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ABSTRACT Deep neural networks have been used for traffic classifications and promising results have
been obtained. However, most of the previous work confined to one specific task of the classification, where
restricts the classifier potential performance and application areas. The traffic flow can be labeled from a
different perspective which might help to improve the accuracy of classifier by exploring more meaningful
latent features. In addition, deep neural network (DNN)-based model is hard to adapt the changes in new
classification demand, because of training such a new model costing not only many computing resources
but also lots of labeled data. For this purpose, we proposed a multi-output DNN model simultaneously
learning multi-task traffic classifications. In this model, the common knowledge of traffic is exploited by the
synergy among the tasks and improves the performance of each task separately. Also, it is showed that this
structure shares the potential of meeting new demands in the future and meanwhile being able to achieve the
classification with advanced speed and fair accuracy. One-shot learning, which refers to the learning process
with scarce data, is also explored and our approach shows notable performance.

INDEX TERMS Traffic classification, multi-task model, transfer learning, one-shot learning.

I. INTRODUCTION
As the promotion of the hardware capacity and the growing
demands in communications, the simple systems of the tra-
ditional internet network are gradually replaced with some
new management systems, e.g. the SDN (Software-Defined
Network) [1]. A rising computation is implemented in the
network. Hence, the network traffic classification has become
one of the key points to the efficient network traffic manage-
ment and QoS (Quality of Service) guarantees [2].

For past several decades, many theories were proposed to
better predict the diverse requirements for bandwidth, latency,
and quality of different flows. It is widely recognized that
many properties of a flow can be well predicted with a small
set of the flow features. Among all the approaches, some
machine learning tools have progressed promising results
using the port number or some statistical features of the
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flows [3]. Recently, some studies have turned to the deep
learning techniques and pleasing scores of accuracy have
been obtained [4]. However, in many studies, different flow
classification tasks were usually regarded as different areas
and most of the studies were focusing on one specific area.

Our work was motivated by the fact that the demands will
always be changing and that most of the previous works have
shown that some features can be used to discriminate different
tasks of flows. For instance, the features for classifying either
elephant or mice flows and that for identifying the applica-
tions of flow, are surprisingly similar [5]–[7]. This alludes
to that there might be some common knowledge for different
traffic classification tasks and themapping functions from the
selected features to the different flow properties that we need
to predict are of close relations. Based on the common knowl-
edge, we would like to explore an all-in-one solution, a tool
that is supposed to adapt to continuous changes of demands
and a tool which has the potential of being applicable for
various related tasks of flow classification.
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To address above issues, we compared many machine
learning tools and selected the DNN as the basic technique.
In order to extract and implement the common knowledge
to the training, we propose the Multi-Output DNN structure
which is a reform of the simple DNN. Our proposed structure
has two phases: the common knowledge is extracted at the
first phase by the common layers, and then, the various flow
classification tasks are able to be trained and computed at the
same time with inter-independent branches of private layers
respectively. The common layers are also supposed to be
effective for saving the calculation time and memory. Each of
the classification tasks owns an extended and relative simple
branch of private layers for task specialization. Besides, with
this proposal, we suppose that new related classification tasks
might be able to be solved by adding a new branch of private
layers connecting to the well-trained common layers.

In the real-world implementations, adopting techniques
like the DNN are quite hard due to the great computation
complexity and time cost of the neural networks. But our
proposed structure might be a solution. It is supposed to be
not only suitable for the centralized data center controllers
which are equipped with huge volumes of computational
power but be also a potential solution in many scenarios that
devices have weak computing power. On the one hand, in the
centralized data center, our proposed algorithm is supposed to
handle several classification tasks at the same time with one
calculation unit and much less cost on either the time or the
memory. Moreover, a new demand can be tested without
influencing the established business and share the common
knowledge extracted from a great amount of previous related
data. On the other hand, for the weak end devices, using
our hierarchical structure, the common learning layers can be
placed remotely in the cloud or in some specialized neural
network computation units. And then, only a simple cost of
calculation for several neurons can the end devices complete
the complex and new tasks by connecting to the common
layers.

