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ABSTRACT This paper proposed a process capability index-based control chart under the new extended
form of multiple-dependent state sampling (MDS) named generalized MDS (GMDS). The scheme is based
on inner and outer control limits and utilizes the previous state of the samples. The performance comparisons
of the proposed chart with the existing charts are made by using out-of-control ARL. The simulation study
showed the superiority of the proposed chart over the existing PCI-based control charts under Shewhart
and MDS schemes. An empirical illustration is also given to demonstrate the application of the proposed
chart.

INDEX TERMS Control charts, capability indice, quality control, sampling plans, simulation.

I. INTRODUCTION
Control Chart is an important statistical tool in statistical
process control (SPC) used to monitor the process variation.
Generally, the process variation can be categorized into the
common cause of variation and special or assignable cause
of variation. The existence of the common cause of variation
does not make the process out-of-control which is considered
to be an inherent part of any production process [1]. The
typical control charts are based on two horizontal lines named
an upper control limit (UCL) and lower control limit (LCL).
The process is declared to be out-of-control if the monitoring
statistic falls outside these limits which indicate the pres-
ence of assignable cause of variation in the production line.
SPC has made tremendous progress after the construction
of the Shewhart control chart [2]. Afterward, the cumulative
sum (CUSUM) control chart by [3] and exponentiallymoving
average EWMA control charts by [4] havemade considerable
improvement in SPC.

The most enviable state in SPC is that a process is
in-control and capable. The data from an in-control process
can be used to compute the future performance of the process
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with the help of process capability indices (PCI). Hence,
the stability and the ability of the manufacturing process are
evaluated in two stages namely control charts and process
capability indices. The PCI has been extensively used mea-
sure in the manufacturing industry to determine whether a
production process is capable of manufacturing items accord-
ing to pre-specified quality requirements. Several PCIs are
available to estimate the capability of the manufacturing pro-
cess such as Ca,Cp,Cpk ,Cpm and Cpmk [5]. The larger value
of PCI corresponds to higher process yield and lesser proba-
ble loss. Extensive literature is available on PCI. A detailed
review paper by [6] and a bibliography of process capability
papers by [7] and Yum and Kim [8] are excellent sources. For
further details on PCI see [9]–[23].

The control charts are also used to determine whether
the process is capable of producing the quality of products
that meet the pre-specified standards. The goal is attained
when the control chart is integrated with PCI. In this frame-
work, Subramani and Balamurali [24] proposed a PCI based
control chart which combines the two-stage process into a
single stage process for online process control. The chart is
based on process capability ratios Cp and Cpk and used the
range statistic as an estimate of process standard deviation.

VOLUME 7, 2019
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

34031

https://orcid.org/0000-0002-3683-5486
https://orcid.org/0000-0003-0644-1950
https://orcid.org/0000-0003-0911-7347


G. Srinivasa Rao et al.: Variable Control Chart Based on Process Capability Index Under GMDS

Reference [25] designed an efficient control chart based on
Cp to monitor and evaluate the process capability for nor-
mal and non-normal processes. The scheme used Downton’s
statistic as an alternative to range statistic for estimating
process standard deviation. For more details on PCI based
chart, see [26], [27]. More details on the application of the
control charts can be seen in [28]–[31].

The control charts mentioned above are designed based on
the assumption that samples are taken from simple random
sampling. However, in practice, a single sampling scheme is
not essentially desirable and use of more structured sampling
schemes can produce control charts which are efficient to
their counterparts. In literature, more structured sampling
schemes are available to improve the performance of the
control charts in detecting shifts quickly such as ranked
set sampling (RSS) introduced by McIntyre [32], repetitive
sampling (RS) by Sherman [33] and multiple dependent
state sampling (MDS) by Wortham and Baker [34]. In the
context of process capability analysis, Ahmad et al. [35]
proposed a PCI-based control chart using repetitive sampling
scheme. The scheme used the process capability index Cp as
a monitoring statistics and sample range as an estimate of
standard deviation. Nevertheless, the use of range statistics is
not effective for large sample sizes as it is based on only two
extreme values of the sample. Reference [36] investigated the
use of unbiased estimator σ̂ = s̄/

c4 of standard deviation for
computing PCI based control charts under repetitive sampling
plan for normal process. The scheme performs better results
in terms of ARL and SDRL, especially for smaller shifts.
For more details on the implementation of well-structured
sampling schemes in the constructions of control charts,
the readers may refer to [35] and [37]–[41].

