ) and σ =

∑n
k
(IPX−ts(IPX ))

n
2

Definition 5 (Problem Definition): Given a temporal sen-
sor database TSDB, a user-defined minimum support thresh-
old SupTSDB(ai), maximum period maxPrd , minimal-itemset
occurrence threshold MOCL, periodicity measure per , a pat-
tern ai and period of interest IPX. ai is periodic frequent
sensor pattern if:

SupTSDB(ai) > ω, |LIPai | > MOCL,

(per − D) ≤ (avgPr(LIPai )− std(LIPai ))

and(avgPr(LIPai )+std(LIPai )) ≤ (per+D).

(4)

IV. PROPOSED MODEL
Fig. 2 illustrates the architecture of the Temporal
Discovery of Contextualized-Correlated Periodic-Frequent
Patterns (TEDCP) model for discovering the key human
behavior with all three key properties: (1) periodicity, (2)
correlation between actions, and (3) context propensities of
actions. The TEDCPmodel consists of two main components
the temporal feature and relation discovery and the adaption
component. Each component will be described in more depth
in the following sections. The proposed TEDCP model is
an unsupervised learning model; it avoids the need for a

FIGURE 2. The proposed model architecture.

human activity labeling process. The input is a stream of
sensors’ epochs collected from various sensors disseminated
in smart homes. Each epoch has an optional activity label,
sensor identifier, and timestamp. Each iteration of the TEDCP
model has three steps:

• The discovery of periodic-frequent patterns
(Section IV-A),

• The factorization of the most interesting periodic pat-
terns through correlated pattern mining (Section IV-B),
and

• Adaption to context constraints via contextualized peri-
odic pattern mining (Section IV-C).

A. THE DISCOVERY OF PERIODIC-FREQUENT PATTERNS
The first component in the TEDCP model is the temporal
analysis of user actions for the discovery of his or her daily
routine. The input stream presented in Fig. 1 as an example
has a set of epochs’ observations. Each epoch is represented
as epch = {Activityname, sensorid , tsstrart , tsend}. In line 1,
the tuple indicates that the activity ‘‘Enter Home’’ starts on
March 2 and ends at the same time.

After preprocessing the input stream to match the structure
given in Table 2, the algorithm compresses the collected
events into a Temporal Correlated-Periodic tree (TECP-tree).
The TECP-tree summarizes the database in a way that can
be used by an FP-growth-like mining algorithm to find all
periodic activities patterns. The pattern-mining phase runs
only at the end of each day. In the following subsections,
we discuss the details of TECP-tree structure design and
construction and then explore the details of mining periodic
patterns.

1) TECP-TREE DESIGN AND CONSTRUCTION
Several approaches have been discussed in the literature to
address the problem of discover frequent patterns. Aggarwal
et al. [71] propose the first generate-and test approach to dis-
cover frequent patterns with multiple database scan. Several
improvement have been made to this approach, to overcome
the limitation related to increase in mining time with more
items being inserted to the database. Han et al. [72] devised
a new model to generate the frequent patterns without any
candidate test using a divide-and-conquer strategy. Fp-growth
works as follows: first it summarize the input transactional
database information by creating an FP-tree instance. Subse-
quently, it uses a recursive process to divide the compressed
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Algorithm 1 Periodic Patterns Mining Algorithm
Input : STDB: a sensor time series database, X : set of

items, sup: support counts,MOTS: minimum
interval time, Per : periodic-support

Output: A set of periodic patterns
1 Let t = tscur X denote the current transaction
timestamp with tscur for pattern X ;

2 foreach epoch tscur ∈ STDB do
3 if ti 6= NULL then
4 foreach (item x ∈ X) do
5 if support(x) == 0 then
6 /
7 end
8 * it is first occurrence */ Set sup(x) = 1 and

