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ABSTRACT This paper presents a double wavelet denoising (DWAD) method, which can preserve more
details of an original signal. Although the noise removal method based on wavelet transform has been
widely used, it still performs poorly for the signals with a low signal-to-noise ratio (SNR) or frequency
overlap. Different from the wavelet denoisingmethods based on a single basis function, the DWAD considers
filtering the wavelet coefficients of the noisy signal by threshold functions under two different wavelet
domains, simultaneously. It considers using the difference of wavelet coefficient distribution and forcing the
denoised signals under two wavelet domains to be the same to achieve more retention of details. In addition,
the arctangent function is employed as a penalty function for wavelet coefficients to induce strong sparse
wavelet coefficients. The DWAD is applied to one-dimensional signals and it is found that some wavelet
coefficients which are smaller than the threshold could be retained during noise removal. The experiment
results show that the average SNR of different noise levels is improved by at least 4.2 and 2.1 dB compared
with the classical soft threshold method for the one-dimensional and image signals, respectively. Besides,
the DWAD tends to obtain better performance on the details of original signals.

INDEX TERMS Wavelet transforms, signal denoising, non-convex regularization, sparse representation,
double wavelet domains.

I. INTRODUCTION
Signal denoising is a common problem in signal and image
processing. Wavelet transform is widely used in signal and
image processing for a variety of applications. For noise
reduction, it is a reasonably effective procedure to remove
the noise under the wavelet representation domains. By using
the threshold functions to filter the wavelet coefficients of
noisy signal, the denoised signal can be obtained [1]–[3].
However, there are two problems that hinder the performance
of wavelet denoising [4], [5]. 1) The basis function. For the
same observed signal, the denoised signal has a difference if
the employed basis function of wavelet is different. 2) The
threshold function. When we remove the noise under wavelet
representation domains, the threshold function would partly

The associate editor coordinating the review of this manuscript and
approving it for publication was Ramesh Babu N.

filter the real signal. Different threshold functions could
induce different deviation.

For the denoising methods based on wavelet transform,
they transform the signal to wavelet representation domains.
Most of signal has the sparsity under wavelet domains.
According to the sparse representation literature, wavelet
denoising could be seemed as the sparse approximation under
the wavelet representation domains [6]. In the process of sig-
nal reconstruction by using sparse approximation methods,
the sparsity of signal has great influence on the accuracy.
Strong sparsity could induce more accurate reconstructed
results. For wavelet-denoising methods, the wavelet repre-
sentation domain generated by specificwavelet basis function
determines the sparsity of wavelet representation coefficients.
Besides, the threshold function is employed to obtain the
sparse representation coefficients of denoised signal, so it
would also affect the sparsity of the reconstructed signal.
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Therefore, it could be concluded that both basis function
and threshold function have an important influence on the
sparsity of denoised signal. In order to enhance the sparsity
of denoised signal for wavelet denoising, the improvements
for both basis function and threshold function are taken into
account [7], [8].

A. DESIGN OF WAVELET REPRESENTATION DOMAINS
The wavelet representation domain depends on the wavelet
basis function. Therefore, it is reasonably effective to design
specific basis function for a particular signal. For image
processing, some specific wavelet basis functions are con-
structed to obtain sparse representation coefficients [9],
especially the Contourlet [10]–[12] and Curvelet [13]–[15].
Though the representation domain generated by this way is
based on strict mathematic model and holds good sparsity,
the mathematical complexity makes it not easy to design an
appropriate basis function for the specific signal.

In addition, the redundant wavelet representation domains
are considered. The noise removal methods based on
undecimated wavelet transform [16], [17] and redundant
wavelet domains [18], [19] are proposed. Besides, some
over-complete representation domains are designed by the
concatenation of two wavelet transform matrices in [20]
and [21]. The concatenation transformmatrices do not use the
difference of wavelet coefficients distribution and are suitable
for the morphological component analysis [22].

B. IMPROVEMENT OF THRESHOLD FUNCTIONS
As for threshold function, classic hard and soft thresh-
old function are widely used in noise reduction in wavelet
domains [23]. Nevertheless, both of them usually do not have
good performance for noise removal. Hard threshold function
does not hold good smoothness of reconstructed signal. Soft
threshold function tends to filter part of original signal during
filtering the noise though it keeps the reconstructed signal
smooth. In order to improve the performance of wavelet
threshold denoising, two classes of threshold functions are
considered.