Our main contributions are summarized as follows:
• We propose the Multi-Output DNN structure as a means
to extract the common knowledge of network traffics
and hence a solution to the multi-task problems in the
traffic classification.

• We demonstrate experimentally that our proposed algo-
rithm could be capable of transfer learning handling
different related tasks in traffic classification and thus
meets our vision of the potential ability to address new
demands.

• In the extensive experiments of scenarios that learning
a category from few examples, our proposed algorithm
shows notable performances on both the accuracy and
efficiency by using the common knowledge from the
previous trained common layers.

The rest of the paper is organized as follows. The back-
ground of flow classification and related works on multi-
task learning are reviewed in Section 2. The basic algorithms
and our proposing algorithm are presented in Section 3.

Section 4 lists the description and statistics of dataset we have
used in the experiments. Section 5 gives our experimental
settings, and Section 6 reports the details of our experiments
and the results. The paper concludes in Section 7.

II. BACKGROUND AND RELATED WORKS
There has been a lot of approaches to the traffic classification.
The machine learning tools have been the most promising
techniques and they were well researched over the past sev-
eral decades. There has been a large number of researchers
that focus on predicting different flow features. And the
studies on the traffic classification were primarily focused
several perspectives.

The detection of potential elephant flows would avoid
some potential network congestions [8]. And many works
focused on the precise classification of multimedia traf-
fic or P2P (Peer-to-Peer) traffic [9] accounting for their poten-
tial large proportion of all the traffic. The discrimination of
specific application layer information of the flows is expected
to provide better QoS based on different demands of the
applications. And the early detection of malicious network
traffic is believed to provide an appealing improvement to the
network safety [10].

Supervised learning was explored on the one hand. The
kNN (k-Nearest Neighbor) is a simple but useful tool [11].
Naive Bayes estimator [12] was introduced, and
Auld et al. [13] proposed the Bayesian neural network based
classification later. SVM (Support Vector Machine) was
proven to be one of the most promising techniques in many
tasks of classification [14]. C4.5 Decision Tree was another
solution [15]. Besides, some researchers have tried the Deep
Learning technique [16]. For other areas, deep learning could
train a model by an end-to-end fashion, which decrease
the suffering of expert modeling [17]. On the other hand,
Bernaille et al. [18] suggested that an unsupervised learning
model could be helpful for traffic classification due to its
independence form predefined labels.

Many data mining and machine learning algorithms make
predictions using models which are trained with previously
collected labeled or unlabeled dataset. Nevertheless, in many
real-world applications, the tasks to explore or the distribution
of feature spaces are not always constant [19]. In contrast,
the transfer learning allows the training and testing datasets
to be of different domains, tasks, or distributions [20].

The weakly supervised learning which could use the other
related task labels to enhance the target task performance is
attracted more and more researchers. One of the main issues
is reducing the cross-domain discrepancies. Many weakly
supervised learning has been used [21] in other areas, such as
computer vision [22] and natural language processing [23].
For natural language processing, Perera et al. [24] combines
many related tasks, such as semantic annotation and name
entity recognition, to learn better sentence representation. For
image classification, Han et al. [25] proposed a method uses
unsupervised learning algorithm to encoder the image back-
ground and then separate the salient object from background
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by reconstruction residuals. Zhang et al. [26] integrate self-
paced learning into multi-instance learning for co-Saliency
detection. Recently, Sun et al. [27] used transfer learning and
Moustafa et al. [28] used ensemble learning to improve the
network traffic classification.

It is noted that the transfer learning has many branches of
studies depending on the availability of datasets for source
and target tasks. Most of the cases are well explored. How-
ever, themulti-task classificationwas rarely noticed for traffic
classification problem. Besides, some studies have focused
on the one-shot learning, where the labeled training set in
the target task is quite small. The key point of the one-shot
learning is that one can take advantage of knowledge from
previously trained data. Fei-Fei et al. [29] mentioned this
word at the first time.