TC = tscur ;
9 if tscur − TC ≤ MOTS then
10 add tscur − TC to tscur .IRPR;
11 Per(x)++;
12 end
13 Set ++ sup and lt = tcur ;
14 end
15 end
16 end
17 Insert all calculated values for x into TECP− HT ;
18 Sort the candidate items in TECPHT in support

descending order of their MOTS ;
19 values items with similar MOTS values are sorted in

support descending order ;
20 Call build-tree(TECP− HT , Tree);
21 Update TMCP− HD table;
22 Call TMCP− growth (TMCP− Tree, null);

database into a set of conditional tree and its pattern base
tree to generate the complete set of frequent patterns. Using
this strategy, the FP- growth algorithm reduces the number
of database scans efficiently and eliminate the requirement
of multiple candidate generation. FP-growth algorithm is
an efficient and scalable test-only approach (i.e., does not
generate candidates, and only tests for frequency). However,
the static nature of the FP-tree still limits its application in
many real life application that may have huge amount of con-
tinues data like the stream data. Moreover, it only handles the
frequent items in a database and it is a two-pass solution [73].

A TECP-tree has two components: a TECP-HT header
table and a prefix tree. The TECP-HT consists of each
database item (act) with MOTS, support (sup), periodicity
(per), current occurrences’ timestamp (ts − current), and a
pointer to link all item occurrences in the prefix-tree with
the first node. The structure of the TECP-tree resembles the
prefix-tree in an FP-tree node [72]. However, the nodes in
the TECP-tree do not capture the items’ frequency; instead,
the TECP-tree has an occurrence timestamps list, ts − list ,
to keep the items’ arrival times for each epoch in the
database. The ts− list is maintained at the last node of every

epoch. Now, we will explain the TECP-tree construction
process. Algorithm 1 is used to discover the complete set of
periodic patterns as follows.

The tree is constructedwith one database scan.When a new
sensor reading is observed, an activity sequence is created.
For example, from the input stream given in Fig. 1, some
sequences are obtained as in Table 2. For each new sequence,
the TECP − HT is updated with their minimum occurrence
timestamp (MOTS), support, and periodicity values (lines 1-
16 in Algorithm 1). An ascending order of MOTS is used to
resort the header table to resolve memory (line 17). Then,
the TECP-tree building procedure is executed (line 18). The
root node is created and labeled as ‘‘null’’ (line 1 in Algo-
rithm 2). For each sequence, if the activity is new, then a head-
node is created with its label from the empty root. If a node
already exists, then we have to check and update the ts-list
with the epoch id at the tail node. Otherwise, a head-node is
created (lines 2-10 in Algorithm 2).

Algorithm 2 Build-TMCP-Tree (TMCP-List, Tree)
Input : TMCP− list and Tree
Output: Updated TECP-Tree, Updated

TECP-HD-Table.
1 Create an empty root node ;
2 foreach (sorted epoch l from the given L TMCP-list) do
3 if (l has child N such that l.name 6= N .name) then
4 Create a new node N and add N .parent to the

tree ;
5 end
6 Update N-structure by joining its nodes with similar

nodes names ;
7 if (l is the final item in the of TMCP− list & N is

ordinary node) then
8 Assign an epchid-list to N ;
9 update epchid-list ;

10 end
11 end
12 Call Build-TMCP-tree (L,N ) ;

Fig. 3(a) shows both the TECP-HT and TECP-tree
generated by scanning the first epoch ‘‘S1’’ (line 1 in Algo-
rithm 1), ’’Enter Home, Cooking, Eating, and Take Medi-
cation’’, which leads to adding a new node to the tree and
update its entries in the TECP-list . After inserting S5, all
TECP-HT entries are updated, and no new nodes are created
since the node already exists. ‘‘Cooking’’ and ‘‘Take Med-
ication’’ and ts-list are added at the tail-node with ts = 5
as shown in Fig. 3b and c. Finally, for each entry in the
header table, items with periodicity observations less than
PER are eliminated; then, the remaining items in TECP-HT
are sorted in ascending order of their MOTS values (Algo-
rithm 3). To achieve memory efficiency, support-descending
order sorting is used for items with similar MOTS values.
This sorting is reflected in the TECP-tree as well by using
Branching and Sorting method [72]. Fig. 3(d) shows the
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FIGURE 3. The TECP-tree construction process. (a) TECP-tree after inserting the first epoch. (b) TECP-tree after inserting the third epoch ’’S3.’’ (c) TECP-tree
after scanning the entire database. (d) The final sorted TECP-tree.

