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ABSTRACT Image segmentation is typically used to locate objects and boundaries. It is essential in
many clinical applications, such as the pathological diagnosis of hepatic diseases, surgical planning, and
postoperative assessment. The segmentation task is hampered by fuzzy boundaries, complex backgrounds,
and appearances of objects of interest, which vary considerably. The success of the procedure is still highly
dependent on the operator’s skills and the level of hand–eye coordination. Thus, this paper was strongly
motivated by the necessity to obtain an early and accurate diagnosis of a detected object in medical images.
In this paper, we propose a new polyp segmentation method based on the architecture of a multiple deep
encoder–decoder networks combination called CDED-net. The architecture can not only hold multi-level
contextual information by extracting discriminative features at different effective fields-of-view andmultiple
image scales but also learn rich information features from missing pixels in the training phase. Moreover,
the network is also able to capture object boundaries by using multiscale effective decoders. We also
propose a novel strategy for improving the method’s segmentation performance based on a combination
of a boundary-emphasization data augmentation method and a new effective dice loss function. The goal of
this strategy is to make our deep learning network available with poorly defined object boundaries, which
are caused by the non-specular transition zone between the background and foreground regions. To provide
a general view of the proposed method, our network was trained and evaluated on three well-known polyp
datasets, CVC-ColonDB, CVC-ClinicDB, and ETIS-Larib PolypDB. Furthermore, we also used the Pedro
Hispano Hospital (PH2), ISBI 2016 skin lesion segmentation dataset, and CT healthy abdominal organ
segmentation dataset to depict our network’s ability. Our results reveal that the CDED-net significantly
surpasses the state-of-the-art methods.

INDEX TERMS Image segmentation, medical image segmentation, encoder-decoder network, boundary
segmentation, continuous network, deep convolutional neural network.

I. INTRODUCTION
Currently, most of the medical object screening systems
are manually operated by clinicians. Owing to the limita-
tion of human vision and the low sensitivity and specificity
of the systems, physicians can, therefore, miss the target
object during the checking phase. Furthermore, undetected
objects often have a diameter smaller than 9 mm, which
cannot be observed and localized clearly by the clinicians.

The associate editor coordinating the review of this manuscript and
approving it for publication was Dong Wang.

Besides, some objects are not detected because they are
located in a dangerous area or are even hidden by an intestine
fold. They may also be too flat and blurred in appearance
to allow them to be seen visually. The high missing rate
of clinicians can put patients’ lives at risk. For example,
in terms of colorectal cancer, according to the report of the
American Cancer Society [7], the number of newly diag-
nosed cancer cases in the United State was approximately
97,220 cases of colon cancer and 43,030 cases of rectal
cancer in 2018, and this number is increasing rapidly every
year. Unfortunately, 50,630 deaths from colorectal cancer
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occurred in 2018. Besides, skin lesions are also a hot medical
topic, especially as Melanoma is the most aggressive type of
skin cancer and is responsible for a majority of skin cancer
deaths [48]. Furthermore, in the US, according to a publica-
tion of the American Cancer Society, the estimated number
of new cases of melanoma and deaths due to melanoma were
91,270 and 9,320, respectively. With regards to liver cancer,
the estimated number of new cases of live cancer was 42,220
(including intrahepatic bile duct cancers) in 2018. Strikingly,
liver cancer is about three times more common in men than
in women. An estimated 30,200 liver cancer deaths occurred
in 2018 [48]. The mortality trends of liver cancer have more
than doubled, from 2.8 (per 100,000) in 1980 to 6.6 in 2015,
with an increase of 2.5% per year from 2006 to 2015.

Early diagnosis of cancer can greatly reduce its associ-
ated mortality; for example, if melanoma is diagnosed in its
early stages, it can be cured with prompt excision [1], [2].
The medical image analysis community has taken notice
of these pivotal developments. However, the transition from
systems that require manual manipulation to systems that
learn features from the data has been increased gradually.
To help clinicians make faster and more accurate decisions,
automatic medical image segmentation approaches have been
introduced, and for the last two decades, they have been the
most successful methods for medical image analysis. Com-
puter aided segmentation systems can significantly reduce
the missing rates of medical objects and help clinicians iden-
tify regions of interest despite the complexity of the case.
By using apriori knowledge models that contains feature
information about the expected shape and appearance of
the objects of interest, model-based segmentation methods
strive to interpret this knowledge using smart algorithms that
have prior knowledge about the object structures. Owing
to the information in the dataset, a model-based segmen-
tation method is more stable and more accurate compared
to traditional methods, whose performances are sensitive to
local image artifacts and perturbations. However, common
networks are usually generic models developed for com-
mercial and industrial applications, and if peculiar biologi-
cal objects with unique attributes need to be detected, their
performances are not high enough to allow clinicians to
make correct decisions [3]. Therefore, many researchers have
developed and investigated fast and precise medical object
segmentation algorithms for providing early indications of
the diagnosis. Nevertheless, because of restricted clinical
requirements, their performances have not convinced doctors,
especially as objects of interest always have unpredictable
shapes and a large variety of sizes and aspects. Further-
more, in some cases, the shapes of wrinkles and folds are
similar to those of tumors and objective cells. Moreover,
the transition zone between the object and its surrounding
area usually does not exhibit a significant change in texture
or color that would enable clinicians to distinguish it from all
other normal regions. In order to deal with these main prob-
lems, we primarily focused on building a deep convolutional
neural network to generate discriminative features that are

focused on object boundary regions and the tiny structures of
objects.