III. METHODOLOGY
A. PRELIMINARY
In this section, we introduce some notations and definitions
which are used in this paper. At the first place, a task D is a set
of two components: the feature space X and the correspond-
ing label space Y . Given a task dataset D which consists the
features X = {x1, . . . , xn} ∈ X and the corresponding labels
Y = {y1, . . . , yn} ∈ Y , the relation of them can be denoted as
a mapping function f : X → Y . For instance, in classifying
the flow rate, the port number and a set of statistics of a
flow is a feature vector X , and their real flow rate can be an
instance of the label space as Y ∈ Y . From the perspective
of discriminative model, the f (·) can be written as P(y|x).
The deep learning is a process of fitting a function which is
somehow likely to the real function. And it usually uses a loss
function L[f (X ),Y ], which presents the difference between
the prediction and the ground truth, to judge the performance
of the fitting function.

B. MULTI-OUTPUT DNN APPROACH
The mathematical intuition of DNN is a highly nonlinear
mapping function. Given a specific trace dataset D, now con-
sider that we want to classify the duration, flow rate andmany
other flow properties which are denoted as Y1,Y2, . . . ,Yn,
the corresponding mapping function f1, f2, . . . , fn may be
similar in some degree with the same X . With an allowable
affordability deviation 1i, we can have that

fi = f ′i · fc +1i. (1)

The f ′i part refers to the mapping function of different branch
of private layers respectively and fc denotes the general func-
tion of the common layers. The common knowledge C in this
structure can be expressed as

C = fc(X , θc), (2)

where the θc denotes the parameters in the common layers.
It is shown in Fig. 1 that a Multi-Output DNN contains
common layers and several branches of private layers. In the
structure of the neural network, all the common layers are

FIGURE 1. The multi-output DNN structure.

fully connected, and the first layers of all private branches are
also fully connected to the last common layer respectively.
For each private branch, layers are fully connected to each
other. But there are no connections between any pair of
neurons from different private branches.

Assuming that there are totallyN tasks of classification, for
each task, i.e. each branch of the neural network, we use a loss
function Li[fi(X , θ),Yi] to measure the performance of the
corresponding fitting function, where θ denotes the param-
eters in the neural networks. Hence, the general optimization
process is shown as follows:

θ∗ = argmin
θ={θc,θi}

N∑
i

Li[fi(X , θ),Yi]

= argmin
θ={θc,θi}

N∑
i

Li[(f ′i · fc)(X , θ),Yi]. (3)

The θ∗ denotes the parameters of final fitting function. As the
deviation 1i is beyond control, we ignore it here and later
this section in the equations for simplicity. And the θc and θi
refers to the parameters in the common layers and ith to the
ith branch of private layers respectively.
The training process of Multi-Output DNN is then slightly

different to the simple DNN. A direct method to the Eq. 3 is
the RRBP (Round-Robin Backpropagation), which is illus-
trated as Algorithm 1. In RRBP, the loss function of each
branch is calculated respectively, and for every batch of
inputs, each task complete training its private part and the
common part in turn. And the other is PPSCBP (Parallel-
Private and Sum-Common Backpropagation). In contrast,
PPSCBP defines a general loss function

L =
N∑
i=1

wiLi, (4)

where Li refers to the loss function of ith private branch
and wi is the weight of the branch. Then, the corresponding
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optimization process is

θ∗ = argmin
θ={θc,

∑N
i θi}

L[
N∑
i

wifi(X , θ),
N∑
i

wiYi]. (5)

For every batch training, the general loss is calculated, and all
the private and common layers are updated. Algorithm 1 and 2
demonstrates it specifically.