For the first class of methods, a specific threshold function
is designed according to the characteristics of the distribu-
tion of wavelet coefficients. In order to balance the advan-
tages of soft threshold function and hard threshold function,
the semi-threshold [24] and garrote threshold [25] functions
are proposed. Further, some nonlinear threshold functions are
designed. Reference [26] proposes a new nonlinear thresh-
old function based on non-Gaussian bivariate distributions.
Instead of setting the coefficients below the threshold value
to zero, [27] considers adjusting these coefficients by a poly-
nomial function, and corresponding threshold function is
designed. And the OLI-Shrink function proposed in [28] con-
siders using the optimal linear interpolation. Besides, [29]
employs the fuzzy logic to design the threshold function.

The other class of methods considers designing the
threshold functions to induce sparse wavelet coefficients.
The hard and soft threshold function could induce sparse

representation coefficients and be employed for the sparse
reconstruction with regularization by L0 norm and L1 norm,
respectively [30], [31]. In order to improve the sparsity
of reconstructed signal, several special penalty functions
for L1 norm are designed, including the logarithmic
function [32], the arctangent [33] function, the minimax-
concave function [34], [35], the rational function [36] and
exponential function [37], [38]. By using these penalty func-
tions, the corresponding threshold functions would be
deduced. Those threshold functions have good performance
of inducing sparsity [36], [39]. However, all of them focus
on the coefficients that are greater than the threshold
value and ignore those smaller. Therefore, though those
above-described methods are efficient, limited improvement
can be achieved.

C. THE PROPOSED METHOD
The wavelet coefficients of original signal have different
distribution when the signal is represented by different basis
functions. When the threshold functions are used to filter
noise, those coefficients that are less than threshold value
would be filtered. Which makes some details of signal would
be lost during the process of denoising. The part of original
signal filtered by threshold function varies fromwavelet basis
function.

In view of the wavelet coefficients of original signal hold
different distributions under different wavelet domains, some
details of original signal which could be filtered in spe-
cific wavelet domain would be preserved when using other
wavelet domains. Therefore, we consider employing two
normal wavelet basis functions to denoise simultaneously.
By using the difference of wavelet coefficient distribution
and forcing the denoised signals in two wavelet domains to
be the same, more detail would be preserved during filtering
the noise. Besides, the penalty function is also employed to
induce sparsity more strongly under two wavelet domains.

The rest of this paper is organized as fellows. In section II,
we establish a denoising model based on double wavelet
domains in view of the different distribution of wavelet coef-
ficients in two wavelet domains. Section III presents some
the experimental tests and the results analysis of different
algorithms. In section IV, we conclude this paper.

II. SIGNAL DENOISING METHOD BASED ON
DOUBLE WAVELET BASIS FUNCTIONS
A. PROBLEM STATEMENT
Generally, the real signal with noise is described as:

y = x + n (1)

where the y ∈ RN and x ∈ RN are the observed and original
signal, respectively. The n denotes the noise and it is usually
assumed that obeys the Gauss distribution. For the denoised
methods based on wavelet transform, they transform the
signal to wavelet representation domains, and the denoising
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model could be expressed as:

C = argmin
C

{1
2
‖Cy − C‖22 + ‖C‖1

}
(2)

where Cy denotes the wavelet coefficients of observed sig-
nal y. The problem could be solved by soft threshold function
and the denoised signal would be obtained by wavelet inverse
transform.

By using wavelet transform, signal could be seemed as
linear combine of wavelet basis under different scales. Both
of the observed and original signals can be expressed by two
wavelet basis functions:{

x =W1C1 =W2C2

y =W1C1y =W2C2y
(3)

where C1, C2 and C1y, C2y are the wavelet coefficients
of original signal and observed signal under two wavelet
domains, respectively. W1 and W2 denote the wavelet trans-
form matrices based on two basis functions. In this paper,
we consider to employ the translational-invariant (i.e., undec-
imated) wavelet transform [40], [41], which satisfies the Par-
seval frame condition:

WT
1W1 =WT

2W2 = I (4)

FIGURE 1. Wavelet coefficients (sorting by decomposition scales) of
Doppler signal under db4 and sym4 wavelet domains.