Motivated by the attractive features of a more structured
sampling scheme MDS; we have used generalized MDS
scheme in designing PCI control chart by adding a new
parameter that increases the sensitivity of the chart. The
scheme is named as generalizing multiple dependent sam-
pling (GMDS). The scheme is integrated to develop PCI
based chart under the normal process. The performance of
the proposed chart is evaluated by using out-of-control ARL
obtained through a simulation study. An empirical illustration
is provided for practical implementation of the proposed
chart.

The rest of this paper is organized as follows:
Section 2 presents the structures of PCI based control
chart under GMDS scheme and an algorithm is also pro-
vided in this section. Performance evaluations of proposed
schemes are given in section 3. Comparisons with the existing
chart using ARLs, simulation and illustrative examples are
made in section 4 and finally, some conclusions are drawn
in section 5.

II. DESIGNING OF THE PROPOSED CONTROL CHART
In this section, a new process capability index based
control chart is proposed under the extended form of

multiple dependent state (MDS) scheme named as general-
ized multiple dependent state sampling (GMDS). The pro-
posed GMDS scheme based on PCI control chart consists of
inner and outer control limits. In order to derive the probabil-
ities of in-control and out-of-control processes, the following
assumptions are used:
(1) For the in-control process, the quality characteris-

tic (X ) follows a normal distribution with mean µ and
variance σ 2.

(2) It is assumed that there exist an upper specification
limit (USL) and lower specifications limit (LSL) such
that an item beyond these limits is considered to be
defective.

The two pairs of control limits for the proposed control chart
are defined as follows:

LCL1 = E(Ĉs)− k1

√
Var(Ĉs)

UCL1 = E(Ĉs)+ k1

√
Var(Ĉs)

LCL2 = E(Ĉs)− k2

√
Var(Ĉs)

UCL2 = E(Ĉs)+ k2

√
Var(Ĉs)

where k1 and k2 are the control chart coefficients and deter-
mine in such a way that a specified in-control ARL is
achieved. The following steps are involved in the construction
of the proposed control chart:
Step 1: Take a random sample of size n at each

subgroup and measure its quality characteristic (X ). Cal-

culate the sample mean X̄ = 1
n

n∑
i=1

Xi and sample vari-

ance S2 = 1
n−1

n∑
i=1

(
Xi − X̄

)2 from each subgroup. Then

compute the estimate of the process capability index Ĉs
(either Ĉpu or Ĉpl)

Ĉpk = min
{
USL − X̄

3S
,
X̄ − LSL

3S

}
(1)

Step 2: Declare the process as in-control if LCL2 ≤ Ĉs ≤
UCL2 and declare the process as out-of-control if, Ĉs >

UCL1 or Ĉs < LCL1. Otherwise, go to step 3.
Step 3: Declare the process as in-control if at least k out of

m preceding samples statistics Ĉs are plotted inside the inner
control limits i.e. LCL2 ≤ Ĉs ≤ UCL2.
Suppose a random sample of size n is taken from a sta-

ble process and estimate the indices Cpl and Cpu which are
defined as follows:

Ĉpl =
x̄ − LSL

3s
, Ĉpu =

USL − x̄
3s

where x̄ is the sample mean and s is the sample standard
deviation. For normally distributed data, Chou andOwen [42]
showed that the estimator Ĉs (either Ĉpl or Ĉpu) is dis-
tributed as tn−1, δ/3

√
n, where tn−1, δ is a non-central t
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distribution with (n− 1) degrees of freedom and non-central
parameter δ = 3

√
nCs.

