
Received February 18, 2019, accepted March 6, 2019, date of publication March 8, 2019, date of current version April 16, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2903910

Mixed-Integer Distributed Ant Colony
Multi-Objective Optimization of Single-Tuned
Passive Harmonic Filter Parameters
AHMED FAHEEM ZOBAA , (Senior Member, IEEE)
Electronic and Computer Engineering Department, Brunel University London, Uxbridge UB8 3PH, U.K.

e-mail: azobaa@ieee.org

ABSTRACT The extended ant colony known as the Mixed Integer Distributed Ant Colony Optimiza-
tion (MIDACO) is presented in this paper as a new application of solving multi-objective single-tuned
passive filters design problems. This paper presents a new non-dominated solution for the optimization
of four independent objective functions which are maximized power factor, minimized total harmonic
voltage distortion, minimized total demand distortion, and minimized investment cost of the filter. The
global solution is achieved by maintaining the quality factor of the filter in a specified range, avoiding
the harmonic resonance and maintaining the capacitor’s capability limits within the standard limits. The
attained parameters of the filter are used to weigh the performance of the system, and the robustness of the
proposed algorithm is verified by comparing the results with three different highly competitive evolutionary
techniques. Also, the proposed algorithm attains the Pareto front of the problem and tolerates the selection
of its parameters to the most effective solution. The numerical results specify the comprehensive passive
filter design through possible multi-objective approaches, and the improvements of multi-objective over
single-objective optimization are also presented in this paper.

INDEX TERMS Power quality, harmonics, Multi-objective optimization, ant colony optimization, passive
filter.

I. NOMENCLATURE
XL Inductive reactance (ohms)
XC Capacitive reactance (ohms)
R Intrinsic resistance of inductance (ohms)
PL Load power (W)
IS RMS source current (A)
ISK K-th harmonic number of source current (A)
IL Maximum current demand at PCC (A)
VL Load voltage in RMS (V)
VLK K-th harmonic number of Load voltage (V)
θK K-th angle of load voltage (rad)
φK K-th angle of line current (rad)
kC cost coefficients of capacitor ($/kvar)
kL cost coefficients of inductor($/kvar)
kR cost coefficients of resistor ($/kW)
QC Reactive power of capacitor (kvar)
QL Reactive power of inductor (kvar)
PR Power of resistor (kW)

The associate editor coordinating the review of this manuscript and
approving it for publication was Vigna K. Ramachandaramurthy.

h Harmonic order
hr Harmonic order activating resonance
Ui,Ni Utopia and Nadir
d ji (x) Weighted distance
Dj(x) Average distance
Bj Balance parameter
Tj(x) Objective function T
RTH1,XTH1 Thevenin resistance and reactance (�)
RL1,XL1 Load resistance and reactance (�)
Npop Size of ants
k Number of kernel
� Oracle parameter
VC Capacitor voltage in RMS (V)
VCP Peak capacitor voltage (V)
IC Capacitor current in RMS (A)
QC Reactive power of capacitor (kvar)
QF Quality factor
MAXEVAL Maximum number of function evaluation.
PF Power factor
THDV Total harmonic voltage distortion
TDD Minimum total demand distortion
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Cost Investment cost of the filter
PARETOMAX Maximum number of pareto point
EPSILON Precision pareto-dominance filter
BALANCE Search effort on the part of the Pareto

front

II. INTRODUCTION
The wide use of nonlinear loads in power systems results
in increasing power quality problems such as harmonic
pollution with consequences to power losses in electrical
equipment, communication interference and even damage.
Harmonic distortion causes unnecessary heat in the equip-
ment, transformer overheating, nuisance tripping of circuit
breakers and overstressing of power factor correction capac-
itors [1]. Therefore, it becomes a main concern to engineers
to solve power quality issues, resonances problem and power
system harmonic estimation to maintain the productivity and
stability of industrial applications [2]–[4].