Fig. 1 shows that the wavelet coefficients of classical
Doppler signal under Daubechies (db4) and the Symlets
(sym4) wavelet basis function with 4 vanishing moments
are with different distribution. Comparing the amplitude of
coefficients under twowavelet domains, it could be found that
somewavelet coefficients in db4 domain are significant while
they are small in sym4 domain. Which means some details of
signal will be retained under other wavelet domains though

they are filtered by threshold function under specific wavelet
domains. Therefore, in order to preserve the details of signal
as far as possible and improve the performance of denoising,
we propose a unified model based on double wavelet basis
functions (DWAD) to denoise the signal with non-convex
optimization in this paper. The DWAD is descried by the
constrained optimization problem as follow:

arg min
C1,C2

1
2
‖C1y − C1‖

2
2 + λ1P1(C1)+ λ2P2(C2)

subject to W1C1 =W2C2 (5)

where λ1 and λ2 denote the regularization parameters. The
P1 and P2 are the penalty function terms for representation
coefficients under two representation domains, respectively.
In this paper, we consider using the same penalty function
for the wavelet coefficients under two wavelet domains.
Therefore, P1 and P2 have the same form and could be
expressed as:

P1(C1) =
N∑
j=1

φ((C1)j, a)

P2(C2) =
N∑
j=1

φ((C2)j, a) (6)

where the φ is the penalty function, andN denotes the number
of coefficients. The parameter a controls the non-convexity
of the penalty function and it should be in the range
of 0 to 1/λ [39]. Fig. 2 (a) and (b) illustrate several penalty
functions and corresponding threshold functions, respec-
tively. Those penalty functions are defined as [42]:

φ(Cj, a) =



1
a
log(1+ a |x|), log
|x|

1+ a |x| /2
, rat

2

a
√
3
(tan−1(

1+ 2a |x|
√
3
−
π

6
)), atan

(7)

Specially, if both of wavelet basis functions is the same,
which means W1 = W2, then the proposed model could be
rewritten as:

argmin
C1

1
2
‖C1y − C1‖

2
2 + (λ1 + λ2)P1(C1) (8)

In this case, the proposed model would degenerate into the
classical denoising model.

Note that the proposed model in 5 is different the
over-complete wavelet transforms model which constructed
the representation dictionary by the concatenation of two
wavelet transform matrices [20], [21]. The over-complete
wavelet transform matrix D = [W1 W2] does not satisfy the
Parseval frame condition:

DTD =
[

I WT
1W2

WT
2W1 I

]
6= I (9)
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FIGURE 2. (a) Penalty functions, (b) threshold functions.

Therefore, the representation coefficients that are employed
to represent x = DCd under over-complete wavelet dictio-
nary could not be obtained by the transposed matrix:

Cd 6= DT x =
[
WT

1
WT

2

]
x =

[
C1
C2

]
(10)

B. THE DWAD ALGORITHM
The problem 5 is a convex optimization problem with con-
straints when parameter a in penalty function is with 0 ≤
a ≤ 1/λ. it is not easy to resolve this problem directly.
But the optimization method based on convex convergence
theory could be employed to solve the problem. The alter-
nating direction method of multipliers (ADMM) is well
suited to distributed convex optimization [43]. According to
the augmented Lagrangianmethod [43], [44], the constrained
problem 5 could be rewritten as unconstrained optimization
problem by a quadratic penalty approach. We form the aug-
mented Lagrangian:

L(C1,C2, µ) =
1
2
‖C1y − C1‖

2
2 + λ1P1(C1)+ λ2P2(C2)

+
µ

2
‖W1C1 −W2C2 − d‖22 (11)

where µ > 0. According to [43] and [45], the problem 5
can be solved by iteratively minimizing C1 and C2 in 11. For
each iteration in ADMM, there are three steps and the optimal

solution of the sub-problem is obtained alternately.

Ck+1
1 = argmin

C1

1
2
‖C1y − C1‖

2
2 + λ1P1(C1)

+
µ

2
‖W1C1 −W2Ck

2 − dk‖22 (12)

Ck+1
2 = argmin

C2

µ

2
‖W1Ck+1

1 −W2C2 − dk‖22

+ λ2P2(C2) (13)

dk+1 = dk − (W1Ck+1
1 −W2Ck+1

2 ) (14)

where we suggest initializing d = 0 and C0
2 = C2y. The sub-

problem 12 and 13 are strictly convex and could be solved
under two wavelet domains, respectively.