In medical image segmentation, the pixels in a video or
image are classified as object pixels or non-object pixels.
Thus, the area to be considered for tracking or recognition
is reduced from the entire image to several much smaller
blocks. Traditional segmentation methods usually attempt
to determine a suitable color space and build a model to
classify each pixel individually. There are four main types
of segmentation algorithms: explicit skin classifiers, non-
parametric classifiers, parametric classifiers, and dynamic
classifiers. Explicit skin classifiers, such as RBG, HSV and
YCbCr classifiers [4], attempt to segment object points by
defining decision boundaries in a color space. To overcome
the problems encountered in previous segmentation methods
that are triggered by different ethnicities of patients and
varying illumination conditions, Long et al. [5] introduced
deep fully convolutional neural networks (FCNNs), which
have recently led to dramatic developments in semantic seg-
mentation research. They can be adopted to recognize and
understand images at the pixel level. In the medical field,
because of their computational efficiency for discriminative
feature extraction, FCNNs are used by many researchers
for various purposes and have been shown to be effective
when applied to many challenging datasets. Thus, they are
have received attention from researchers who are study-
ing approaches for improving medical image segmentation.
Ronneberger et al. [8] improved FCNNs by introducing a
new deep network called U-Net. The architecture, which is
considered to be first encoder-decoder architecture, consists
of a contracting path that captures context and a symmet-
ric expanding path that enables precise localization. Due to
the performance of this network in segmenting biomedical
images, it has been widely used in the biomedical field.
Besides, after recognizing that the hardest part of segmen-
tation is the object contour, Chen et al. [9] proposed DCAN,
which pays more attention to contour information by taking
multilevel contextual features.Multi-level contextual features
from the hierarchical architecture are explored with auxiliary
supervision for accurate gland segmentation. Hence, the seg-
mentation performance of DCAN is dramatically proved.
These effective networks motivated us to develop a novel
deep encoder-decoder network that can also focus on seg-
menting the boundary of an object.

Asmentioned previously, there are twomain existing prob-
lems in medical image segmentation fields: recognizing the
transition space between the object region and non-object
region and the large variety of segmenting object shapes.

When it comes to the first issue, unlike the contour of
a common object, which clearly distinguishes the object of
interest from the background, the boundary of a medical
object is hardly defined. There are two causes of this prob-
lem. The first is the quality of the camera. Owing to the
nature of the medical task, the camera usually goes inside the
patient to take images of internal organs and tissue. There-
fore, its size should be small, but unfortunately, the images
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FIGURE 1. Examples for weak contract between the interest object and
the surrounded background. a) Medical images. b) Corresponding labels.

taken by small cameras have distorted resolutions. Besides,
for computed tomography (CT) images and other types of
images, the ability to differentiate materials depends on the
images’ respective linear attenuation coefficients. Practically
speaking, the quality of a CT image is strongly dependent
on material properties such as density and atomic composi-
tion, the machine parameters of the X-ray spectrum utilized,
and the signal-to-noise ratio. Endoscopists have claimed
that even when good quality tools are used to take images,
the object of interest is still difficult to find because they
cannot distinguish between its boundary and the normal
area. Hence, Chen et al. [9] modified the U-Net network for
gland segmentation and inspired us to find a better segmenta-
tion method based on prior knowledge. Nevertheless, when
applied in medical fields, the DCAN gives poor boundary
segmentation, owing to its weak contrast and is therefore less
effective than commonly used methods. To overcome this
issue, rather than masking polyp boundaries by using fixed
contours to explore complementary information [9], we ran-
domly mask object boundary thickness and the objects’
neighboring regions that do not differ widely from the object
by casually changing pixel values inside the interest area.
These masked regions are considered as new labels that
provide richer information than previous augmentation meth-
ods in the medical segmentation task. Moreover, not only
does our proposed augmentation technique enable the model
to avoid the overfitting that occurs when the model learns
about the object in a detailed manner, but it also enables
the network to focus on extracting boundary patterns from
each training polyp image. Therefore, instead of extracting
only one contour in each training image, as presented in [9],
our deep learning network can focus on extracting the most
important features in various different parts of the object.
Besides, we also propose a new loss function, which effec-
tively calculates the difference between the prediction and the
ground truth.

The second issue concerns medical objects’ wide vari-
ety of appearances, such as their sizes, shapes, and struc-
tures. The medical segmented object size directly has an
impact on the miss rates in object examinations, because
doctors usually cannot easily evaluate small adenomas, which
are tiny and difficult to see, yet they can later naturally
become cancer tumors. Moreover, the physical size of the
medical object is always unpredictable, and it can also be

missed by the medical camera that is described above. This
is because the distance between the camera and the object
which is extremely unpredictable. Furthermore, in terms of
the computer-aided detection system, the performance of the
system highly depends on the training method, where a lot of
important patterns could be missed or insufficiently trained.
To the best of our knowledge, these differences render com-
puteraided detection algorithms considerably less effective
in real medical environments. Thus, CDED-Net is created
such that its inputs are multi-resolution images, and it can
also learn completely from training images. It is a combi-
nation of a cascade architecture of dilated convolutions and
includes an effective decoder module. Our network archi-
tecture was inspired by the DeeplabV3+ network for the
segmenting task [11] and Mix-nets, which was proposed by
Davies and Moore [12]. The cascade architecture of dilated
convolutions is used at the end of our network to extract
multi-scale context information in local regions and does not
require an increased number. This architecture can also effec-
tively learn important information and recover parts related to
object boundaries that are lost when the data passes through
many convolution and pooling layers because the second
network always learns patterns that were missed in the first
network training phase. Our proposed method enlarges the
perceived ability size without missing important informa-
tion. Besides, by combining these techniques with our loss
function, which will be discussed below, we found that the
continuous encoder-decoder network can achieve a consid-
erably better intersection over union (IoU) and give a better
prediction.

We compared the performance of our proposed algorithm
and its competitors using challenging datasets that were
mostly provided by Grand-Challenges1. The results of exten-
sive experiments revealed that our algorithms significantly
outperform state-of-the-art algorithms. The main contribu-
tions of our work can be summarized as follows:
• We propose a new continuous multiple deep encoder-
decoder network, CDED-Net, to extract the most useful
features from images and learn completely from multi-
scale image inputs.

• We introduce a boundary-emphasization augmentation
method for making a high number of object boundary
patterns from each image in a training set. The novel
augmentation method enhances and boosts the segmen-
tation performance of CDED-net.

• In our CDED-net, instated of using constraint dilated
convolution, we use different both of strides and rates
for each component network to capture contextual infor-
mation at multiple scales input.

• We present a new Dicoss-loss function, which is a
measure of overlap widely used to assess segmenta-
tion performance of a network. The combination of
the loss function and our CDED-net results in a better
performance.