Algorithm 3 TECP-Growth(tree, α)

1 foreach (bottom-most item I in TECP) do
2 if (I is periodic-frequent item) then
3 Generate pattern β = I ∪ α ;
4 Construct the conditional-base for the periodic β

pattern ;
5 end
6 Call TECP-growth(Sβ -Tree, Sβ ) ;
7 Remove node I from the tree and push the

epchid − list to its parent nodes ;
8 end

sorted TECP-HT and TECP-tree. The following discussion
explains the TECP-growth algorithm that discovers the com-
plete set of periodic patterns from the TECP-tree.

2) THE PATTERN-MINING PHASE
TECP-growth is an unsupervised FP growth-inspired algo-
rithm used to mine the TECP-tree. For each node of the
prefix tree starting with an initial length−1 X suffix pattern,
we calculate the Xs−’IRCEP set of periodicity values. Algo-
rithm 3 describes the procedure for finding periodic patterns
in a TECP-tree.

1) If the IRCEP is matched with the user requirement,
then consider this pattern a periodic-frequent length-
1 pattern.

2) Construct X suffix pattern sub-database with the set of
prefix paths in the TECP-tree.

3) Construct X conditional TECP-tree.
4) Recursively mine the pattern TECP-tree.
5) Concatenate the suffix of X-pattern with the periodic

patterns generated from the conditional TECP-tree.

6) Finally, prune the X suffix pattern from the original
TECP-tree and update the TECP-HT as well.

B. DISCOVERY OF DEPENDENCIES BETWEEN ACTIONS:
CORRELATED PATTERN MINING
Discovering temporal relations among human actions can
leverage more insights into the daily daily routine. The corre-
lations among the discovered periodic patterns will help in
determining the order of activities and randomly eliminate
co-occurring activities, i.e., we can explore the more produc-
tive probable activities following a specific activity. Through
the ‘‘temporal relation discovery’’ component, we explore
the possible correlated activities patterns. These patterns of
actions can be cyclic in all databases or even occur within
a short period. To leverage these correlations among actions
and report only the associated behavior patterns, we use the
productive-association test as proposed in [74] as follows.
Property 1: An periodic frequent pattern, A in TSDB,

is a productive pattern if, ∀ (A1, A2) such that, (A1⊂ I), (A2
⊂ A), (A1 ∪ A2 = A), and (A1 ∩ A2 = ∅), then,(
|TSDB| − avgPr (A)
avgPr (A) . |TSDB|

)
>

(
|TSDB| − avgPer (A1)
avgPer (A1) . |TSDB|

×
|TSDB| − avgPer (A2)
avgPer (A2) . |TSDB|

)
(5)

Proof: Similar to the productivity test proposed in [74]:
For any periodic pattern An,

|TSDB|−avgPr(An)
avgPr(An).|TSDB|

can be re-

written as |TSDB|−avgPr(An)avgPer(An)
×

1
|TSDB| where

|TSDB|−avgPr(An)
avgPr(An)

=

covTSDB(An)
|TSDB| = SupTSDB (An). Hence the productive test can be

utilized as follows:(
|TSDB| − avgPr (x)
avgPr (A) . |TSDB|

)
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>

(
|TSDB| − avgPr (I1)
avgPr (A1) . |TSDB|

×
|TSDB| − avgPr (A2)
avgPr (A2) . |TSDB|

)
= SupTSDB (A) > SupTSDB (A1)× SupTSDB (A2) (6)