For sub-problem 12, the transform matrix W1 is cou-
pled with the optimal variable C1, and it could not be
able to solve the sub-problem easily. Therefore, we con-
sider using the Majorization-Minimization (MM) approach
to minimize the sub-problem and the iteration algorithm is
employed to approximate the optimal solution. The surrogate
sub-objective function for sub-problem 12 is describes as:

G1n(C1,C1n) =
1
2
g1n(C1,C1n)+ λ1P1(C1) (15)

where C1n is the optimal solution for the previous iteration.
The surrogate function gn1(C1,C1n) is designed by MM
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framework [46], [47], and it is defined as:

gn1(C1,C1n) = ‖C1y − C1‖
2
2 + µ‖W1C1 −W2d‖

2
2

+µ(C1 − C1n)T (αI−WT
1W1)(C1 − C1n)

= (1+ µα)‖b1 − C1‖
2
2 + K1 (16)

where

W2d = W2C2 + d

b1 =
1

1+ µα
(C1y + µ(WT

1W2d

+WT
1W1C1n − αC1n)) (17)

In 16, the K1 does not depend on C1 and the parameter α
should be satisfied:

α ≥ maxeig(WT
1W1) (18)

Specially, we consider that the wavelet transform matrices
satisfy the Parseval frame condition in this paper. Therefore,
we could combine the 9 and 16. Then the sub-problem 12
could be equivalent to the following problem:

argmin
C1

1+ µ
2
‖
C1y + µWT

1W2d

1+ µ
−C1‖

2
2 + λ1P1(C1) (19)

Finally, the optimal solution of the sub-problem 12 would
be directly obtained by the threshold function.

Ck+1
1 = Th(

C1y + µWT
1 (W2Ck

2 + dk )
1+ µ

;
λ1

1+ µ
) (20)

where the threshold function Th() is defined by the corre-
sponding penalty function. The parameter λ1 denotes the
regularization parameter under the first wavelet domain.

For the sub-problem 13 in which the optimal variable
C1 is coupled with the transform matrix W2, it is similar
to the sub-problem 12. Therefore, we can also employ the
Majorization-Minimization (MM) approach to solve the sub-
problem 13. The corresponding surrogate sub-objective func-
tion is describes as:

G2n(C2,C2n)=
µβ

2
‖b2−C2‖

2
2+K2+λ2P2(C2) (21)

where

W1d = W1C1 − d

b2 =
1
β
(WT

2W1d + βC2n −WT
2W2C2n)

β ≥ maxeig(WT
2W2) (22)

Considering the situation where the wavelet transform
matrices satisfy the Parseval frame condition, the sub-
problem 13 could be simplified to the following problem:

argmin
C2

µ

2
‖WT

2W1d − C2‖
2
2 + λ2P2(C2) (23)

Therefore, we could also employ the threshold function
that is designated by specific penalty function to generate the
optimal solution:

Ck+1
2 = Th(WT

2 (W1Ck+1
1 − dk );

λ2

µ
) (24)

where the λ2 is the regularization parameter under the second
wavelet domain. Note that, the representation coefficients
of the original signal under different wavelet domains hold
different sparsity.

For the wavelet domain in which the representation coef-
ficients are with strong sparsity, we consider setting small
regularization parameter. Therefore, we suggest that the reg-
ularization parameters for two wavelet domains are set as:

λ1 = γ λ

λ2 = (1− γ )λ (25)

where γ denotes proportion parameter and updates for each
iteration. It is defined as:

γ 1
=

P1(C1y)
P1(C1y)+ P2(C2y)

γ k+1 =
P1(Ck

1)

P1(Ck
1)+ P2(Ck

2)
(26)

Through alternately solving two sub-problems by using
the threshold function deduced by the penalty function,
the filtered wavelet coefficients would be obtained under two
wavelet domains, respectively. Different details of original
signal would be preserved under different wavelet domains.
The d in 14 is updated by the difference of denoised signal
based on two wavelet basis functions, which imposes that
the solutions of two sub-objective functions deduce the same
denoised signal. Therefore, more details of original signal
could be preserved during filtering the noise. The denoised
signal can be obtained by two wavelet transform matrices,
respectively.

x̂ =W1C1 ≈W2C2 (27)

C. THE DWAD PROCEDURE AND PARAMETERS SETTING
According to 12 - 27, we could conclude the procedure of
proposed DWAD. Finally, the iterative denoising algorithm
based on double wavelet basis functions could be described
as Algorithm 1.