1https://grand-challenge.org
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The structure of our paper is as follows. First, in Section II,
we briefly present the related state-of-the-art algorithms for
polyp segmentation that highly motivated our research. Then,
in Section III, we discuss our proposed approach to boundary-
focused data augmentation and the processing of CDED-Net.
Moreover, in this section, we also discuss a novel loss func-
tion. Subsequently, the experimental results on challenging
databases are presented in Section IV. We summarize our
work and describe our future work in Section V.

II. RELATED WORKS
In this section, we are going to briefly discuss the state-of-
the-art related algorithms of medical object segmentation.

At the end of the 1990s, supervised techniques were used
to develop systems for classification and object detection,
which later rapidly became the methodologies of choice for
analyzing medical images. Computer-aided diagnosis (CAD)
has been used to assist doctors in diagnosing patients faster
and more accurately at many hospitals. In particular, in the
case of tumor/ lesion detection, the segmentation task plays
an important role in medical object localization. It not only
gives an output as a coordinate, but also can visualize the
object’s appearance. These functions of segmentation are
extremely helpful when doctors want to diagnose cancer
more accurately. Therefore, CAD segmentation applications
are being used to precisely segment organs, cancer tumors,
and polyps, which is a challenging task medical diagnosis.
In the medical diagnostic process, CAD can wisely provide
biopsy recommendations and decrease the failure prediction
of doctors.

To use deep learning methods for medical image diagnosis,
the computer must learn the features that represent the input
data for the problem at hand. This concept is based on the
basis of many deep learning algorithms: models (networks)
composed of many layers that transform input data such as
images and videos to outputs while learning increasingly
higher level features [13]. The most successful and popular
models for image analysis currently are convolutional neural
networks (CNNs), which contain many layers that transform
their training images using small convolution filters into a
matrix called the features matrix. Lo et al. [14] applied CNNs
to detect a lung nodule inwhat has been established as the first
application of deep learning in the medical field. No sooner
was the success of CNNs published than many researchers
strove to develop and create new networks for several medical
tasks. CNNs can be applied to classify each pixel in the
image individually by presenting it with patches extracted
around the particular pixel. A disadvantage of CNNs is that
input patches from neighboring regions overlap consider-
ably, increasing the number of features and computation time
unnecessarily. To solve this problem, Long et al. [5] proposed
fully convolutional networks (FCNNs) by rewriting the fully
connected layers as convolutions so that the network could
train with larger images. Moreover, instead of an output for
a single pixel, the network is available to give a likelihood
map as the result. Most state-of-the-art methods for semantic

image segmentation using FCNNs are based on the idea of
adding convolutional layers at the end of networks instead
of using any fullyconnected layers. Ronneberger et al. [8]
presented U-net architecture that comprises an FCNN and a
decoder path, an upsampling part in which deconvolutions are
used to increase the image size.

The segmentation of organs and other substructures in
medical images allows quantitative analysis of clinical
parameters related to volume and shape such as in polyp,
liver, or skin image analysis.

First, in the polyp detection field, Wickstrøm et al. [10]
enhanced fully convolutional networks (FCNs) for seman-
tic segmentation by adding batch normalization [15] after
each layer. Furthermore, the author proposed ESegnet, which
is an improvement on SegNet [16] in which the encoder
extracts useful features from an image and maps them to
a low resolution representation and the decoder maps the
low resolution representation back into the same resolu-
tion as the input image. Wickstrøm et al. [10], inspired by
Kendall et al. [18], also included Dropout [17] after the three
central encoders and decoders. Dropout was used to ran-
domly set units in a layer to zero and can be interpreted as
an ensemble of several networks. The addition of Dropout
regularizes the model and also enables estimation of uncer-
tainty in the model’s prediction. Akbari et al. [6] proposed
a novel polyp segmentation method that is strongly based
on cascading of the network. The authors used a smart
patch selection method in the training phase of the network
to enhance the performance of the model. Moreover, after
using the modified FCN, namely FCN-8S, for segmenta-
tion of polyp regions in colonoscopy images, the authors
used the Otsu thresholding method to change the prob-
ability map output by FCN-8S into a binary image and
then found the largest connected component. By using the
post-processing method, the number of false positive pixels
was slightly decreased. Zhang et al. [19] presented a hybrid
classification-based method for fully automated polyp seg-
mentation. More specifically, they applied two initial steps:
region proposal generation and region area finement. The
hierarchical features of polyps were learned by the FCN,
while the context information related to the polyp boundaries
were modeled by texton patch representation. After the FCN
provided a pixel-wise prediction and the initial polyp region
candidates, the latter was refined by patch-wise classifica-
tion using texton based spatial features by using the ran-
dom forest method. By combining three well-known convo-
lutional networks, which are AlexNet [20], GoogLeNet [21]
and VGG [22], Brandao et al. [23] refined FCN architectures
to recognize specific structures in colonoscopy images. This
FCN learned end-to-end, whereby density predictions were
obtained by deconvolution layers. Following the success of
the FCN in a polyp segmentation computer-aided system,
Li et al. [24] proposed a new end-to-end FCN structure that
was inspired by U-net [8] and FCN [5]. The method can
directly give a prediction map that has the same size as
the original testing image of the input network without any
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post-processing methods. The beginning stage is the feature
extraction stage and the last stage is the prediction map
reconstruction stage. The extraction function extracts low-
level features from the input picture and the feature map is
permutated and later combined with the continuous convolu-
tion operation to produce an abstract, high-level feature map
with semantic information.