Based on Property 1, we define a productive pattern as fol-
lows.
Definition 6 (Productive Periodic Frequent Pattern Test):

A PPFP,A in TSDB, is a productive Periodic Frequent
Pattern If (∀ A1, A2 such that, A1 subset A, A2 subset A,
A1 ∪ A2 = A, and A1 ∩ A2 = ∅, Property 1 is satisfied.
With productive patterns, we can choose which of several

periodic co-occurring patterns are correlated. Additionally,
we measure the accuracy of each generated pattern (obtained
for different period values) with the following formalisms.
Definition 7 (Expected Occurrence of Activity ai):

Expected occurrences of a correlated pattern matching prop-
erty 1 are said to happen as expected. If several occurrences
happen in the same expected interval, the expected one is the
one closest to the expected date. The others are extra, non-
correlated periodic occurrences.
Definition 8 (Accuracy of Correlated Pattern): The accu-

racy of a correlated periodic pattern in its validity interval is
the number of occurrences happening as expected (Defini-
tion 8) divided by the total number of expected occurrences.

To provide a more precise understanding of the temporal
correlation discovery component, we consider the follow-
ing notations. From the set of discovered periodic patterns,
A,B,C,D is the set of periodic activities. The temporal cor-
relation ‘‘B follows A’’ or A⇒ B is ultimately obtained.
Oncewe obtain the set of correlated instances, the accuracy

definition is used to ensure the accuracy of the discovered
actions routine in a specific time routine.
Example 4: Considering Table 2, we can see the activ-

ity ‘‘Entering Home’’ followed by ‘‘Eating’’,’’Relaxing’’,
or ‘‘Taking Medication’’. The temporal relation {’’Enter-
Home’’⇒‘‘Taking-Medication’’} is the most probable activ-
ity discovered based on Property 1

C. DISCOVERY OF CONTEXT-ENRICHED CORRELATED
PATTERNS
Human context can affect human behaviors, for example,
the time of day or season (e.g., more time spent watching
TV on the weekend or eating in the morning and at mid-
day). Thus, a better understanding and handling of context
constraints is very helpful and will add insights into ambient
assisted living and help to discover unnoticed patterns.

Continue with the example scenario presented in the intro-
duction. Sara’s normal lunch and exercises routine can be
expressed using the following equations:

1. (Activity: ‘‘Excersise’’, context: ‘‘AllDay’’)
2. (Activity: ‘‘Eating out side’’, context: (dayofweek,

‘‘Monday’’))
3. (Activity: ‘‘No Excersise’’, context: (Weather, ‘‘Rain-

ing’’))
A flood of alarms on Monday will be sent to her care-

givers when she does not have lunch at home. Additionally,

FIGURE 4. The ‘‘Relaxing’’ activity node in the context TECP-tree
considering day of week.

the context learning improves the understanding of Sara’s
exercises routine during rainy days. Therefore, understanding
and learning the context during the process of human behav-
ior patterns mining could deepen the knowledge about the
user life routines. Therefore, we add the context variations
during the process of mining human habits so we can:

1) Interpret normal and abnormal situations accurately.
For example; not doing ‘‘excises’’ during ‘‘weekends’’
is a normal behavior under the condition of weekends
vacations.

2) Identify a set of patterns that occur exclusively to
specific circumstances; for example; personal routines
could change depending on the seasons or weather.

To better represent reality, we model the general context
data such as weather and temporal precisions like time of day,
seasons, or even gusts as follows.
Definition 9 (Context Attribute C): C = c1, c2, . . . , cn.

Let a context attribute C be the set of property constraints
characterizing human actions, environment, or situations dur-
ing the time interval ts when it took place. During each time
interval ts, the set of most relevant values for each context C
is determined using a function.