There are three types of filters that have been studied
to eliminate the harmonic disturbances: passive [5]–[7],
active [8]–[10] and hybrid [11], [12] power filters. The pas-
sive power filter (PPF) is the most favored method for har-
monic mitigation when compared to the other techniques
because of its design which is robust, simple and less expen-
sive with almost maintenance-free operation. Furthermore,
PPF also acts as reactive power compensation to the sys-
tem, which helps improve the power factor and in the same
time can reduce losses [13], [14]. Its nature has inspired
many researchers to provide effective ways to solve problems
including PPF designs where the optimization is classified
as single-objective [15]–[18] and multi-objective [19]–[21].
This is not an easy task for engineers in designing of PPF
because there are measurements, conditions and practical
standards that must be carefully considered.

The goal of this paper is to find an optimal multi-objective
single-tuned passive filter design using software which is
motivated by behavior of ants proposed by Martin [22], [23].
There are various ant colony optimization (ACO) have been
proposed to solve multi-objective problems [24], [25]. How-
ever, MIDACO uses the concept of utopia-nadir balance
which is different from other traditional multi-objective
methods where the algorithm focuses its search effort on
a particular area of the Pareto front [26], [27]. Unlike the
typical technique which alters the objectives using an appro-
priate scaling/weighting factor method, MIDACO automat-
ically measures those values for its internal algorithmic
procedures [27].

Some previous studies resolve the multi-objective problem
by explaining each of the objectives individually [15]–[18],
this paper works on non-dominated solutions for the opti-
mization of four independent objective functions: 1) max-
imized power factor, 2) minimized total harmonic voltage
distortion, 3) minimized total demand distortion and 4) min-
imized investment cost of the filter. The set of filters is
designed considering that the values of the filter will avoid
harmonic resonances, the filter is in the specified range of the

quality factor, and as well as the values of the practical capac-
itor follow the IEEE standard [28]. The outcomes of multi-
objective optimization over single-objective optimization are
also discussed in this paper. Finally, the proposedmethods are
compared with three other optimizers in power quality areas
which are genetic algorithm (GA), Non-dominated sorting
Genetic Algorithm (NSGA-II) and Multi Objective Particle
Swarm Optimization (MOPSO). The comparisons of perfor-
mances between all methods are evaluated, and the robust-
ness of the suggested algorithm is proved through simulation
results.

III. OPTIMIZATION PROBLEM
The harmonic circuit model of a bus consisting of a single-
tuned filter, linear and nonlinear loads involved in this study
is presented in Fig. 1. The filter provides low impedance path
to the system restricting the harmonic current source to go
to the Thevenin’s impedance, RTHK + jXTHK , and must be
confined to flow to the impedance of the filter.

FIGURE 1. The system under study.

A. OBJECTIVE FUNCTIONS
The presented optimization problem can be formalized
through four objectives: maximize the power factor, mini-
mize the total harmonic voltage distortion, minimize the total
demand distortion, and minimize the cost of the filter.

After some complex mathematical modeling equations,
the different criteria are given in (1)–(4), described as follows:

1) MAXIMUM POWER FACTOR, PF

PF =
PL
ISVL

=

∑
VLK ISK cos(θK − φK )√∑

I2SK
∑
V 2
LK

(1)

where PL , VL and IS are load power, load voltage and current
source, respectively. VLK and ISK are load voltage and current
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source, respectively, at the K th harmonic order. Also, θK , φK
are the angles of VLK and ISK in rad, respectively.

2) MINIMUM TOTAL HARMONIC VOLTAGE
DISTORTION,THDV

THDV =

√∑
K>1 V

2
LK

VL1
(2)

where VL1 is the load voltage at the fundamental frequency.

3) MINIMUM TOTAL DEMAND DISTORTION, TDD

TDD =

√∑
K>1 I

2
SK

IL
(3)

where IL is the maximum current demand at point of common
coupling (PCC).

4) MINIMUM INVESTMENT COST OF THE FILTER, COST

Cost =
∑
K=1

kC .Qc+ kL .QL + kR.PR (4)

where the cost coefficients of the filter are given by kC
($/kvar), kL ($/kvar) and kR ($/kW). The total of the filter
cost including the price of capacitors, inductors and resistors
is proportional to the powers of the different elements of the
filters, Qc, QL and PR respectively [19].