Hence, the probability density function of Ĉs can be
expressed as

f Ĉs (x) =
3
√
n/(n− 1)2−n/2
√
π0[(n− 1)/2]

∫
∞

0
t (n−2)/2

× exp

{
−1
2

[
t +

(
3x
√
nt

√
n− 1

− δ

)2]}
dt (2)

where δ = 3
√
nCs. The cumulative distribution function

of Ĉs is given as:

F Ĉs (x) =
1

2(n−3)/20[(n− 1)/2]

∫
∞

0
t (n−2)/2e−t

2/2 1
√
2π

×

3
√
ntx
/√

(n−1)∫
0

exp

[
−
(µ− δ)2

2

]
dudt (3)

The Control Limits for Ĉs chart
We know that E[tn−1, δ] = δ

√
(n− 1)/20[(n−2)/2]

0[(n−1)/2] and

Var(tn−1, δ) =
(n−1)(1+δ2)

n−3 −
δ2(n−1)

2

(
0[(n−2)/2]
0[(n−1)/2]

)2
.

Since Ĉs is distributed as tn−1, 3√nCs/3
√
n, we can derive

E(Ĉs) = E[tn−1, 3√nCs/3
√
n]

=
1

3
√
n

(
3
√
nCs

√
(n− 1)/2

0[(n− 2)/2]
0[(n− 1)/2]

)

= Cs
√
(n− 1)/2

0[(n− 2)/2]
0[(n− 1)/2]

(4)

Var(Ĉs) = Var[tn−1, 3√nCs/3
√
n]

=
1
9n

{
(n− 1)(1+ 9nC2

s )
(n− 3)

−
9nC2

s (n− 1)
2

×

(
0[(n− 2)/2]
0[(n− 1)/2]

)2
}
. (5)

The outer control limits for Ĉs are defined as equation,
shown at the bottom of this page, where

an =
√
(n− 1)/2

0[(n− 2)/2]
0[(n− 1)/2]

, dn =
n− 1
n− 3

.

Similarly, the inner control limits can be written as:

UCL2 = Csan + k2
√
dn/9n+ C2

s (dn − a2n)

LCL2 = Csan − k2
√
dn/9n+ C2

s (dn − a2n)

The probability that the proposed control chart considered
as in-control is given as follows:

P0in = Pa + Ps


m∑
j=k

(
m
j

)
Pja (1− Pa)

m−j

 (6)

where

Pa = p(LCL2 ≤ Ĉs ≤ UCL2|C0
s )

= p(Ĉs > LCL2|C0
s )− p(Ĉs > UCL2|C0

s )

= p
(
tn−1,δ ≥ 3

√
nLCL2|C0

s

)
− p

(
tn−1,δ ≥ 3

√
nUCL2|C0

s

)
.

UCL1 = E(Ĉs)+ k1

√
Var(Ĉs)

= Cs
√
(n− 1)/2

0[(n− 2)/2]
0[(n− 1)/2]

+ k1

√√√√ 1
9n

{
(n− 1)(1+ 9nC2

s )
(n− 3)

−
9nC2

s (n− 1)
2

(
0[(n− 2)/2]
0[(n− 1)/2]

)2
}

= Csan + k1

√
1
9n

{
dn(1+ 9nC2

s )− 9nC2
s a2n

}
= Csan + k1

√
dn/9n+ C2

s (dn − a2n)

LCL1 = E(Ĉs)− k1

√
Var(Ĉs)

= Cs
√
(n− 1)/2

0[(n− 2)/2]
0[(n− 1)/2]

− k1

√√√√ 1
9n

{
(n− 1)(1+ 9nC2

s )
(n− 3)

−
9nC2

s (n− 1)
2

(
0[(n− 2)/2]
0[(n− 1)/2]

)2
}

= Csan − k1

√
1
9n

{
dn(1+ 9nC2

s )− 9nC2
s a2n

}
= Csan − k1

√
dn/9n+ C2

s (dn − a2n)
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Ps = p(LCL1 ≤ Ĉs ≤ LCL2|C0
s )