It is very important to select appropriate wavelet function
for wavelet denoising. In the DWAD method, two crite-
ria are used to determine the wavelet basis function. The
first criterion is the sparsity of wavelet coefficients. For
sparse approximation methods, the sparsity of representation
coefficients has great influence on the accuracy of signal
reconstruction. Therefore, the wavelet basis functions, which
induce strong sparse representation coefficients, should be
preferred. Specifically, we choose the wavelet basis func-
tions with smaller L1 norm for the observed signal. Sec-
ondly, we consider the correlation coefficient of two wavelet
functions. In the DWAD method, the difference of wavelet
coefficients for signal under two representation domains is
utilized. Some details of original signal would be preserved
in one wavelet domain while they are filtered under another
wavelet domain. The difference of wavelet coefficients in
two representation domains is beneficial to the preservation
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Algorithm 1 DWAD Algorithm
Input:
1: Wavelet transform matrix W1 ∈ RN×N , W2 ∈ RN×N .
2: Observed vector y ∈ RN

3: Number of iterations Iter
Output:
4: An estimate of x̂ ∈ RN the original signal x
5:

6: Initialize regularization parameters λ, µ
7: C1y←WT

1 y
8: C2y← W T

2 y
9: C2← C2y
10: d0← 0
11: γ ←

P1(C1y)
P1(C1y)+P2(C2y)

12: for i = 0→ Iter do
13: W2d ←W2C2 + d
14: b1←

C1y+µWT
1W2d

1+µ
15: λ1← γ λ

16: C1← Th(b1, λ1
1+µ )

17:

18: W1d ←W1C1 − d
19: b2←WT

2W1d
20: λ2← (1− γ )λ
21: C2← Th(b2, λ2µ )
22:

23: d← d− (W1C1 −W2C2)
24: γ ←

P1(C1)
P1(C1)+P2(C2)

25: end for
26: return x̂←W1C1

of details. Therefore, we trend to choose two wavelet basis
functions which hold low correlation coefficient.

ForADMM,which is employed to solve theDWADmodel,
the parameter µ affects the convergence speed of the algo-
rithm. In order to improving the convergence in practice,
a simple scheme is proposed and works well according
to [43]. In this scheme, µ is updated for each iteration:

µk+1 =


s1µk , ‖rk‖2 > s‖ek‖2
µk/s2, ‖ek‖2 > s‖rk‖2
µk , otherwise

(28)

where the rk is the residual of k step and is defined rk =
W1Ck

1 − W2Ck
2. The e denotes the dual residual and it is

defined ek = µ(W2Ck+1
2 −W2Ck

2). The parameters s1 and
s2 are usually set 2, and it is a typical choice to be s = 10.

III. NUMERICAL EXAMPLES
The proposed denoising method is an improvement of
wavelet transform and tries to preserve more details of orig-
inal signal during noise removal. Therefore, the proposed
method is suitable for the signals with good sparsity under
wavelet domains. In order to measure the performance of
the proposed method, some numerical examples are carried
out. In view of the noise removal methods based on wavelet

transform are not suitable for signals with low signal-to-
noise ratio, it is further suggested that the SNR should be
higher than 10dB and peak signal to noise ratio (PSNR) be
higher than 20dB for the one dimension and image signals,
respectively. The decimated and undecimated wavelets trans-
forms, both of them satisfy the Parseval frame condition, are
employed to test the proposed method, respectively. Besides,
the influence of regularization parameter is analyzed.

A. THE DWAD BASED ON DECIMATED
WAVELET TRANSFORMS
Firstly, in order to test the performance of reserving the
wavelet coefficients of original signals, especially for the
coefficients which are smaller than the threshold and usu-
ally represents the details of original signals, two different
transform matrices are generated by the decimated wavelet
transforms.
We consider employing the classical Doppler signal length

of 1024 as the original signal and the corrupted signal by
Additive White Gaussian Noise (AWGN) as observed signal.
We set the signal-to-noise ratio (SNR) of the noisy signal
to be 16. The observed signal holds smaller L1 norm under
sym4 and db4 wavelet domains. Therefore, the two decimated
wavelet transform matrices for the proposed DWAD are gen-
erated by the sym4 and db4 wavelet basis functions. Two
5-scale decimated wavelet transform are generated by two
wavelet basis functions, respectively. For one dimensional
signal, the convergence speed of DWAD algorithm is very
fast. We suggest Iter = 20 iterations with the parameter
µ = 0.8.
In this numerical example, we focus on the performance