In TEDCP, we slice data based on each context attribute
and consider the subset that matches the context constraint.
Therefore, we mine only a subset of the correlated pat-
terns generated from the temporal relation discovery compo-
nent based on the considered context. To record the context
observation for each activity, we add a context identifier
to the TECP-tree node. Namely, the node in the contex-
tualized TECP-tree is represented as |I ,Ts(i), cnxt,Pt|(I ))
is the activity name; Ts(i) is a pointer of the occurrence
timestamp of each context; (cnxt) is the context name; and
(Pt) is a pointer to the complete context domain. Each con-
text attribute has a taxonomy tree represented in the for-
mal model using the is-a relationship among values of the
attribute’s domain similar to the work presented in [22]. The
node in the context TECP-tree(s) is itself a TECP-tree node
except that the ts list (i.e. Ts(i)) is stored at the root context
node to record all the timestamps of the context occurrences
instead of the tail-node list. In the following formalisms,
we discuss the construction and mining of the context
TECP-tree.

TEDCP is based on the correlated Periodic-Frequent patter
mining algorithm. A user defined MAOT measure, deter-
mines the regularity of pattern X in a given database.
In human behavior analysis, if the human routine has been
detected enough time with the specified period, this rou-
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tine is considered as regular routine. Additionally, if context
condition C for specific activity has been seen periodically
enough times, then that activity is a pattern for the given
condition context C. During the context TECP-tree construc-
tion, similar to the TECP-tree when new observations come
with specific context attributes, every node that represents the
attribute is updated. For example, if the context constraints
consider day of the week to be a Friday, all the ts-lists at
tail-nodes are updated with the timestamps ts(C) from the
root level, at the week node, and at the Friday node. Patterns
also are mined as TECP-tree, considering the timestamps
tsx for each context as the observations in the parent tail-
node instead. After the construction of the context TECP-tree,
the TMCP-growth is used to mine the set of contextualized
correlated patterns, considering the periodicity of the context
attribute instead of the activity pattern.
Example 5: Let us consider the activity stream given

in Figure 1 after inserting tuple 5 and tuple 7 of the TSDB
given in Table 2 considering the activity ‘‘Relaxing’’ with
‘‘the week’’ day as a context attribute. Fig. 4 (omitting the
remaining tree) shows the context TECP-tree after inserting
the observation in the ‘‘Relaxing’’ node. The activity was
observed on a weekend, once on Monday, and on weekdays.
The days’ node is updated with the timestamp representing
the observation.

V. EXPERIMENTS DESIGN AND EVALUATION
In this study, we evaluate the algorithm’s efficiency in finding
user habits considering four datasets (KA,2 HH120, HH122,
and HH123 datasets).

The KA dataset tracks a 26-year-old man living alone.
The dataset was recorded between February 25, 2008, and
March 21, 2008 in 25 days with 2458 on/off sensors reading.
Finally, HH120, HH122, and HH123 datasets contain daily
life information spanning 2 months, 1 month, and 1 month,
respectively, of people in three different apartments. The
sensors used to track the users are implanted between the
rooms to detect motions, on the kitchen appliances (like the
fridge door, the cupboards, the dish washer, etc.), and on the
toilet flusher. A Bluetooth dataset was used with the user to
annotate the activities. All sensor activity data are recorded
with start and end timestamps.

Fig. 5a- 5d summarize the occurrence count of the activi-
ties over different datasets.. We used these datasets because
its sensor data matches our target for discovering human
normal life routines, nevertheless they are used regularly in
the literature.

To show the accuracy of the generated contextualized cor-
related periodic behavior patterns, we start by comparing the
set of TEDCP candidate patterns with that generated from
sequential code (Algorithm 4).

Afterwards, we evaluate the efficiency of the proposed
model in terms of:

2It is available on line at https://sites.google.com/ site/tim0306/datasets,
consulted November, 13, 2018.

Algorithm 4 Sequential Algorithm to Discover All Peri-
odic Co-Occurred Patterns
Input : STDB : a sensor time series database,

INTRVAL : a user-defined maximum
inter-arrival time for each database items.