Second, with respect to the automatic skin lesions seg-
mentation, Vasconcelos et al. [25] proposed a morphological
geodesic active contour segmentation (MGAC) method with
automatic initialization using a mathematical morphology
that is known as a great partial differential equation approxi-
mation. The method is automatic, with a lower computational
cost and no stability problems. More specifically, by using
only the blue channel of the dermoscopic image, the method
adapts to the contours efficiently owing to the information
storage of the channel about the lesion. To speed up the pro-
cessing time, Vasconcelos et al. [25] initialized the geodesic
active contour automatically; it gave both a starting point for
the beginning of the GAC and a contour that is very close
to the lesion. Furthermore, because the training process was
not needed, this method was faster than the deep learning
method. In addition, this method was also able to manage the
noise in images, such as oil bubbles and hairs. In terms of
improving the performance of FCN in skin lesions segmen-
tation, Bagher Salimi et al. [26] proposed DermoNet, which
is an FCN achieved by transforming DenseNets. To take
advantage of the capability of high-level feature representa-
tions, Bagher Salimi et al. [26] used densely connected con-
volutional blocks and skip connections. With this approach,
network layers can, again and again, use the information
that is output by their preceding layers. This allows for a
loss function to penalize the multi-scale feature maps from
different layers. Their proposed network uses fewer param-
eters; hence the model can quickly achieve a high training
accuracy. Furthermore, because the architecture adopts mul-
tiple dense blocks in the encoder process, the DermoNet can
allow for multi-scale feature maps to be penalized by a loss
function [26].

Third, regarding segmentation of liver CT images, tradi-
tional methods, such as clustering [27]–[29], and morpho-
logical operators [30] used to help clinicians classify texture
in feature space. These intensity-based methods are usually
efficient and can give excellent results when the liver’s inten-
sity is sufficient. The main problem with these traditional
methods is that there is no formal shape; thus, boundaries of
the liver cannot be defined and sometimes important parts are
missed. To address these drawbacks, Yan et al. [31] proposed
an atlas-based method in the setting of hepatic fat fraction
assessment. The fat-fraction map is calculated by using the
chemical shift-based method in the delineated region of the
liver. Besides, Chartrand et al. [32] proposed a method that
consists of three main phases: initialization, optimization,
and correction. In the initialization step, an initial shape is
interpolated from generated contours. This shape is later
optimized to converge toward the liver boundary. Lastly,

the 3-D surface mesh can be interactively manipulated to
obtain a high precision. Lu et al. [33] developed a fully
automatic liver segmentation framework by combining deep
learning and the graph cut approach. Firstly, the author used
3D CNN to simultaneously locate and segment the raw liver
surface. Then the graph cut method was used to refine the
initial segmentation result.

To surpass these state-of-the-art methods, we propose a
method that is effectively used for medical object segmen-
tation for both CT, MR, and common format images. More
specifically, after we applied our novel data augmentation
method, which we named boundary-emphasization, the aug-
mented data was carried to the CDED-net. In this paper,
we also present the new loss function to bias towards the
background image rather than the medical interest object.

III. PROPOSED METHOD
In this section, we describe the methodology on which the
proposed method is based, including the set of sample images
used for evaluation, as well as detailing the theoretical basis of
the proposed medical object segmentation. First, we present
the novel medical segmentation data augmentation method.
Second, we incorporate all the augmented datasets into the
CDED-net to teach the model to discriminate the background
and foreground. In the last step, we propose a Dicoss-cost
function that can effectively boost the segmentation perfor-
mance of our network.

A. BOUNDARY-EMPHASIZATION DATA AUGMENTATION
Data augmentation is the creation of altered copies of each
instance within a training dataset to increase the number
of images. A growing challenge of researchers is how to
avoid the over-fitting problem that can mislead the deep
convolutional neural networks. Researchers are striving to
solve this problem and achieve better results bymodifying the
network’s architecture, developing new learning algorithms,
and acquiring the data. The most common problem is the
lack of good-quality data or uneven class balance within the
datasets. Currently, the most effective segmentation networks
are very large, hence requiring a large amount of data, which
is difficult to obtain [34]. Therefore, data augmentation is
an essential step for improving segmentation performance.
Recent studies have demonstrated the robustness of data
augmentation by generating additional data using the original
limited training dataset [35]. It brings these training images
into the larger featured space where they can fulfill all their
variances. In this work, we used geometric augmentation
techniques including reflection, random cropping, transla-
tion, and rotation. In particular, we applied elastic distor-
tion which was introduced by Wong et al. [36]. The elastic
deformation was performed by defining a normalized random
displacement field u(x, y) that for each pixel coordinate (x, y)
in the image denotes a unit displacement vector, such that
Rw = Ro + αu, where Rw and Ro denotes the location of
pixels in the original and warped images respectively [36].
The strength of the displacement in pixels is given by α.
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FIGURE 2. Examples of Boundary-emphasization augmentation method.
a) Medical images. b) Corresponding labels. c) Processed medical images.
d) Processed corresponding labels.

In our experiments we gave α = 1.12. The parameter σ ,
which is the standard deviation of the Gaussian, is convolved
with matrices of uniformly distributed random values that
form the x and y dimensions of the displacement field u.
In medical segmentation, the color of images significantly
varies across laboratories as a result of technicians’ vary-
ing technical skills; therefore, we adopted an effective color
constancy method, namely, gray world, which assumes the
scene in an image, on average, is a neutral gray, and the
source of average reflected color is the color of the light.
This technique also enhances the contrast between the object
of interest and surrounding areas. We used the following the
formula to transform all our experimental datasets into the
grayscale format:

U(x,y) = 0.2989 ∗ Ro + 0.5870 ∗ Go + 0.1140 ∗ Bo (1)

where Ro, Go, Bo represent the red, green, and blue values of
the pixel at position (x, y) in the image, respectively. While
the U(x,y) denotes a new value in the gray world.
Owing to its medical characteristics, the non-specular tran-

sition zone between the medical object and its surrounding
area is not easy to discriminate with conventional segmen-
tation methods. This area does not differ dramatically from
other areas. Furthermore, especially in the endoscopic field,
not only are the folds and wrinkles shapes of the zone similar
to those of the tumors, it can partly hide and sometimes
overlap the object of interest. To artificially locate themedical
object boundary and improve the performance of our CDED-
net, we present a new boundary-emphasization augmenta-
tion method that can be combined with most existing deep
convolutional neural networks to boost the learning ability
of the network. After detecting the coordinate of the object
in the ground truth images, we apply the erosion method to
remove the inner part of the object. Subsequently, we subtract
the part which we produced in the previous step from the
original images to create the boundary label. In other words,
we just delete the inside part of the object of interest to
create a foreground with object boundaries. To enlarge the

perception capacity of themodel, we set the contour thickness
arbitrarily. In Figure 2, we introduce some typical examples
in three dataset from the top to the bottom, alternately: CVC-
ClinicDB [37], liver segmentation dataset [57], PH2 [38].