of detail preservation of the original for different meth-
ods. Therefore, we consider using the universal threshold
under different wavelet scales for noise filtering. Under db4
and sym4 wavelet domains, the classical soft method and
the penalty functions methods (with the logarithmic func-
tion (Log), rational function (Rat) and arctangent function
(Atan)) are employed to compare with the proposed DWAD
method. For soft threshold method, the threshold is set to
be 2.5σ . As for the penalty methods and proposed DWAD,
we suggest that the threshold and parameter are λ = 3.0 and
a = 1/λ, respectively.
Fig. 3 shows the results of denoised signal by soft method

and the DWAD method without penalty function. Accord-
ing to the results, it could be found that the proposed
DWAD holds better performance of noise removal and
smoothness. Further, in order to evaluate the performance
of different methods, we consider employing the SNR to
measure the noise removal, and employing the root-mean-
square-error (RMSE) and structural similarity index (SSIM)
to measure the detail preservation ability of the original sig-
nal. Table 1 shows each index of compared methods.

As illustrated in Table 1, by using the penalty functions,
the effect of noise removal and detail preserving are greatly
enhanced. The Atan penalty function usually obtains the best
performance. The results of denoised signal by Atan penalty
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FIGURE 3. Denoised signal by the soft method and DWAD without
penalty function.

FIGURE 4. Denoised signal by the Atan penalty method and DWAD
with Atan.

method and the DWAD method with Atan penalty function
are illustrated in Fig. 4. Besides, when using the same penalty
function, the proposed DWAD method has better perfor-
mance than the method which based on only one wavelet
domain in various indicators. By using the DWAD method,
the SNR has an increase of about 2.3 dB.

As shown in Fig. 4, by using the proposed DWAD,
the details of original signal arewell preservedwhile the noise
is suppressed well. Fig. 5 shows the wavelet coefficients of

TABLE 1. RMSE, SNR and SSIM of compared algorithms based
on db4 and sym4 basis functions.

FIGURE 5. Wavelet coefficients (sorting by decomposition scales) of the
denoised signals obtained by the penalty function and DWAD method
under db4 wavelet domain.

the original signal, denoised signal by the Atan method and
denoised signal by the DWAD method under db4 wavelet
domain. According to Fig. 5, we could found that the DWAD
method partially retains some wavelet coefficients which are
filtered to be zero by using the Atan method.

Further, to more clearly compare the relative bias of the
reconstructed wavelet coefficients by the Atan penalty func-
tion and the DWAD with Atan penalty function, these two
sets of reconstructed wavelet coefficients are illustrated in
Fig. 6 (a) and (b), respectively. As it is shown in Fig. 6,
for both of two methods, the reconstructed wavelet coef-
ficients Cr hold strong linear correlation with the wavelet
coefficients C of the original signal in general. However, for
those reconstructed wavelet coefficients that are less than
the threshold, the reconstructed wavelet coefficients by the
DWAD with Atan penalty function lie closer to the iden-
tity than the reconstructed wavelet coefficients by the Atan
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FIGURE 6. Relative bias of reconstructed wavelet coefficients by two methods under db4 wavelet domain.

penalty function. This is why the proposed DWAD could
preserve details of original signal during noise removal.

Therefore, the proposed DWAD holds better performance
of noise filtering and details preservation than those methods
which are based on only one wavelet domain.

B. THE DWAD BASED ON UNDECIMATED
WAVELET TRANSFORMS
For the threshold denoising methods under wavelet domains,
it often introduces some artifacts such as spurious noise
spikes and pseudo-Gibbs oscillations, especially for the sig-
nal with discontinuities. This hinders the further improve-
ment of the wavelet denoising effect. The reason for
pseudo-Gibbs artifacts is due to non-zero coefficients
being erroneously set to zero [41]. In order to solve this
problem, [41] consider employing the total variation (TV) as
regularization in wavelet denoising model. Considering that
the proposed DWADmodel could partly preserve the wavelet
coefficients which are set to zero by classical wavelet denois-
ing model, we would test the artifacts reduction performance
of DWAD in this numerical example.

To further improve the performance of wavelet denoising,
we consider using the undecimated wavelet transforms in
the proposed DWAD method. The observed signal holds
small L1 norm under haar wavelet domain, because the
original signal contains staircase. Besides, the haar and sym4
wavelet basis functions holds low correlation coefficient.

Therefore, two 5-scale undecimated wavelet transform are
generated by the haar and sym4 wavelet basis functions,
respectively. Similarly, we suggest that the parameter µ is
0.8 and the number of iterations Iter is 20.