+ p(UCL2 ≤ Ĉs ≤ UCL1|C0
s )

= p(Ĉs > LCL1|C0
s )− p(Ĉs > LCL2|C0

s )

+ p(Ĉs > UCL2|C0
s )− p(Ĉs > UCL1|C0

s )

= p
(
tn−1,δ ≥ 3

√
nLCL1|C0

s

)
− p

(
tn−1,δ ≥ 3

√
nLCL2|C0

s

)
+ p

(
tn−1,δ ≥ 3

√
nUCL2|C0

s

)
− p

(
tn−1,δ ≥ 3

√
nUCL1|C0

s

)
Therefore, the in-control average run length (ARL), denoted
as ARL0, of the proposed control chart can be obtained as
follows:

ARL0 =
1

1− P0in
(7)

The out-of-control ARL performance can be derived in a
similar manner as explained previously. Suppose that process
mean has shifted from µ0 toµ1 where µ1 = µ0 + cσ and c
constant is the magnitude of the shift. The probability that the
process is declared to be in-control for the shifted process is
given as follows:

P1in = Pa1 + Ps1


m∑
j=k

(
m
j

)
Pja1 (1− Pa1)

m−j

 (8)

where

Pa1 = p(LCL2 ≤ Ĉs ≤ UCL2|C1
s )

= p(Ĉs > LCL2|C1
s )− p(Ĉs > UCL2|C1

s )

= p
(
tn−1,δ ≥ 3

√
nLCL2|C1

s

)
− p

(
tn−1,δ ≥ 3

√
nUCL2|C1

s

)
.

Ps1 = p(LCL1 ≤ Ĉs ≤ LCL2|C1
s )

+ p(UCL2 ≤ Ĉs ≤ UCL1|C1
s )

= p(Ĉs > LCL1|C1
s )− p(Ĉs > LCL2|C1

s )

+ p(Ĉs > UCL2|C1
s )− p(Ĉs > UCL1|C1

s )

= p
(
tn−1,δ ≥ 3

√
nLCL1|C1

s

)
− p

(
tn−1,δ ≥ 3

√
nLCL2|C1

s

)

+ p
(
tn−1,δ ≥ 3

√
nUCL2|C1

s

)
− p

(
tn−1,δ ≥ 3

√
nUCL1|C1

s

)
Therefore, ARL1 is given by

ARL1 =
1

1− P1in
. (9)

The summary of the algorithm is as follows:
Step 1: Generate a random sample of size n for each sub-

group from a normal distribution with the specified in-control
process.
Step 2: Compute Ĉs for each subgroup.
Step 3: Fix the in-control ARL, say r0.
Step 4: Determine the values of control chart coefficients

k1 and k2 such that ARL0 ≥ r0.
Step 5: Choose that value of limit coefficients k1 and k2

from step-4 for which ARL0 is minimum i.e. ARL0 = r0.
Step 6: Obtain the out-of-control ARLs for various shifts

by using the values of limit coefficients k1 and k2 obtained in
Step-5.

III. RESULTS AND DISCUSSION
This section establishes the performance of the proposed
control chart using the average run length (ARL). The ARL
is the expected number of samples until a control chart
first signals. For comparison purpose, we developed both
in-control average run length (ARL0) and out-of-control aver-
age run length (ARL1). The proposed control chart depends
on the chart coefficients k1 and k2, sample size n, m and k .
The Monte Carlo simulation is used to determine the values
of the limit coefficients k1 and k2 for various values of n,
k and m at a specific value of ARL0=370. Furthermore,
the out-of-control run lengths (ARL1) are also obtained for
various mean shifts. Results are displayed in Tables 1 and 2.
Results demonstrate that the ARL1 values decrease con-
siderably with the increase in n and m except for m =
k since in this case, the GMDS scheme reduces to MDS
scheme. Results also indicate that ARL1 decreases quickly
by increasing a small mean shift in the process. It can be
noted that in case of k = m − j; j = 1, 2, ...,m − 2,
the proposed chart perform better than the case of k = m
(the usual MDS chart), particularly for smaller process
shifts.