Algorithm 1 RRBP
Input: The training data set X and labels Y1, . . . ,YN

The parameters θc, θi, . . . , θN
the lost function L1, . . . ,LN and maximum loss thread ε

Output: θ∗

1: Pre-training for the θc
2: while

∑N
i Li(f (X ),Yi) > ε do

3: for i := 1 to N do
4: θi := θi −

∂
∂X Li[f (X ),Yi]

5: θc := θc −
∂θi
∂Li

∂
∂X Li[f (X ),Yi]

6: end for
7: end while

Algorithm 2 PPSCBP
Input: The training data set X and labels Y1, . . . ,YN

The parameters θc, θi, . . . , θN , the weights w1, . . . ,wN
the lost function L1, . . . ,LN and maximum loss thread ε

Output: θ∗

1: Pre-training for the θc
2: while

∑N
i Li(f (X ),Yi) > ε do

3: L := 0
4: for i := 1 to N do
5: θi := θi −

∂
∂X Li[f (X ),Yi]

6: L := L + wi · ∂∂X Li[f (X ),Yi]
7: end for
8: θc := θc − L

∑N
i
∂θc
∂θi

9: end while

For either the training function, a presumption behind this
proposal is that training several related classes at a timewould
update the parameters in the neural network from different
directions in the multidimensional space from the perspective
of mathematics. Hence, it might be helpful for the learning
not dropping into local optimums.

C. TRANSFER LEARNING
In some cases, a new demand, e.g. a new label classification
task, is proposed, but it might be costly to train a new model
for solving the problem. By the conventional machine learn-
ing methods, there might be faced with difficulties collecting
the sufficient data for the target task while abundant data for
related tasks were available. We may find it practical to train
the new classifier using the data from related tasks or using
other tasks’ previously trained layers to speed up the training
process. Such a new task is called the target task DT and the
previous trained tasks are referred to the source task DS .

The structure we proposed is satisfying dealing with the
meeting new demands of a new flow labeling. Typically,
given the condition that

min
θ={θc,θS }

∑
i∈S

Li[(f ′i · fc)(X , θ),Yi], (6)

where the S is the set of source tasks, one training process can
be expressed as follows:

θ∗ = arg min
θ={θc,θS ,θT }

{

∑
i∈S

Li[(f ′i · fc)(X , θ),Yi]

+

∑
j∈T

Lj[(f ′j · fc)(X , θ),Yj]}. (7)

T denotes the set of target tasks. In other words, the com-
mon layers should be trained and parameters in both the
source tasks and the target tasks need to be optimized using
backpropagation. The Eq. 7 can also be rewritten similar
to Eq. 5 by Eq. 3. We would refer to this scheme using
the abbreviation SCT (to train Source, Common and Target
layers) in later sections.

One way to simplify the above algorithm is to subtract the
calculation of previous trained tasks:

θ∗ = arg min
θ={θc,θT }

∑
j∈T

Lj[(f ′j · fc)(X , θ),Yj] (8)

In the implementation of OCT (to train Only Common and
Target layers), one of the ways is to connect the target
tasks directly to the original common layers. But this behav-
ior might cause some negative effects to the source tasks.
Another way is to sacrefice the advance in saving the memo-
ries – to copy all the parameters in the trained common layers
and build a new neural network with them. And train the new
neural network as usual.

Pursuing a more clear and simple function, the last method
is to ignore the common layers.

θ∗ = arg min
θT

∑
j∈T

Lj{f ′j [fc(X , θc),Yj], θj} (9)

As Eq. 9 illustrates, this training scheme adds the new task to
the trained neural network but trains only the private layers
of the new branch. In such an approach, the common layers
and the previous private layers will not be influenced by OT
(training Only Target layers). It meets the demand of test-
ing a new task without influencing the established business.
General, the common layers learnt by source tasks would
like to be biased towards the source tasks. If the source tasks
are diverse enough, the common layers try to learn a neutral
traffic representation [30]. The Fig. 2 illustrates a simplified
version of the three training schemes.

D. ONE-SHOT LEARNING
Most previous data mining techniques require a large amount
of data. However, it is often difficult to acquire large sets of
training examples. The one-shot learning refers to predicting
with a very small labeled training set [31]. In the field of flow
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FIGURE 2. Transfer training schemes. SCT refers to train the source,
common and target layers; OCT refers to train only the common and
target layres whereas OT refers to train only the target layers.

classification, the dataset of some label tasks, e.g. the ele-
phant or mice flow, are quite plentiful while requiring others,
e.g. information of application layer, are expensive or rarely
dated due to historical miss or legal reasons.