The hard threshold, soft threshold, penalty functions and
the WATV proposed in [41] methods are employed to com-
pare with the proposed DWAD method. According to [41],
the regularization parameter λ is set to varywith wavelet scale
and it could be expressed as:

λj =
λσ

2j/2
(29)

where σ denotes the noise level and λ is a constant. For the
WATVmethod, the λ is suggested to be 2.5 in [41]. As for the
hard threshold, soft threshold, penalty function and DWAD
methods, we recommend setting it to be 4.0, 3.0, 4.0 and 4.5,
respectively. The parameter a for each wavelet scale is 1/λj.

The original signal and observed signal with noise level of
σ = 4 are illustrated respectively in Fig. 7 (a) and Fig. 8 (a).
Fig. 7 (b) - (e) show the denoised signals by different methods
under haar wavelet domain, whereas Fig. 8 (b) - (e) illustrate
the corresponding results under sym4 wavelet domain. Both
of Fig. 7 (f) and Fig. 8 (f) denote the denoised result by using
the proposed DWAD method. The result of DWAD achieves
the best performance of RMSE. For those methods those are
employed to compare with DWAD, the results under haar
wavelet domain have better RMSE than under sym4 wavelet
domain.
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TABLE 2. Average SNR of several algorithms by different representation domains with 20 trials (RMSE,PSNR).

FIGURE 7. Denoised signal by different methods under haar wavelet
domain. (a) Sy. (b) Hard (RMSE = 1.38). (c) Soft (RMSE = 2.08). (d) Atan
(RMSE = 1.56). (e) WATV (RMSE = 1.40). (f) DWAD (RMSE = 1.22).

Besides, the impact of the threshold values for each
method is illustrated Fig. 9 and Fig. 10 for two wavelet
domains, respectively. These results indicate that the pro-
posed DWAD method has good performance of pre-
serving details and achieves lower RMSE than other
methods. As the results show in Fig. 7, Fig. 8, Fig. 9
and Fig. 10, the proposed method has good performance

FIGURE 8. Denoised signal by different methods under sym4 wavelet
domain. (a) Sy (σ = 4). (b) Hard (RMSE = 1.70). (c) Soft (RMSE = 2.34).
(d) Atan (RMSE = 1.89). (e) WATV (RMSE = 1.40). (f) DWAD (RMSE = 1.22).

in noise filtering, smoothness preservation and artifact
suppression.

Moreover, the corrupted signals by AWGN with different
standard deviation are employed to test the performance of
different methods with different noise levels. Table 2 shows
the average signal-to-noise ratio (SNR) of denoised signal
for 20 trials. The results indicate that the proposed DWAD
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FIGURE 9. The RMSE with different thresholds under haar wavelet
domain.

has better performance for the signal with lower noise level.
Compared with classical soft threshold method, the average
SNR of different noise levels is improved by at least 4.2dB
by using the proposed DWAD.

C. APPLICATION IN IMAGE DENOISING
In order to test the performance of proposed DWAD for
the process of 2 dimensional signals, we consider the prob-
lem of image denoising. The classical image of Lena with
additive Gaussian noise is employed to test. The origi-
nal image and noisy image with noise level σ = 25
are showed in Fig. 11 (a) and (b), respectively. We compared
the proposed DWAD method with the penalty function
methods under two wavelet domains, the hard threshold
method based on the discrete Curvelet transformation [13],
the non-local means (NLM)method proposed in [48], and the
block-matching 3D filtering (BM3D) proposed as a state-of-
art filtering algorithm in [49].

For the penalty function methods with the Atan func-
tion, the threshold for each wavelet scale is set accord-
ing to 29, and the parameter λ is set to be 4.25. The
denoised images under the sym4 and db2wavelet domains are
showed in Fig. 11 (c) and (d), respectively. As for the discrete
Curvelet transformation, NLM and BM3D methods, we use
the parameters recommended in the corresponding literature.
The results of noise removal by these methods are illustrated
in Fig. 11 (e), (f) and (g), respectively.

For the DWAD method, the original and noisy images
have smaller L1 norm under haar , sym2 and db2 wavelet
domains than the db4 and sym4 wavelet domains. How-
ever, the haar , sym2 and db2 wavelet basis functions hold
large correlation coefficients with each other. Therefore,
we consider using sym2 and db4 wavelet basis func-
tions to generate two decimated wavelet transform matri-
ces for image denoising. The threshold and parameter
for penalty function are λ = 3.25 and a = 1/λ,
respectively.