Output: candidate CPP (correlated-periodic) patterns
List;

1 Let CPP be an empty list to represent occurrences of the
set of co-occurred patterns ;

2 foreach (epoch epch in STDB) do
3 if (epch 6= NULL) then
4 foreach non-empty subset, L in epch do
5 Add epch at the end of epchs ;
6 Add epch to epchs ;
7 Add L at the end of epchs ;
8 end
9 end

10 end
11 foreach p in CPP− list do
12 if PINTER− ARRIVALTIMESTAMP ≤ INTRVAL

and P are correlated according to Property 1 then
13 ADD P to CPPE ;
14 end
15 end
16 Return CPPE ;

• Mining Time.
• Number of discovered patterns.
• Missing occurrences error rate.

By comparing the candidate patterns generated from:
1) TECP-growth: our proposed correlated activity min-

ing algorithm. The algorithm mines a temporal sensor
database of human activities to find the set of correlated
periodic-frequent patterns with a single database scan.

2) Our implementation of TEREDA [33] a temporal rela-
tions discovery algorithm for mointoring human activ-
ity using frequent patterns.

All our implementation is written in java using components
from the SPMF-learn library over machine with a 2.66 GHz
CPU with 8 GB memory and running on Windows 10. Sub-
sequently, we compare the performance of the TECP-growth
over TEREDA in terms of mining time, number of discovered
patterns and finally the error rate of each algorithm. Finally,
we explain how the contextualized correlated periodic pat-
terns improve understanding of human habits considering
specific context variables.

A. ACCURACY OF TEDCP TECHNIQUE
Since few studies have focused on modeling periodic human
behavior. Moreover, no study, to our knowledge, has consid-
ered the problem of mining correlated patterns from a tempo-
ral database. In the following formalism, in order to justify the
accuracy of our TEDCP technique, we compare the Produc-
tive periodic frequent patterns generated by the PPFP-growth,
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FIGURE 5. Number of occurrences of each activity: (a) KA-dataset. b) HH120 dataset. c) HH123 dataset.
d) HH124 dataset.

with the patterns generated directly from sequential code
for specific MAOT measures. For this purpose, a sequential
algorithm is implemented (Algorithm 4) to find all correlated
periodic-frequent patterns sequentially and without using any
pattern mining technique.

We process each dataset separately, and set the algo-
rithm parameters with MAOT=30 min and SUP=3 in order
to discover the periodic (weekly) frequent (at least once)
activities. For each dataset a different set of patterns dis-
covered, but some of the generated patterns appear in
all of the datasets, like ‘‘eating’’ or ‘‘sleeping’’ activity
patterns.

In order to allow a cross-dataset comparison, the discov-
ered periodic patterns were manually investigated, and clas-
sified in five categories: waking up, hygiene-related, bedtime,
eating or other.

Over 98% of the set of correlated periodic patterns returned
by this sequential mining algorithm for specific MAOT mea-
sures on KA-dataset, HH120 dataset, HH123 dataset, and
HH124 were discovered the same as the discovered patterns
with our algorithm. Runtime comparisons are not considered
since the sequential code takes a long time, which is beyond
our scope.

With SUP = 3, and MAOT = 30 min, the algorithm
generate 56 periodic frequent patterns. Out of the 56 peri-
odic activity, 11 were correlated and satisfy the correlation
definition mentioned on Definition# 6.

TABLE 3. discovered correlated periodic activities.

The use ofMAOTvalues allow the flexibility inmining dif-
ferent activities even the case with short occurring duration,
like using the toilet, or preparing breakfast. Table 3 presents
the discovered correlated patterns. One can notice that the

VOLUME 7, 2019 33845



W. N. Ismail et al.: Context-Enriched Regular Human Behavioral Pattern Detection

FIGURE 6. Histogram for time occurrence of activities: (a). KA-dataset. B) HH120 dataset. C) HH123 dataset. D)
HH124 dataset.

discovered habits represent the periodic patterns that occurred
repeatedly; R1 represents the routine of the user in which,
when ‘‘Waking up’’, he or she has to ‘‘Use toilet’’, which
occurred on nearly all weekdays. Some of the discovered
routines are acyclic in the dataset, repeating for a few days
like R9, R10, and R11.