Algorithm 1 Boundary-Emphasization Augmentation
Algorithm

Input: Input image I , corresponding label IL ;
Object region S;
Structuring element (erosion kernel size) C ;
Erosion represented by 	;
Euclidean space E ;
Erosion label IEL ;
Cz is the translation of C by the vector z,
∀ z ∈ E ;
Processed label I∗L ;

Output: Processed image I∗, corresponding
processed label I∗L

while True do
IEL = IL 	 C = {z ∈ E | Cz ⊆ IL};
I∗L = IL - IEL
i(xI , yI ) ⊂ (I );
if i∗(xI , yI ) ⊂ IL and i∗(xI , yI ) ⊂ SIEL then:

i = 0;
else:

pass;
result I∗← I , I∗L ← IL ;

The entire process of the boundary-emphasization aug-
mentation method is in Algorithm 1. This method is typi-
cally applied to binary images whose label format is known.
The basic effect of the operator on a binary image is to
erode away the boundaries of regions of foreground pixels
in object region S (i.e. white pixels, typically) by structuring
elementCz. In the first step, the set of Euclidean S coordinates
corresponding to the input binary image, namely Cz (also
known as a kernel), is the set of coordinates for the structuring
element. The erosion of S by Cz can be understood as the
locus of points reached by the center of Cz when Cz moves
inside S. Then, no sooner does this erosion process provide
smaller interest objects, namely erosion labels, from the origi-
nal image than we deduct the original label LL to erosion label
IEL to take the new label. Finally, we turn every pixel i(x, y) in
both images and equate the corresponding labels where it has
the coordinate (x, y) inside IEL into zero. We named this pro-
cedure the boundaryemphasization process. Strikingly, when
we set the thickness of the boundary randomly, we achieve
better results than when we use a constant thickness.

B. CONSECUTIVE DEEP ENCODER-DECODER NETWORK
The encoder-decoder networks have been successfully
applied to many computer vision tasks, including seman-
tic segmentation [5], [8], [16], [39]. Recently, the encoder-
decoder network has become one of the most effective
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FIGURE 3. The entire architecture of proposed CDED-net.

structures in the segmentation task. Hence, the advan-
tages and disadvantage of DeepLabV3+ [11] inspired us to
develop the proposed network. The objective of this study is
to build an ensemble of deep encoder-decoder networks to
train and obtain rich contextual information for the medical
object segmentation task that is shown in Figure 3. Each
DEDN does a part of the job of the main model. In other
words, a single DEDN is employed to deal with its prob-
lem. By comparing the proposed approach with the pre-
vious approach, we found that our ensemble network had
better segmentation performance than a single network. This
may be because our network can not only take discrimina-
tive features from the first three networks, but also learn
information from missing patterns by using the three last
DEDNs.

To capture contextual information at multiple scales,
we used deep encoder-decoder networks, namely DeepLab
V3X [11], which has several parallel atrous convolutions with
different rates, but we also put three types of resolution
training images into the network to enlarge the perceived
ability of the network to better cover global features. First,
DeepLab V3+ [11] is considered as a component network

FIGURE 4. The detail of the component proposed CDED-net with Deeplab
V3+ [11] as the backbone. 1) Entry flow. 2) Middle flow. 3) Exit flow.
We modified the convolution stride to adapt with the resolution of
dataset for extracting rich information features.

because it has shown an outstanding performance in the
PASCAL VOC 2012 challenge [40]. Besides, by using this
backbone, we take advantage of the downsampling path
that basically contains convolutional and max-pooling layers,
where these layers are extensively used in the convolutional
neural networks for image classification tasks [20], [41]. Fur-
thermore, the upsampling path contains convolutional and
deconvolutional layers that are also known as backwards
stride convolution layers [42]. To recover the output score
masks and feature maps in their original sizes, we used
deconvolutional layers. We did this because the downsam-
pling path aims to extract useful abstraction information,
while the upsampling path gives the prediction in the score
masks. Moreover, we expand Chen et al.’s [11] network fur-
ther by harnessing multi-level contextual feature representa-
tions, which include various levels of contextual information,
i.e., intensities appearing in different sizes of perceived
ability.

In our proposed CDED-net, instead of using the constant
dilation stride we adopt different stride for each component
network for denser feature extraction. For instance, the net-
work that is trained with small resolution images we apply
dilation stride m = 1 and dilation stride n = 2 to the last two
blocks respectively, which are shown in Figure 4. However,
the network is trained by traditional size images we use
dilation stride m = 2 and dilation stride n = 4, while the
remaining one we apply dilation stride m = 3 and dilation
stride n= 6. This is because the small image is, the rich infor-
mation it contains. Besides, we also adopt different atrous
rates for eachmember network to enlarge the perspective field
optimally. Meanwhile, the global features are most needed
to extract from large image. By using this strategy, out net-
work can effectively extracts most discriminative features.
Furthermore, our architecture is highly inspired by the fact
that dilated convolutions significantly support exponentially
expanding receptive fields without losing coverage [50]. Let
G0,G1,G2. . . ,Gn−1 :Z2

→ R be discrete functions and f0, f1,
f2. . . ,fn−2: �1 → R be discrete 3×3 kernels. The receptive
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FIGURE 5. Proposed training images for the proposed approach on [57]
dataset. a) Images and corresponding labels in three head networks. b)
Results in first validation step. c) Images and corresponding labels in
three tail networks.

field is showed in Equation 2:

Gi+1 = Gi∗2i fi for i = 0, 1, 2, . . . , n− 2. (2)

Second, unlike in previous research studies, where pre-
trained deep learning models were used to extract discrim-
inative features, in this work we trained three first single
DEDNs using their pre-trained models and our augmented
training dataset. After these training processes, our mod-
els can extract considerably better features than their pre-
trained models. The training steps are explained in detail
below:

1) In the first step, we train our network with our aug-
mented dataset to make the model pay attention to
the medical object of interest. In this phase, we sep-
arately trained the first group of networks with three
different resolution images, for instance, with the liver
dataset, the image sizes are 640 × 640, 512 × 512 and
384× 384 pixels. We also used off the shelf model that
is provided by the COCO dataset [43] for the training
process as a pre-trained model.