Hence, under the condition of Eq. 6, a new task DT is
introduced with a dataset Do = (Xo, Yo), where Xo $ X
and |Xo| � |X |. The training schemes here is quite similar to
the Eq. 7, 8 and 9. The only difference is to replace original
X and Y with Xo and Yo respectively.

In other words, a training set with plenty data is adopted
for the training of source tasks in the first place. After the
convergence of them, a relative small data set is adpoted for
the training of target task. Also, three training schemes the
same as the one in the last section are proposed.

IV. DATASETS AND FEATURE SELECTION
We selected several real-time network traffic traces dataset to
evaluate our algorithms. Some of the important features of the
traces are listed in Table 1.
• WITS: ISPDSL-I and ISPDSL-II was entirely contigu-
ous packet header traces captured from a New Zealand
ISP using a single DAG 3.7G card by WITS [32]. In our
study, we selected 3 trace files respectively. The trace
contains all the traffics for the ISP’s customers in both
directions. The packets were truncated four bytes after
the end of the transport header and thus available for
acquiring layer 7 information. We collected all the flows
with layer 7 information and with features that there
were totally more than 5 packets.

• Moore and Zuev [12] collected several sets of flows
using the high-performance network monitor. There are
totally 10 sets of data publicly available. We selected the
Entry09 and Entry10 in our experiments. For each of the
flow record, there are 249 features included containing
almost all the statistics that a flow can be characterized
by and the information is provides based on both direc-
tions and each direction individually.

The selection of features to classify different flows has
been well discussed [33]. In this paper, the feature extraction

TABLE 1. Statistics of the dataset.

is not a major topic of what we’re exploring. And due to the
discriminative ability of the supervised learning, we would
select common and comprehensive features as input to pro-
vide sufficient statistics for different tasks of classifications.
Thus, we concluded from the previous studies [5]–[7] and
decided to implement totally 16 features promising the unbias
from feature selection (which has been evaluated by matrix
factorization methods, such as variational bayesian matrix
factorization [34]): transport layer source port, destination
port, number of packets with PUSH flag, ratio of upload and
download, the first quartile of inter-arrival time and packet
size, the statistical properties of the inter-arrival times and
packet sizes (the minimum, the maximum, the mean, the vari-
ance and the rooted mean square).

In later experiments, three tasks of classification are dis-
cussed: the duration, the flow rate, and the application type.
For the first two tasks, we divide them into two sets with the
median values and label them respectively.

V. EXPERIMENTAL SETTINGS
A. EXPERIMENTAL ENVIRONMENTS
A series of experiments were designed to evaluate our
new traffic classifier using a Multi-Output DNN technique.
In these experiments, a typical 3-branch multi-output neural
network is implemented, and many different situations are
discussed. In the evaluation, we adopt the cross entropy for all
the loss function of DNN. The activation function is the sig-
moid function. And the batch normalization is implemented
in constructing the neural networks in later experiments for
improving the accuracy. The common layers consist of four
fully-connected layers with 30 neurons separately. In each
private branch, two fully-connected layers are implemented
(The number of first layer neurons is 30 neurons, the number
of output layer neurons equal to the classification numbers).

The platform used for this experiment is: Windows 10
operating system running on a laptop equipped with an Intel
2.4GHz i5-6300U CPU, 8GB RAM, and a custom variant of
NVIDIA GeForce GPU with 1GBmemory. Most of the algo-
rithm implementations in later experiments are completed
with the skikit-learn tools [35].

B. EVALUATION
The performance of the classifier can be measured by the
accuracy and the time cost.

A common way to illustrate a classifier’s OA (overall
accuracy) is through the well-known metrics of TP, TN,
FP and FN (T and F for True or False, and P and N for
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TABLE 2. Traditional techniques and multi-task learning experiments.

Positive or Negative respectively).

OA =

∑n
i=1 TPi∑n

i=1(TPi + FPi)
, (10)

where n denotes the number of categories. The OA for dif-
ferent classification function were discussed respectively in
later experiments.