Fig. 6a-6d show the histograms for occurrence time of
the top-5 correlated patterns discovered by TEDCP, and the
middle timeline represents the times at which the activity
is expected to happen and the actual discovered activities
during the experiment. The parameters Sup = 3, and per =
30min are used to enable the discovery of weekly occurring
correlated patterns as the KA-dataset has short activities that
last less than four weeks. In the histograms, the periodicity
description of the top-5 activities is represented by the hashed
area. The hashed area is calculated as the time interval [µ−σ ]
[µ+ σ ] where µ and σ are the mean and standard deviation
of the recurrence period of interest of each activity. Some
patterns occurred as expected within the time interval while
others did not.

For each day, we compare the discovered and expected
activities as shown in Fig. 7 For each mined habit, we high-
light the actually observed occurrences (round dot) versus
the expected but missing occurrences (no dot); observation
occurs in specific MAOT interval.

B. MODEL EFFICIENCY
In the following discussion, we compare the efficiency
of our model with the work presented in [33]. For this

reason, we further add the the Center for Advanced Studies in
Adaptive Systems (CASAS) at Washington State University
(CASAS) dataset record activity for 220 days collected from
20 participants to enable more variety and increase the dataset
instances. The TEREDA algorithm discovers the temporal
relations of the activities of daily living based on association
rule mining. Moreover, TEREDA uses frequently occurring
patterns as the target pattern and then uses a clustering EM
approach to identify the temporal relation between the dis-
covered activity patterns. Different number of patterns gen-
erated from TEREDA and TEDCP algorithms considering
different algorithms parameters values. For TEREDA1 and
TECP1, we fixed the support threshold (i.e., sup = 30%
of all dataset epochs) while, for TEREDA2 and TECP2,
we fixed the support to cover at least 80% of the epochs.
Both algorithms discover interesting temporal patterns, how-
ever they are different thanks to the different temporal def-
inition of each algorithm. The following paragraphs dis-
cuss the main differences between the results for both
algorithms.

Number of generated periodic patterns count:(Fig. 8a)
TEREDA algorithm generates more patterns with the
increase in the number of considered dataset records. The
periodicity threshold values and correlation test reduces the
number of candidates slightly.

Mining time(Fig. 8b): the total time for discovering the
correlated patterns is represented on the y axes of the graphs
for each algorithm. Using only the frequent patterns as a
representative pattern for human habits consumes more time
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FIGURE 7. Expected vs observed top-10 correlated patterns generated
from Table 3.

compared to the TEDCP model, nearly one minute as a
maximum mining time in all cases.

Discovered patterns relevance (Fig. 8c):Despite the dif-
ference in the periodicity definition of each algorithm, both
discover different patterns of interest matching user require-
ments with the specific error rates represented in Fig. Fig. 8c.
The error rate in the TEDCP model is very low compared to
that in TEREDA.

The comparison with TEDERA model highlights the dif-
ference between TEDCP and TEDERA in the obtained
results. Themain difference comes from the way the temporal
relation (periodic patterns) are discovered and mining time
of both models. Additionally, despite the high variability
in human habits monitoring, the correlated periodic pattern
discovered with TEDCP model is more informative and is
useful to model the human activities correlations.

C. MINING CONTEXTUALIZED BEHAVIORS
To assess how contextualized correlated periodic patterns
improve understanding of human habits without any priori
knowledge on the subject, we show some of the discovered
correlated patterns using day periods of morning, afternoon,
and night as context attributes. Tables 4 and table 5 show the
discovered patterns from the HH120 dataset using morning
and evening contexts, respectively.