IV. COMPARATIVE STUDY
This section has comprehended with two subsections.
Section 4.1 will affirm the application of the proposed
control chart in real life environment and subsequently,
in Section 4.2, we will discuss the performance of the
proposed control charts using a simulation study. The per-
formance evaluation of the proposed scheme with the
existing process capability index Cpk (or Cs) based con-
trol charts under classical Shewhart and multiple dependent
state schemes are constructed with the help of out-of-control
average run length. The sensitivity of the proposed chart is
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TABLE 1. ARLs of the proposed control chart for n = 5.

TABLE 1. (Continued.) ARLs of the proposed control chart for n = 5.

demonstrated with two examples. Comparisons of the aver-
age run length of the existing Cpk control chart under She-
whart, MDS and GMDS schemes are exhibited in Table 3 for

different mean shifts at n=10, m=4 (other comparison tables
are with authors). The comparison reveals that the ARL1 of
the proposed chart is significantly smaller than the existing
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TABLE 1. (Continued.) ARLs of the proposed control chart for n = 5.

TABLE 1. (Continued.) ARLs of the proposed control chart for n = 5.

schemes for a choice of shifts considered, various values of
m and various sample sizes. The ARL curves of the Cpk chart

under Shewhart, MDS and GMDS schemes are shown in
Figure 1 for various mean shifts at n = 10, m = 6. There is

34036 VOLUME 7, 2019



G. Srinivasa Rao et al.: Variable Control Chart Based on Process Capability Index Under GMDS

TABLE 2. ARLs of the proposed control chart for n = 10.

TABLE 2. (Continued.) ARLs of the proposed control chart for n = 10.

a significant decrease in the values of ARL curves of the
proposed chart in comparison with the other existing charts
examined in this work.

A. INDUSTRIAL APPLICATION OF THE PROPOSED CHART
To demonstrate the practical implementation of our proposed
control chart, an industrial data taken from [9] is used.
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TABLE 2. (Continued.) ARLs of the proposed control chart for n = 10.

TABLE 2. (Continued.) ARLs of the proposed control chart for n = 10.

Liquid crystals have been used in various configurations
for display applications. Most of the current displays
involve the use of either twisted nematic or a super-twisted

nematic (STN) liquid crystals display (LCD). In order to
control the quality of the STN-LCD production line, a sta-
tistical test is conducted based on computing the capability
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TABLE 3. Comparison of the ARLs of PCI based control chart under Shewhart, MDS and GMDS schemes for n = 10.

FIGURE 1. PCI based control chart under Shewhart, MDS and GMDS schemes at n=10 at ARL0=370.

index Cp. In this regard, fifteen samples each of size
10 related to glass substrate thickness of the LCD was col-
lected in the Science-Based Industrial Park, Taiwan [43].
The upper specification limit, USL, of a glass substrate’s

thickness is 0.77 mm, the lower specification limit, LSL,
of a glass substrate’s thickness is 0.63 mm. Reference [9]
used this data for the capability of a fuzzy process whereas
Pearn and Wu [43] used for Bayesian procedure of capability
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FIGURE 2. Fitting of normal distribution for glass substrate’s thickness data.

FIGURE 3. Shewhart Cpk control chart for glass substrate’s thickness data using k=3.

testing. In this article, the same data set is used for our
proposed control chart. Before analyzing further, we checked
the validity of the model. We plot the empirical and the-
oretical density, empirical and theoretical CDFs, Q-Q plot

and P-P plot for data set showed in Figure 2. We used the
Kolmogorov-Smirnov (K-S) tests for data set to the fitted
models. It is observed that the K-S distances are 0.0632 with
the corresponding p-value is 0.5876. Based on these plots
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FIGURE 4. PCI based control chart under MDS sampling for glass substrate’s thickness data using m=4,
k1 = 4.6009, k2 = 2.8239 at ARL0 = 370.