2) Second, after finishing the first training phase, all
weights are stored and later used for validation pur-
poses. In the validation stage, we validate the perfor-
mance of these first networks with the original training
images I ; we then perform the subtraction stage in
which we applied this method 	 to seek the unknown
patterns Ie. Here, we basically subtract the former from
the prediction images Iv of the first model. Subse-
quently, these patterns Ie = I - Iv aare considered as the
dataset for the second group of networks. Our training
dataset in different phase has been shown in Figure 5.
The models that are known as the products of the
first training step are added to the network to further
strengthen the training process, as shown in Figure 3.
This can effectively decrease the problem of vanish-
ing gradients with auxiliary supervision. In this step,
we can not only check the missing patterns, but also
correct the misunderstanding part from the images.
Figure 6 shows the effectiveness of your method with
respect to the respective field of themodel. Through the
last validation, it was shown that the last models do not
make a mistake in the same objects by comparing with
previous models.

FIGURE 6. Examples from original training images in first validation step
(in weight transfer phase) and final validation in dataset [38], [57]. a)
Training images. b) Training labels. c) Results in first validation. d) Results
in final validation.

3) Finally, after processing, a soft-max layer outputs the
probability that each voxel belongs to the foreground
and to the background. In particular, in the medical
field, such as in skin segmentation, the anatomy of
interest usually occupies only a very small region of
the scan. This often results in the minima of the loss
function affecting the learning process, which yields a
network that gives predictions that are mainly biased
towards the background. Therefore, our network with
multi-level contextual features extracted from input I
can be trained by minimizing the overall Dicoss-loss Lc
between the predicted results and ground truth anno-
tation, which we discuss in the next section. Besides,
regarding a larger object, the model which is trained
with large scale images could give better results than
the remaining model. However, by training the model
with small resolution images, the small-model pro-
duced exceptional results with small objects.

C. DICOSS LOSS FUNCTION
To provide better segmentation results, we proposed a novel
simple loss function that is a combination of two well-known
cost functions and hyperparameters to perform the segmen-
tation. Since Ronneberger et al. [8] described the use of the
pixel-wise cross entropy loss for the task of image segmen-
tation, it has been adopted widely. This loss simply verified
each pixel individually, comparing the class predictions that
are defined as depth-wise pixel vector to the the target vector.
Because this loss function asserts every single pixel, this may
create a problem if various classes are represented in the
image. However, medical images usually have a low surface
area. Consequently, the segmentation network trained with a
cross-entropy loss function is biased towards the background
image rather than the object itself. Furthermore, as the fore-
ground region is often missing or only partially detected, it is
not easy for the model to see the object. Hence, we combined
the function with a dice loss function to reduce the nega-
tive aspects of the former. This is because this function can
strongly measure the overlap between two objects, one is a
prediction and the remaining is ground truth.

Lc = −(1− γ ) ∗
∑
i,j

ŷi,j ∗ log(yi,j)+ γ
2

∑
i,j ŷi,j ∗ yi,j∑

i,j ŷ
2
i,j +

∑N
i,j y

2
i,j

(3)
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FIGURE 7. The effect of proposed loss function to network learning
progress on the same dataset by comparing to two fundamental loss
functions. a) Basic cross entropy loss function. b) Basic Dice loss function.
c) Proposed loss function.

where ŷi,j the predicted binary segmentation volume and
yi,j stands for the ground truth at image pixel (i, j),
while hyperparameter γ is used for balancing. To identify
which pixel is background and foreground we follow the
condition: {

Ti,j ≤ Lc ≤ 1 if zi,j ∈ E
Lc < Ti,j if zi,j /∈ E

(4)

where the Ei denotes the interesting area, while Ti,j represents
for the threshold at pixel coordinate (i, j).

This loss function is able to give a smoother segmentation
prediction. Nevertheless, in order to prevent a network from
being biased toward the negative class and to clearly predict
all zero pixels, we added the γ hyperparameter. Our exper-
imental results prove that this loss function is more robust
compared to the classical cross-entropy loss function and
basic dice loss function. Figure 7 describes the comparison
between our proposed loss function and two fundamental loss
functions. Moreover, it is properly suited to the imbalanced
classes of the foreground and background. In this Figure we
used TensorBoard Visualization to export the loss parameter
during the training process and then later draw in Python.

IV. EXPERIMENTS RESULTS AND ANALYSIS
In this section, we study the performance of our proposed
segmentation approach.We used six databases to demonstrate
our methods and compared our results with those of state-of-
the-art algorithms.

A. DATASETS
To evaluate the proposed segmentation method and com-
pare it with the other competitor methods, we used well-
known datasets from the MICCAI 2015 polyp detection
challenge [44] in colorectal segmentation.Moreover, in terms

of skin lesion segmentation and liver segmentation, we report
the results highlighted in [38], [56], and [57].

The datasets are briefly described in the following para-
graphs.
• CVC-ClinicDB [37] contains 612 images, where all
images show at least one polyp. The segmentation
labels obtained from 31 colorectal video sequences were
acquired from 23 patients.

• CVC-ColonDB [46] ontains 379 frames from 15 differ-
ent colonoscopy sequences, where each sequence shows
at least one polyp each.

• ETIS-LaribPolypDB [45] contains 196 images, where
all images show at least one polyp.

• PH2 [38] contains 200 dermoscopic images with a res-
olution of 768 × 560 pixels that were acquired at Der-
matology Service of Hospital Pedro Hispano, Matosin-
hos, Portugal Mendonça with Tuebinger Mole Analyzer
system, this dataset includes 80 common nevus images,
80 atyp-ical nevus images and 40 melanoma image

• ISBI 2016 [56] contains 900 training imageswith the
ground truth provided by experts. The image sizes vary
from 1022 × 767 to 4288 × 2848 pixel. This dataset
was provided at the 2016 International Symposium on
Biomedical Imaging (ISBI 2016).