B. CONSTRAINTS
This optimization includes some constraints including the
practical capacitor following the standard, the quality factor,
and the resonance constraints.

By complying with IEEE Std 18-2012 [28], overloading
of the capacitors should be avoided for reliability and proper
circuit operation of the system. This can be done by setting
rms capacitor voltage (VC ), peak capacitor voltage (VCP),
nominal current (IC ) and reactive power (QC ) less than 110%,
120%, 135% and 135%, correspondingly.

Also, the value of quality factor QF is important, and it
needs to be measured where low value of QF has high resis-
tance which results in increasing the power losses within the
filter. Therefore, there are standard limitations considered in
this paper to limit QF . It is specified between 20 to 100 [29].
In addition, the amplification of current and voltage caused

from series and parallel resonance respectively will result in
damage to the circuit. The problems related with both reso-
nances are usually caused fromfilter detuningwhere the com-
monmechanisms are capacitor fuse blowing, capacitance and
inductance manufacturing tolerance, temperature and system
variants. Therefore, it is becoming beneficial for the filter
to avoid the resonances by tuning 3–10% from the desired
harmonic frequency, and the harmonic order activating reso-
nance is always less than tuned harmonic order [3], [29].

On the basis of the description above, the paper’s
multi-objective problem can be formulated as below:

f1(x) PF(R,XC ,XL)

f2(x) THDV (R,XC ,XL)

f3(x) TDD(R,XC ,XL)

f4(x) Cost(R,XC ,XL)

Subject to:
Capacitor Capability Limits follows IEEE Std 18-2012
h is tuned 9% from the desired harmonic frequency

h > hr 20 ≤ QF ≤ 100

where h and hr are harmonic order and harmonic order acti-
vating resonance, respectively.

IV. PROPOSED APPROACH
The high-performance MIDACO technique is employed as
an optimization tool to solve the multi-objective problem
formulation. The software is an innovative optimization
solver, where the software implements an extended ant colony
optimization (ACOmi) combined with the oracle penalty
method for constraint handling [22], [23]. To solve the multi-
objective problem, MIDACO applies the concept of utopia-
nadir balance, which is different from multi-objective since
they consider four or more objectives [30].

MIDACO implements the extension of ACO
metaheuristics, where the algorithm is based on stochastic
Gauss approximation technique. Instead of a pheromone
table, the methodology is based on pheromone-controlled
probability functions (PDFs) where the advantage of ACOmi
can be seen in [22]. There are two parameters implemented in
the proposed algorithm, which are ants (Npop) and kernels (k).
The penalty method is simple and easy to use. However,

the use of this method often becomes a challenging prob-
lem because it is difficult to gain adequate performance.
Therefore, MIDACO introduced the oracle penalty method
to handle constraints [23]. For a given constrained prob-
lem, this method adjusts just one single parameter, called
the oracle (�), where the parameter aims to find equal or
slightly better global solutions. For multi-objective problems,
the proposed concept is created from the utopia-nadir bal-
ance, where the utopia Ui and nadir Ni are formally defined
as following [26]:

Ui = min {fi(x)∀xεF} (5)

Ni = max {fi (x)∀x : ∃k 6= Uk} (6)

where fi(x) is the global minimum of the respective objective
among all solutions x. Different from the utopia, the nadir
Ni represents the worst objective function where fi(x) corre-
sponds to the utopia Uk of any other objective fk (x).

From the information given in (5) and (6), MIDACO
introduced the BALANCE parameter which is different
from traditional multi-objective approaches in such regard.
By default, this is the middle part of the Pareto front, as this
part provides the best equally balanced trade-off between all
individual objective functions. Besides, this parameter also
can be tuned to any other part of the Pareto front [27], [30].
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The given weighted distance d ji (x) and average distance
Dj(x) are defined in (7) and (8) below, respectively:

d ji (x) = wji
fi (x)− Ui
Ni − Ui

(7)

Dj(x) =

∑M
i=1 d

j
i (x)

M
(8)

Then, the balance parameter, Bj, in (9) expresses the aver-
age distance to each objective of utopia and nadir, which
described as following:

Bj(x) = ds
M∑
i=1

∣∣∣d ji (x)− Dj(x)∣∣∣ (9)

From (7)– (9), the objective function T can be defined as

Tj(x) =
M∑
i=1

d ji (x)+ Bj(x) (10)

For multi-objective optimization, the main advantage of
utopia-nadir balance in MIDACO is that the proposed algo-
rithm focuses its search effort on a particular area of the
Pareto front without needing to measure the amount of scal-
ing/weighting factor and particularly highlights a single point
of the Pareto front as the MIDACO solution. In addition,
the parameter of PARETOMAX can be tuned to define
the maximal number of non-dominated solutions, while
EPSILON defines the precision used for its multi-objective
Pareto-dominance filter. Refer to Fig. 2 for the flowchart
algorithm of MIDACO.

V. SIMULATED RESULTS
The values of fundamental frequency supply voltage, short
circuit power, 3-phase inductive load and reactive power
involved in this study are given in Fig. 1. From the figure,
the impedances of the single-phase equivalent circuit are
RTH1 = 0.01154�,XTH1 = 0.1154�,RL1 = 1.742� and
XL1 = 1.696�. The voltage and current harmonic source,
which are randomly selected and deliberate in this study,
are given in Table 1 below. All the cost coefficients of the
filter are given by kC = 0.05$/kvar, kL = 250$/kvar and
kR = 100$/kW [19].

TABLE 1. Voltage and current harmonics of the system under study.

Table 2 shows the summary of simulated results of
multi-objective optimization with different impacts of the
BALANCE parameter.

The parameter specifications used for controlling
MIDACO as Npop, k , and � have been set to default where
MIDACO will dynamically change Npop per generation,

FIGURE 2. Flowchart of multi-objective optimization using MIDACO.

maximum k is fixed to 100 and� = 109. For multi-objective
problems, the parameters PARETOMAX and EPSILON are
set to 1000 (default) and 0.0001, respectively. From Table 2,
the first setting is when the BALANCE parameter is set
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TABLE 2. Simulated results of multi-objective optimization with different
balance parameter.

TABLE 3. Simulated results of single-objective optimization.

TABLE 4. Comparison of computation time of multi-objective and
single-objective optimizations.

to 0 (default). For this setting, MIDACO will focus its
search effort on the part of the Pareto front which offers
best equally balanced trade-off between all objectives. For
settings 2 and 3, the parameter is set to BALANCE = 1.0 or
2.0, where MIDACO will focus its search effort exclusively
on the first and second objective, respectively. For settings
4 to 6, the search effort represents some unequal priority
between objectives. Based on the table, the results show
that the optimal filter can be obtained with different optimal
solutions considering four objective functions simultaneously
where the BALANCE parameter is significant and has a great
impact to each of the solutions. Fig. 3 clearly demonstrates
the impact of varying the BALANCE parameter for each of
the simulations on the position of the MIDACO solutions
among the Pareto front.

Table 3 shows simulated results for single-objective opti-
mization solutions of the best: 1) PF , 2) THDV , 3) TDD, and
4) Cost .
The results in Table 3 are compared with Table 2 to

highlight the efficiency, where the results prove that the
multi-objective optimization achieved a great economic
effectiveness in improving the power factor and produced
great reduction of the distortion indexes THDV and TDD.
Table 4 shows a comparison of the computation time

between multi-objective and single-objective optimization
up until the maximum number of function evaluations were
reached.

FIGURE 3. The impact of the BALANCE parameter on the solution.

The results show that the computation time for multi-
objective optimization is a bit slower compared to the results
for single-objective optimization. This is because the PARE-
TOMAX and EPSILON parameters used by MIDACO for its
multi-objective Pareto-dominance filter are main influences
on the amount of Pareto points stored and its internal calcu-
lation time.

As described in the Section III, the PARETOMAX and
EPSILON parameters give an impact to the number of Pareto
points. Therefore, Table 5 has been added to prove that
increasing the values of PARETOMAXwill result in increas-
ing collected Pareto points. Consequently, it will slow down
the internal calculation time of MIDACO because of more
memory that needs to be stored as shown in Table 5. In this
test, only one parameter is varying, which is PARETOMAX.