FIGURE 5. Proposed PCI based control chart under GMDS scheme for glass substrate’s thickness data using m=4,
k1 = 3.9897, k2 = 2.6442 at ARL0 = 370.

and K-S test we can conclude that the normal distribution
provides a good fit for the given data set. The estimated
process capability index Cpk of given data is 1.8589.

We construct Cpk (or Cs) control charts under Shewhart,
MDS and GMDS schemes to evaluate the performance of
the charts. Choosing ARL0=370, the Shewhart Cpk control
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FIGURE 6. The Shewhart Cpk chart for simulated data set.

FIGURE 7. PCI based control chart under MDS for simulated data set using m=4, k1 = 4.6009, k2 = 2.8239 at ARL0=370.

chart shown in Figure 3, chart under multiple dependent
state scheme at m=4, k1 = 4.6009, k2 = 2.8239 shown
in Figure 4. Both the charts produce similar results that
the process is in-control. The proposed chart is also con-
structed by declaring that the process will be in-control if at
least k=3 out of m=4, preceding samples fall in the inner
control limits. The sample Ĉs are plotted in Figure 5 with
the inner and outer control limits of the proposed chart
using the limit coefficients k1 = 3.9897, k2 = 2.6442.
It is can be observed from Figure 5 that the proposed
chart also indicates the in-control state of the production
process.

B. SIMULATION STUDY OF PROPOSED CHART
This subsection establishes the performance comparison of
the proposed control chart with the existing control charts
using simulated data. A data set of 20 subgroups of size
10 each has been generated from the normal distribution
for an in-control process with mean 0 and variance 1
and another data set of 20 subgroups of size 10 each
has been generated from shifted normal distribution with
mean value 0.4 and variance 1. We construct Cpk (or Cs)
control charts under Shewhart, MDS and GMDS schemes
by using the generated data of 40 subgroups for specific
ARL0=370.
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FIGURE 8. Proposed PCI based control chart under GMDS scheme for simulated data set using m=4, k1 = 3.9897,
k2 = 2.6442 at ARL0 = 370.

Shewhart Cpk control chart is constructed with k=3,
depicted in Figure 6, multiple dependent state Cs chart for
m=4, k1 = 4.6009, k2 = 2.8239 and displayed in Figure 7.
The proposed Cs based control chart is also computed and
shown in Figure 8 with parameters m=4, k1 = 3.9897, k2 =
2.6442 to guarantee that ARL0=370. The classic Shewhart
Cpk control chart and MDS based Cs chart fail to detect the
shift even though Figures 7 shows the upward trend of Cpk
after subgroup size 30. Whereas, from Figure 8, it is evident
that out-of-control signals are detected at samples 36 by the
proposed chart. The existing charts fail to detect the shifts
whereas the proposed chat requires only 16 samples to detect
the shift. This example clearly indicates the efficiency of the
proposed chart over the other two existing charts.

V. CONCLUSION
In this article, we have used the generalized multiple depen-
dent scheme to develop process capability indexed based
control chart. The proposed scheme is based on two pair of
control limits that makes the chart more sensitive in identi-
fying process shift quickly. Shewhart and MDS schemes are
special cases of GMDS. The proposed scheme comprises of
an estimate of PCI (Ĉs) and uses it as a monitoring statistic.
The supremacy of the proposed chart is confirmed by compar-
ing ARL curves of the proposed and existing control charts
for different shifts. The simulation study also confirmed that
the proposed chart identified the shift quickly whereas other
existing control charts considered in this study fail to detect
this shift. For practical implementation, the proposed proce-
dure is applied to glass substrate thickness data that were
collected from the Science-Based Industrial Park, Taiwan.
The suggested chart is very useful for manufacturing industry
to assess and provide the chances of continuous process

improvement. This idea can be used to design control charts
based on other measures of PCI.
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