• CHAOS 2019 [57] contains 980 liver CT images with re
resolution is 512 × 512 pixel in DICOM format. This
dataset was provided at the IEEE International Sympo-
sium onBiomedical Imaging (ISBI) onApril 8-11, 2019.

B. CALCULATION METRICS
We used the Jaccard index, also known as the intersection
over union (IoU), as the main metric to evaluate the proposed
approach’s performance. Furthermore, in order to provide
a general view of the effectiveness of our method, we also
employed Dice score, sensitivity (Sen), specificity (Spec)
and accuracy metrics to describe our results. We used these
metrics to compare our prediction results (PR) with the
ground truth (GT). The former based on the confusion matrix
includes true positives (TP), which are the correctly predicted
pixels, false negatives (FN) values, which are object pixels
that are identified as the background, false positives (FP),
which are background pixels classified as objects, and true
negatives (TN), which are background pixels that are cor-
rectly segmented.

We calculated the mean IoU parameter. Each per-class
IoU was computed over a validation/test set according to
Equation 5. This is used to calculate the similarity between
the GT and the PR proposed by the method.

IoU =
PR ∩ GT
PR ∪ GT

(5)

where ∩ denotes a set of an intersection and ∪ a union set
between PR and GT.

Notably, the Dice coefficient is a statistic used for com-
paring the similarity of prediction images and label images,
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it is shown in Equation 6. Interestingly, this is also called
Dice similarity coefficient and is slightly different with IoU
because it can effectively measure the similarity in more
heterogeneous datasets while still retaining its sensitivity.

Dice =
2PR ∩ GT
PR ∪ GT

(6)

n addition, we used specificity (Spec) to represents the pro-
portion of the negative values produced by the segmentation
method and the values that are real negatives belonged to GT
in the Equation 7.

Spec =
TN

TN + FP
(7)

Sensitivity (Sen) which is also known as Recall, is the
metric which basically measures the proportion of the pos-
itive values considered by the segmentation method and the
right positives values given by the GT, and it is presented by
Equation 8.

Sen =
TP

TP+ FN
(8)

We also used accuracy (Acc) as one of the main metrics
to show how big the gap between the GT and PR of the
methods is and the relation between their hits and errors in
Equation 9. More specially, the higher the Acc, the better the
segmentation methods are. A high Acc shows that most of the
pixels were classified correctly.

Acc =
TN + TP

TN + TP+ FN + FP
(9)

We applied the common metrics to show our results in
comparison which are presented in Equation 10. This metric
is the ratio of correctly predicted positive observations to the
total predicted positive observations.

Precision =
TP

TP+ FP
(10)

C. COMPARISON WITH OTHER STATE-OF-THE-ART
APPROACHES
We designed several experiments, the results of which
showed that using grayscale images for both the training and
the testing phase is always better than using RGB images.
Thus, first of all, we converted the formats of all the images
in the training dataset to grayscale. Then, these images were
upsampled and downsampled to feed into three different
training phases as we mentioned above. Besides, not only
did we apply our proposed augmentation method, but in the
training phase, we also used other effective data augmentation
methods. For instance, a cropping method was used; that is,
we cropped from the center to remove the black parts gener-
ated by the camera that exist at image corners. The rotation
method was applied using random degrees between 0◦ to
360◦. Therefore, we proceeded to use all the images in the
datasets. We formatted the datasets in the TFrecords format
to optimize the learning ability of the model. Subsequently,
after 150000 first training steps with the augmented dataset,

TABLE 1. Comparison of proposed method and three fully convolutional
neural networks in terms of mean pixel precision and recall for the
ETIS-Larib dataset [45].

TABLE 2. Comparison of proposed method with FCN-8S combined with
post-processing and a combination of fully convolutional neural network
and textons on CVC-ColonDB dataset [46].

the trained models were tested on the original training sets to
identify the missing and the incorrect recognition patterns in
the prediction images before they were used as input for the
next step. As soon as we finished the validation step, these
prediction images were subtracted from the original training
set to determine the missing parts and to recorrect the failed
classification parts. In the following stage, the products of this
step were selected for augmentation again and trained with
three tail networks. Finally, we tested the performance of the
models with three resolution images and used the map score
to select the best result. Furthermore, all training processes
were executed on TensorFow with a GeForce GTX TITAN X
graphics card.

1) RESULTS ON THE POLYP SEGMENTATION DATASET
With regard to polyp segmentation, to compare our method
with that in [47], instead of using the combination of
images in the MICCAI-challenge datasets, which include
19514 frames, we trained our proposed networkwith only one
dataset [46], which has 379 frames images for the training
process. Our proposed method was used to segment polyps
contained in the ETIS-Larib dataset of the MICCAI chal-
lenge. In the beginning, we mutated all images in the dataset
to grayscale images. Then, the images in the dataset [46] were
resized from 384 × 288 pixels to 500 × 400 pixels and 300
× 200 pixels. Our results in terms of polyp segmentation
are presented in Table 1. The table shows that our proposed
model achieved both the highest precision and the highest
recall among the models. The experimental results also reveal
that the fused method outperformed all the other approaches
because of its ability to aggregate multi-scale contextual
information.

Moreover, we also evaluated our network’s performance
on the well-known dataset CVC-ColonDB, as shown in
the Table 2. In our approach, the post-processing method
was not adopted for fine-tuning the predictions. However,
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FIGURE 8. Comparison of proposed method with [6]. a) Input images.
b) Ground truth. c) FCN-8S with Otsu threshold. d) FCN-8S final result.
e) Proposed method.

TABLE 3. Comparison of proposed method on CVC-ClinicDB dataset [37].

Akbari et al. [6] applied the erosion method to make pre-
dictions smoother. This proves once again that this model
can exploit the deep network architecture of multi-resolution
input images to aggregate multiscale contextual information,
and this attribute can be used to fit it to single models. This
table indicates that the performance of our approach is better
than that of the second competitor 0.86 in Dice coefficient
metrics. The Figure 8 shows that our model can recognize
the tumor boundary optimally and achieve a result that the
other models can not achieve.