FIGURE 10. The RMSE with different thresholds under sym4 wavelet
domain.

In order to analyze the convergence and complexity of the
DAWD, we set the number of iterations Iter being 50, and
consider denoising the noisy image by the DWADwith differ-
ent parameter µ. The residual ratio p between reconstructed
images in two wavelet domains is employed to estimate the
convergence of DAWD, and it could be defined as:

p =
2‖(W1C1 −W2C2)‖2F
‖W1C1‖

2
F + ‖W2C2‖

2
F

× 100% (30)

For different parameter µ, Fig. 12 illustrates the variation
of residual ratio p with the number of iterations. It could be
found that residual ratio p converges rapidly with the increase
of iteration times. When the µ is set 1.0, p converges to about
0.8%. In the case of µ is set 1.5, 2.0, 5.0 and 10.0, resid-
ual ratio converges to about 0. Besides, larger parameter µ
induces faster the convergence rate at the first few iterations.
However, the DWAD trends to converge at the same rate
when the number of iterations is greater than 15. If the value
of parameter µ is too large, such as 5 or 10, it would be
automatically adjusted according to 28 during the iteration
process. Therefore, when µ is greater than or equal to 1.5,
it could guide the fast convergence of DWAD algorithm, and
has little influence on the results. In view of this, we consider
setting µ = 1.5 and Iter = 25 in image denoising. The cor-
responding result of denoising are shown in the Fig. 11 (h),
and the residual ratio p converges to about 0.1%. As the
results in Fig. 11 shows that the DWAD method could obtain
better performance of noise removal and details preservation
than the penalty function and Curvelet transform methods.
Compared with the result of NLM method, more details of
original image would be preserved in the result of the DWAD
method.

Further, noisy images with different noise levels are
employed to test the performance of several methods. The
PSNR and the structural similarity (SSIM), which are defined
in [50], are employed to evaluate the performance of noise
reduction and preserving details and features, respectively.
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FIGURE 11. Denoising an experimental image with noise level 25.
(a) Original image. (b) Noisy image. (c) Result of sym4. (d) Result of db2.
(e) Result of Curvelet. (f) Result of NLM. (g) Result of BM3D. (h) Result
of DWAD.

Table 3 shows the corresponding PSNR and SSIM of the
denoised images by different methods. Besides, in order to
test the computational complexity, we consider run these
algorithms on 64-bit computer (with 3.20 GHz CPU). The
average operating time is shown in the bottom line of Table 3.

According to the results in Table 3, the BM3D method
always achieves the best performance. The proposed DWAD
achieves great improvement in PSNR and SSIM by

FIGURE 12. The variation of residual ratio p with the number of iterations.

TABLE 3. Performance of image denoising by several algorithms for
different noise levels (PSNR, SSIM, time(s)).

comparing with the methods based on single representation
domain, though it does not obtain the best performance and
performs poorest in computational complexity. Note that,
the NLMmethod obtains higher PSNR than the DWAD at the
noise level 10 and 15, but it holds smaller SSIM. According to
the average of PSNR and SSIM, the proposed DWAD holds
better performance of noise removal and details preservation
than the Curvelet transform and NLM methods. Compared
with classical soft threshold method, the average PSNR of
different noise levels is improved by at least 2.1dB by using
the proposed DWAD.

IV. CONCLUSION
This paper proposes a novel denoising method based on
double wavelet basis functions. In view of the wavelet
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coefficients of original signal hold different distributions
under different wavelet domains, some details of original sig-
nal which could be filtered in specific wavelet domain would
be preserved when using other wavelet domains. We consider
utilizing difference of the representation coefficients of signal
under two different wavelet domains to weaken the influence
of threshold function for those coefficients which are less than
the threshold. Meanwhile, the non-convex penalty function is
employed to induce strong sparsity for those wavelet coeffi-
cients which are greater than the threshold.

The results of proposed method based on the decimated
wavelet transforms show that the wavelet coefficients of
original signal could be preserved better during filtering
the noise, especially for the coefficients which are smaller
than the threshold. Besides, the experiment results for show
that the average SNR of different noise levels is improved
by at least 4.2dB and 2.1dB compared with classical soft
threshold method for the one dimensional and image signals,
respectively. In addition, the RMSE and SSIM of denoised
signals indicate that the proposed method tends to obtain
better performance on the details of original signals.
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