To evaluate the time cost, we record the training time for
each training epoch. As concerned as the DNN, the criterion
for the convergence of a training process is thought to be
that there’s no more than 0.5 percent of increment of the
accuracy in 100 later training epochs over test dataset. Then,
the accuracy and the time cost are recorded and considered as
final results. For a Multi-Output DNN, the time cost is set to
equal to the one task which spends the most time to converge.

As for the analysis of performance of the knowledge space
representing the traffics, the Euclidean distance is adopted in
later experiments. Considering in a multi-dimensional math-
ematical space, using dij to denote the normalized distances
to the geometrical center of label j for instances with label i,
the perplexity is considered to be

perplexity =

∑N
i dii∑N

i
∑N

j dij −
∑N

i dii
. (11)

The less the perplexity is, the better the knowledge space
represents the traffics.

Moreover, we split each the dataset randomly and then
adopted the hold-out validation.

VI. EXPERIMENTAL RESULTS AND ANALYSIS
A. THE MULTI-OUTPUT DNN
We firstly experiment to check if our proposed algorithm
is feasible to the multi-task traffic classification. Three
tasks – duration, flow rate, and flow application classifica-
tion – are discussed in the following discussion. We imple-
mented five traditional machine learning techniques and three
recently proposed techiniques: the kNN (k-Nearest Neigh-
bor), the SVM (Support Vector Machine), Decision Trees,

Linear Regression, the Random Forest, Deep Neural Net-
works, Maxent [27], Ensenble Learning [28]. Also, we nor-
malize the input data before training. We constructed three
different single DNNs respectively, each with 4 layers and
30 neurons for each layer.

Then, we continue to the Multi-Output DNN. In order
to avoid the question that the private layers play too many
roles and thus eliminates the validity of the common layers,
we adopt a very simple structure for each private branch with
only one hidden layer with 30 neurons and one output layer.
Given that these classifications are not very complex prob-
lems, we construct the Multi-Output DNN with 4 common
layers and 30 neurons for each layer. We tested 2 different
training techniques of the Multi-Output DNN that we have
discussed in Section III. One is the RRBP (round-robin back-
propagation), and the other is PPSCBP (Parallel-Private and
Sum-Common Backpropagation).

Table 2 illustrates the result of the overall accuracies
for three tasks of classification with above tools and the
2 schemes for the Multi-Output DNN in four trace datasets.
From the results, we can observe that the KNN is mostly
a good tool for the application classification. But it doesn’t
share fair results in other two tasks. The SVM performs
fairly in Trace I and Trace II, but it seems to fail in the
Entry09 and Entry10. Decision Tree shows a remarkable
score of accuracy on the flow rate on Trace II, though
its results don’t seem well in other experiments. It seems
that the simple Linear Regression is not suitable for this
problem. The Random Forest algorithm is not as stable as
the DNN, especially in the experiments using Entry09 and
Entry10. The ensemble learning has stable performance in
all the experiment and slightly worse than the proposed
algorithm.

As far as the DNN is concerned, it keeps very stable
performances on all three tasks of different traces. Besides,
the DNN presents either the best or the second-best results in
all the experiments. As the second player on the classification
of duration for Trace I, the difference between the DNN
and the best one is no more than 0.2 percent. Therefore,
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FIGURE 3. Multi-output DNN and single DNN comparison.

the DNN advances in traffic classifications compared with
other machine learning techniques.

As for the Multi-Output DNN, from the last two columns
in Table 2, it can be concluded that the accuracies of both
2 training schemes are approximately equal to that of the
single structure. The PPSCBP has a slightly better accuracy
than RRBP in most cases and ties the single DNN generally.
The differences are mostly within the limit of the biases of
datasets. Therefore, the Multi-Output DNN should share the
same behavior on traffic classification as the single DNN.
Besides, its performance stabilization on different tasks and
traces shows the potential ability to handle multi-class prob-
lems and thus meets some of our proposals properly.