Furthermore, we also evaluated the learning ability
of our CDED-net through experiments with one of the
most challenging datasets in the polyp segmentation field,
CVC-ClinicDB, which owes its reputation not only to its
resolution, but also to the wide variety of polyp images that it
contains. From this dataset we arbitrarily selected 430 images
randomly for training and the remaining 182 images were
used as the test set, as was done by Li et al. [24]. Therefore,
there is no intersection between the training set and the test
set. Table 3 demonstrates that the our proposed deep learn-
ing network significantly outperforms that proposed by Li
et al. [24]. This gap in performance can be explained by the
weight transfer step, as the presented method of Li et al. [24]
still could not fully detect interesting objects while our model
can segment the object contour entirely.

2) RESULTS ON THE SKIN LESION SEGMENTATION DATASET
To compare the performance of our method with state-
of-the-art methods in the skin lesion segmentation field,
we also analyzed the performance of the proposed segmen-
tation networks with DermoNet presented in [26] superpixel-
based saliency detection approaches that were presented
in [48], and several well-known networks on the PH2 dataset.

TABLE 4. Comparison of proposed method on PH2 dataset [38].

FIGURE 9. Comparison of proposed method on CHAOS dataset [57].
a) Input images. b) Ground truth. c) U-net [8]. d) Deeplab V3+ [11].
e) Proposed method.

Furthermore, we also compared our approach to a powerful
method proposed by Vasconcelos et al. [25]. In order to
evaluate the general segmentation performance of the pro-
posed networks, it was also compared with methods that
use machine learning techniques and deep learning. These
methods, which include FrCN [49], FCN [5], MFCN [53],
MSCA [52] and DCL-PSI [51], achieved exceptional results
in skin lesion segmentation. In this comparison, we used
the training set that was provided by the International Skin
Imaging Collaboration (ISIC) for the ISBI challenge titled
‘‘Skin Lesion Analysis Towards Melanoma Detection’’ and
tested the proposed network on 200 skin images from the.The
training and test strategy are the same as those presented
in [25] and [26]. The comparative results are listed in Table 5.
The results reveal that the proposed method significantly
outperforms most stateof-the-art methods in two important
criteria. The results also reveal that our fused model achieved
a Dice score and IoU of 1.75% and 1.31%, respectively,
which were better than those of the most effective image pro-
cessing technique. This is because the proposed method uses
a weight transfer step that reminds the network to entirely
focus on missing patterns inside the foreground region.

3) RESULTS ON THE CT LIVER SEGMENTATION DATASET
In this section, we adopted the dataset of the
CHAOS-Combined (CT-MR) Healthy Abdominal Organ
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TABLE 5. Comparison of proposed method on CHAOS dataset [57].

Segmentation challenge that will be held at The IEEE Inter-
national Symposium on Biomedical Imaging (ISBI). In com-
puted tomography (CT) images usually acquired for liver
diagnosis andmonitoring purposes, the intensities of adjacent
organs and tissue are extremely similar to those of liver tissue
itself. This is often the case for the boundaries of the stomach
and heart, but also for the boundary of the subcostal fat of the
rib cage [55]. In these problematic regions, automatic seg-
mentation of the liver based on grayscale values alone is very
challenging. However, the proposed CDED-net once again
proves that it can strongly distinguish the liver features using
a similar pattern. In this comparison, we used 800 images
for training and 180 images for testing purposes. We apply
same augmentation methods with the proposed networks and
both two competitive networks. Nevertheless, our network
also can correctly recognize very small objects, as shown
in 9. Moreover, Table 5 indicates that our proposed method
dramatically outperforms the most recent DEDN networks.
Ronneberger et al. [8] and Chen et al. [11] also achieved
considerably performance with this dataset, but still could
not fully detect the liver.

V. CONCLUSION
In this paper, we proposed a novel approach that uses an
ensemble of multimodel deep encoder-decoder networks,
called CDED-Net, for medical object segmentation. We also
presented a new data augmentation method called boundary-
emphasization that can be easily applied in most of the seg-
mentation approaches in the medical field; it can strongly
help the network to focus on the object contour. Furthermore,
we demonstrated the use of a Dicoss-loss function to boost
the performance of the model. Our method outperformed
the state-of-the-art polyp segmentation methods on various
datasets. The key advantage of the proposed method over
existing methods is that it employs an ensemble of encoder-
decoder networks trained to extract visual features from
multi-scale images that are used in the second training step
to re-learn the missing features

We presented an ensemble of DEDNs to extract multi-
context information from multiscale training images. This
ensemble of DEDNs was able to extract both global and local
features, the combination could greatly enhance the segmen-
tation performance of various approaches used in the med-
ical imaging field. Furthermore, in the first training phase,
we applied a novel data augmentation method that solved
both the limited number of training dataset and over fitting
problem. Then, we proposed a new training strategy called
weight transfer so that the networks could look at the new

dataset taken from the validation subtraction step. Finally,
the Dicoss-loss function was used to effectively contribute
to boosting the performance of the model in the training
stage and later in the test period. The experimental results on
challenging datasets demonstrated that this algorithm signif-
icantly outperformed state-of-the-art methods.

Experimental results demonstrated the superiority of the
proposed method over stateof-the-art medical segmentation
approaches. However, our method is still flawed; for exam-
ple, the training phase takes a considerable amount of time.
Thus, in the future development of our methods, we intend
to improve the performance of incremental boosting convo-
lution networks by adopting other novel effective methods
such as using the advantages of a neural architecture search
(NAS) [54] algorithm that can support the network, allowing
it to focus on searching the repeatable cell structure, while
handdesigning the outer network structure that controls the
spatial resolution changes. This can enable the network to
segment difficult objects like cells and tissues.

Finally, the proposed approach can be used to improve
segmentation performance. To improve segmentation perfor-
mance, we plan to extract training features from the most
important convolution layers of our DCNNs and later check
for missing and wrong patterns. This strategy is beneficial for
building a strong segmentation model because combining our
networks and the novel data augmentation with the Dicoss-
Loss function allows the network to strongly focus on the
medical object boundary.
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