For example, ‘‘Leave home’’ after ‘‘sleep’’ in the
morning is unusual, although the same sequence in the

FIGURE 8. Model efficiency comparison. (a) Number of discovered
patterns. (b) Mining time Comparison. (c) Periodic pattern error rates
distribution.

afternoon is expected. Other patterns such as ‘‘Cooking, Eat-
ing’’ were not considered since they are not as periodic in
the complete database. Based on Tables 4 and 5, we note
that, when context-correlated patterns are mined, somemorn-
ing patterns emerge. For example, ‘‘Reading’’ activity is
unusual in the morning, but, in the other context, it will
not exist. Additionally, some expected afternoon patterns are
‘‘Entertain Gust’’ visits, ’’Take medication’’. In summary,
the contextualized discovery of correlated human actions can
add more insights into the relative order of human actions
(activities). For example, we can construct a schedule of
activities for an upcoming period based on the identified
time, interdependency, and context of users. We added the
results for the correlated 2-itemsets patterns in Tables 4
and 5; more pattern sizes can be discovered in the same
way.
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TABLE 4. Discovered correlated activities considering ‘‘morning’’ as
context attribute.

VI. APPLICATION OF TEDCP IN REAL LIFE
Many Real life applications domains [75], [76] can obtain
useful knowledge from mining contextualized correlated
periodic-frequent patterns. In this section, certain applica-
tions are discussed where contextualized and regular corre-
lated patterns need to be discovered.

Traffic jam reduces the quality of life for residents. Thus,
economic development experts and planners want to explore
more solutions to overcome congestion in specific circum-
stances. As various events occur regularly, such as special
events, festivals, sports, games, or religious services, this can
increase congestion during specific long holiday weekends
or inclement weather. Experts can use the proposed TEDCP
model to effectively analyze such regular traffic patterns
while considering the specific context.

Our proposed algorithm is also applicable in the analysis
and monitoring of human behavior. Suppose a researcher
of human behavior understanding wants to generate knowl-
edge about predicting the next human behavior with respect
to specific events or time. TEDCP can help in generating
such human behavior while eliminating redundant patterns by
finding contextualized correlated regular patterns efficiently.

The proposed algorithm TEDCP can help to find out exact
and expected patterns efficiently and effectively. Suppose a

TABLE 5. Discovered correlated activities considering ‘‘afternoon’’ as
context attribute.

travel agency is planning to offer travel and tourism related
services packages, such as offers (e.g. vacation packages for
busy season times and special packages for less crowded
times). In such scenarios, our proposed correlated patterns
generated by TEDCP algorithm can greatly assist travel agen-
cies in their efforts to avoid profit losses through extracting
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valuable knowledge about busy times in tourism in terms
of seasons or special events. For example, during specific
festivals, many items are sold in huge quantities and the
manager wants to accurately identify the most regularly sold
items during specific events.

Thus, TEDCP can add more insight in business trans-
actions management systems through helping managers to
suggest useful decisions or plans.

VII. CONCLUSION AND FUTURE WORK
Discovering normal human behavior can add insights into the
aging population problem and help in understanding personal
daily life. In this work, we present a new algorithm to dis-
cover the periodic set of normal human patterns. Moreover,
the correlation and context variation are considered during the
mining process. The experimental evaluation of the proposed
tree and algorithm ensures the effectiveness and accuracy
of the algorithm to discover interesting patterns related to
human daily life. For future use, we look forward to consid-
ering different types of ambient assisted life systems’ data
including video data and images. Moreover, a parallel sensor
fusion approach will be devised to handle the various col-
lected sensors’ data accurately. Furthermore, emerging work
in the Internet-of-Things and advances in smart environment
sensors requires more semantically grounded representations
of human collected patterns in smart environments. Seman-
tics will add meaningful meanings into the collected sensors
data and represent smart environments. Therefore, we plan
to integrate ontological models into TEDCP to enhance the
meaning and understanding of human collected patterns and
context data.
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