Table 6 shows the effects of changing different values
of the EPSILON parameter to the amount of Pareto points
stored and the internal computation time. In this test, only
one parameter is varying, which is EPSILON.
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TABLE 5. Effects of changing paretomax parameter.

TABLE 6. Effects of changing epsilon parameter.

TABLE 7. Effects of altering Npop and k parameters.

From Table 6, the results show that small values of the
EPSILON parameter result in an increase in the amount of
Pareto points stored in MIDACO. Although the base case
(EPSILON set to 0.00001) speed is slower, it proves that
the solution has a higher chance of a new solution being
introduced into the Pareto points.

Table 7 presents the effects of different sets of ant and
kernel parameters on the multi-objective simulated results of
power factor. In MIDACO, both control parameters influence
the sensitivity of the solutions, which must be used together.

The results in Table 7 show that tuning the parame-
ters of ants and kernels will result in inaccurate solutions.
By increasing number of kernels, a better solution can be
reached where the sensitivity analysis results in the table
verified that setting 4, which is the current proposed setting,

is the best setting for all simulations for multi-objective
optimization.

Table 8 shows the results when modifying the value of the
oracle parameter.

TABLE 8. Effects of different oracle parameters.

From Table 8, the results verified that the oracle parameter
directly corresponds to the ideal solution from given prob-
lems. However, it is very sensitive where the selections of this
parameter can result erroneous. The results show that the base
setting (setting 3) can be seen as a reasonable oracle choice
for all simulations of multi-objective optimization.

Lastly, Table 9 shows the improved value for fitness for
the proposed technique when increasing the number of func-
tion evaluations. The consequences show that the proposed
method seemed to have a better chance in attaining a global
optimal solution when the maximized function number is
reached.

TABLE 9. Effects of increasing maximum number of function evaluations,
maxeval.

Table 10 indicates the restrictions for the main capacitors
of the filter. FromTable 10, the results show that all capacitors
are capable to operate below the standard limitation.

TABLE 10. The capacitor capability limits.

The filter impedance in the resonant circuit and the effects
of resonance peak when all objectives are equally balanced
are shown in Fig. 4.

The characteristic of the filters responses in Fig. 4 is eval-
uated and explained as following:
• Adding the single-tuned filter into the system can result
in the occurrences of resonances with the interaction
between Thevenin’s impedance and compensated load.
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FIGURE 4. Impedance response with equally balanced objectives
(setting f1).

• In series resonance, the value of inductance and capac-
itance reactance are equal, thus making resistance at a
minimum. In contrast, the resistance is at a local maxi-
mum for parallel resonance.

• The value of R determines the resonant peak. The lower
value of R results in a high value ofQwhere the resonant
peak becomes sharper. This results in high frequency
selectivity and better harmonic attenuation. However,
the passband is reduced with higher Q.

• It is recommended to always tune the filter below the
harmonic to be filtered to avoid both resonances.

VI. COMAPRISON WITH OTHER TECHNIQUES
The effectiveness of the proposed method is shown by com-
paring the results with other highly competitive evolution-
ary multi-objectives algorithms which are genetic algorithm
(GA), Non-dominated sorting Genetic Algorithm (NSGA-II)
andMulti Objective Particle Swarm Optimization (MOPSO).

In GA, the optimization is inspired based on the process
of natural selection, where the optimal solution is found by
relying on bio-inspired operators. After generating a ran-
dom initial population, then GA selects a group of individ-
uals (parents) from the current population who are strong
enough to contribute their genes and create children to
form the next generation via reproduction. The main ele-
ments of GA consist of selection method, crossover method,
crossover probability, mutation method, mutation probability
and replacement method [31].

Besides, GA is a well-known solver to solve multi-
objective optimization problems since it is a population-based
method. By modification of single-objective optimization,
GA is able to find multiple non-dominated solutions in one
run. Besides, GA has the ability to search different regions
of a good solution where the crossover operator may exploit
the structures of the good solutions with respect to different
objectives to create non-dominated solutions.