Now considering the time cost shown in Fig. 3, The train-
ing time for variant tasks of different datasets are varying
a lot. Generally, the RRBP costs a little more than 3 times
as the average standard of simple DNNs on all three tasks
in Trace I and Trace II but advances them in Entry09 and
Entry10. PPSCBP costs 1 to 1.5 much time as the average one
of single structures. Considering that the Multi-Output DNN
outputs three results together, we would sum up the time cost
of single DNN over three tasks. Hence, the RRBP training
scheme shares approximately equal time cost with the sum
of single structures. On the other hand, PPSCBP has advan-
taged than the simple structure in the convergence speed.
Moreover, specifically in this experiment, the Multi-Output
DNN with PPSCBP can be more than 2 to 3 times faster
while saving less neurons’ space. And predictably, the more
tasks the DNN trains, our proposal structure with PPSCBP
training scheme would save more time and memory. In later
experiments, we would choose the PPSCBP to train the other
Multi-Output DNNs in later experiments.

B. COMMON KNOWLEDGE
Then, we would discuss the common knowledge extraction
with the Multi-Output DNN. After training the three tasks
usingMulti-Output DNN, the values of the last common layer
in the Multi-Output DNN are recorded. Similarly, we record
the values of the second-last layer and the corresponding

TABLE 3. Perplexity metrics of the common knowledge.

FIGURE 4. The knowledge space of multi-task and single-task training.
Different marks and colors refer to different labels. (a) The extracted
common knowledge for different labeling. (b) The k̈nowledge spaceöf
single-task application.

labels for simple DNNs as well (The values of DNN is not the
de facto common knowledge but just is considered as control
groups).

Table 3 demonstrates the perplexities of the different tasks
represented by the common knowledge. It can be read that
the perplexities of common knowledge extracted by Multi-
Output DNN are the least in all three tasks. Then, each
of the single DNN has the second-least perplexity for the
corresponding training task but shares relatively higher ones
for the other tasks. In addition, it can be drawn that the
tasks of duration and flow rate are more similar while that
of application is some more different. It is shown that our
proposed algorithm is able to extract the common knowl-
edge of the network traffics properly. In this experiment,
the common knowledge represents the flows even better
than the corresponding knowledge space of single task
training.

We go through the result spaces for all neurons and
select the three of them as delegation. It is illustrated
in 3-dimensional views labeling with three tasks as Fig. 4.
The Fig. 4a shows that the values of different labels are
properly represented and clustered separately after some
training epochs. As a contrast, Fig. 4b demonstrates the
knowledge space in a single-task training scenario, where the
DNN can extract the knowledge labeling with application
types. However, it behaves barely satisfactorily in the other
two tasks.
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TABLE 4. Transfer learning experiments.

C. TRANSFER LEARNING
The structure of the Multi-Output DNN brings remarkable
benefits to eliminating the time and memory cost. Still,
there’remore to explore. Inmany cases, the demands in a field
are not always constant. In the traffic classification, there are
often several tasks to discuss. We’ve applied three types of
classical questions in the previous study. But it is unknown
that whether the Multi-Output DNN would be able to handle
some new demands. Due to the limit of the dataset, it is hard
to set new task labels. So, we adopted the 2-phase strategy:
firstly, we trained two tasks as source tasks, and then, the third
task was raised as target task and be added into the established
neural network. We hence evaluate the effectiveness and the
accuracy of the target task.

More specifically, in the first place, we apply a Multi-
Output DNN with 4 common layers and 2-layer private
branch for two source task classifications. After 200 training
epochs, the accuracies of the two tasks on the test dataset were
supposed to be stable enough. Then, we added the private
branch of the target task and adopted three types of methods
mentioned in Section 3 respectively. As a standard control,
we chose a simple neural network with the same number of
architecture, i.e. the same number of layers and neurons, and
applied the same learning rate. Table 4 illustrates the results
of three approaches and the standard control experiment.

In the results, we can observe that the SCT shares approx-
imately equal accuracies to the single DNN with a less time
cost over all the tests. This phenomenonwould lead to that the
common knowledge extracted by previously trained common
layers would speed up the training process of a new task
with the fair results. Besides, this scheme requires much less
memory compared to constructing a new DNN.