The concept of GA has inspired Srivinas and Deb
to extent this concept and proposed NSGA to optimize
multi-objectives problem where NSGA-II is the updated
version from classical NSGA [32]. The NSGA works by

improving the adaptive fit of a population of candidate solu-
tions to a Pareto front constrained by a set of objective
functions. The algorithm uses an evolutionary process with
surrogates for evolutionary operators including selection,
genetic crossover, and genetic mutation. The only different
way of NSGA when compare to GA is how the selection
operator working while the crossover and mutation opera-
tor remains same. The population is sorted into a hierarchy
of sub-populations based on the ordering of Pareto dom-
inance. Similarity between members of each sub-group is
evaluated on the Pareto front, and the resulting groups and
similarity measures are used to promote a diverse front of
non-dominated solutions.

On the other hand, PSO was inspired by having a popula-
tion or swarming behavior flocks of fish or birds. In PSO,
each of the ‘‘bird’’ or called as ‘‘particle’’ in the search
space is represented every single potential solution [33]. The
particles fly through the search space until the better posi-
tions are discovered. Then, it will guide to the entire swarm
best-known position. The process continues repetitively until
an acceptable solution is eventually discovered. However,
due to its limitation on solving only single objective, a new
concept known as MOPSO has been proposed to solve multi-
objective problems and have been successfully developed in
many applications until now [34], [35].

Table 11 shows the comparison of simulated results of
the proposed method (setting 1), GA, NSGA-II and MOPSO
for solving the multi-objective problem. In order to simu-
late using GA, three parameters are used, where crossover
rate, mutation probability, and population size are set to 0.8,
0.001 and 50, respectively. In order to simulate NSGA-II, four
parameters are used, where mutation rate, mutation percent-
age, crossover percentage and population size are set to 0.02,
0.4, 0.7 and 50, respectively. Contrary, MOPSO has eleven
parameters to be used where all parameters are set as follows:
population size is 200, repository size is 100, inertia weight
is 0.5, inertia weight damping rate is 0.99, global learning
coefficient is 1, personal learning coefficient is 2, number of
grids per dimension is 7, inflation rate 0.1, leader selection
pressure is equals 2, deletion selection pressure is set at 2,
and mutation rate 0.1.

From Table 11, it can be pointed out from the comprehen-
sive evaluation of MIDACO and GA that the proposed has
outperformed GA where the optimal solutions are attained
with overall better power factor, lower THDV and great
investment cost effectiveness. After performing simulation

TABLE 11. Comparison of the system performance.
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using NSGA-II, the comparison of the results shows the
advantages of MIDACOwhich gives better accuracy wherein
the value of THDV for NSGA-II is too high and beyond
the IEEE standard limit. In addition, the simulation using
MOPSO also shows that the results have high value of THDV
where the investment cost of the filter also very high when
compare to the proposed method.

The comparison of computation time and maximum func-
tion evaluation between the proposed method with GA,
NSGA-II and MOPSO are presented in Table 12.

TABLE 12. Comparison of computation time and maximum function
evaluation for all methods.

From the table, the results proved that the biggest advan-
tage of the proposed method is less computation time com-
pare to the other methods, where it can process thousands of
iterations within a few seconds.

VII. CONCLUSIONS
This paper deals with non-dominated solutions when opti-
mizing parameters of a single-tuned filter based on general
multi-objective problems, which aremaximized power factor,
minimized total harmonic voltage distortion, minimized total
demand distortion andminimized investment cost of the filter.
A mathematical harmonic modeling has been developed and
numerically evaluated on the harmonics level with possi-
ble resonance problems using a new algorithm known as
Mixed Integer Distributed Ant Colony Optimization. A case
study has been tested using the proposed method where the
results show that the algorithm attains the Pareto front of
the problem and tolerates the selection of its parameters to
the most effective solution with satisfaction of all objective
functions and constraints involved while complying with
IEEE Std 18-2012. The effectiveness and advantage of the
proposed method is demonstrated with other highly com-
petitive evolutionary multi-objectives algorithms in power
quality area. The numerical results revealed that the proposed
method does highly benefit for multi-objective approaches
over single-objective optimization on a comprehensive pas-
sive filter design.
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