Now considering the OCT, it achieves slightly better accu-
racies than the SCT while taking even less time as for all
the tasks and traces. Generally, the single DNN costs as 2 to
4 times as the OCT to convergence. This is a remarkable
result. Still, considering its disadvantage to the SCT, it would
be a compromise problem.

Finally, the OT takes the least time to converge in most
cases. Though its achieved accuracies are not as good as the
other 2 training schemes and the single structure, this scheme
is equipped some special feature that allows testing a new
classification without influencing current business. It would
be functional in the real industrial environments.

To sum up, adopting the Multi-Output DNN benefits the
process of training when faced with a new traffic classifica-
tion demand. The SCT is a good solution and it achieves our
initial proposal in this experiment. Ignoring the source tasks,
the OCT is evaluated to be much efficient and accurate than
the traditional DNN approach and other training schemes.
Besides, the OT strategy can be used as a quick testing tool
for new demands.

D. ONE-SHOT LEARNING
For a more realistic experiment, the features or labels for
some tasks are hard to obtain. Again, we choose the duration,
flow rate, and application to be the target task in turn while
the other to play the source task. A Multi-Output DNN with
the same structure as the last experiment is adopted. In the
first place, we use all the data to train both the duration and
flow rate tasks and thus try to obtain the common knowl-
edge. Then, 1 percent of total recorded flows were randomly
selected for the training of application classification. Three
different training schemes are tested and compared with each
other. Also, a single DNN with the same structure is con-
structed as the standard control. Table 4 shows the result of
our one-shot experiment.

Under the condition of insufficient data, the DNN performs
not very well in some of the cases. Accuracies of 70 to 80 per-
cent are obtained in half of our tests. In the contrast, the aver-
age accuracy of the Multi-Output DNN is around 94 percent
whichever the training scheme is used. More specifically,
the SCT performs quite well in the experiment that it not
only shows faster speed to converge but also shares higher
accuracies than the standard control in most cases. It is noted
that a 15 percent difference in the accuracy compared to the
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TABLE 5. The one-shot learning experiments (one percent training set).

FIGURE 5. An one-shot learning training example.

single DNN is obtained in some of the experiments. As for the
OCT, similar to the transfer learning experiments, it exceeds
the SCT on both the accuracies and saving times. An average
1 to 2 percent of accuracy promotion is obtained for the OCT
even to the SCT. As far as the OT, though its accuracy is
slightly lower than other two schemes, it outweighs the single
DNN in a big advantage. And it converges much faster than
the others. Predicting flow rate as the target task and using
the Entry09, Fig. 5 illustrates a typical case of the training
process for different algorithms.

Generally, the average accuracy promotion for the Multi-
Output DNN to the single DNN is around 5.4 percent and the
average time is reduced to around 36 percent using our pro-
posed structure. It is considered that the common knowledge
from the trained common layers improves the general perfor-
mances of the training of target task in the one-shot learning
experiments. In such scenarios, our proposed structure has
apparently advanced the simple DNN quite a lot.

VII. CONCLUSION
In this paper, we proposed a novel traffic classification struc-
ture based on the DNN classifier. Firstly, we evaluated the

effectiveness and the validation of the Multi-Output DNN
within the field of traffic classification. We adopted three
regular tasks: predicting the time duration, the flow rate,
and the application type of flows. The PPSCBP training
scheme is proved to be effective in both reducing time cost
and saving memory compared to the simple DNN structure
and it shows a higher overall accuracy than other machine
learning tools. Then we have explored the performance of
common knowledge extraction. It is shown that our proposed
structure can extract the common knowledge of traffics prop-
erly and the knowledge space is less perplexed than all the
corresponding single-task DNNs. Moreover, we evaluate the
potential of our proposed algorithm to address new demands.
All the three training schemes have achieved addressing the
demands of new classification on related tasks at a faster
speed in our experiments. Besides, in one-shot learning
scenes, the Multi-Output DNN shows remarkable results that
it can be applied to acquire an even better accuracy result
and a faster training speed with the support of common
knowledge.
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