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ABSTRACT In recent decades, there has been a gradual penetration of plant factories achieving semiau-
tomated crop cultivation. However, efficient energy utilization, as well as quality control of crops, are very
important factors with regard to sustainable operation. Operating parameters, such as room temperature,
affect not only the quality of crops but also the electric power required to realize the target operation while
being influenced by the environment outside the plant. Therefore, a methodology is needed to analyze and
interpret the relationships among these manipulated variables, exogenous variables, crop quality, and the
amount of required electric power. Constructing a directed acyclic graph composed of regression models
is an attractive approach for such analysis; however, the relationships can possibly be nonlinear, so the
direct application of existing analytic approaches will not be appropriate. In this paper, we propose a
methodology for relationship analysis among variables based on the directed acyclic graphs while identifying
the linearity/nonlinearity in their relationships. In general, the construction of such a graphical model has
computational issues, especially when the number of variables is large, and the risk of overfitting. The
proposed method utilizes the idea of sparse regularization, which has been actively discussed in the field
of machine learning, for realizing the automatic identification of linearity/nonlinearity between variables
and screening redundant candidate structures; this approach relaxes the computational complexity issue and
controls the risk of overfitting. As a case study, the proposed method is applied to a dataset collected from a
real-world cultivation system in a plant factory to discuss its usefulness.

INDEX TERMS Analysis of plant data, directed graphical model, energy-aware plant growth control,
identification of linearity/nonlinearity, overlap group lasso, plant factory, sparse partially linear model.

I. INTRODUCTION
In Japan, the production of plants in plant factories has
attracted considerable attention in recent years due to a
decrease in the number of agricultural workers and a
decrease in the food self-sufficiency rate. The quality of
the product largely depends on the growing environment
(e.g. temperature, humidity, CO2 concentration, nutrient
components, etc.); therefore, automatic big-data-driven plant
growth control, which involves monitoring the plant growing
environments, analyzing the acquired data, and using it for
tuning the control parameters for maintaining production
quality, has attracted significant attention [1]–[3]. However,
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despite the fact that data utilization is being carried out for
such production control, nearly half of the domestic plant
factories are forced to operate in deficit [4]. One of the
reasons is that the electric energy cost due to the power con-
sumption of the air conditioning system and the cultivation
system for controlling the plant growing environments and
realizing automatic production is relatively large. This fact
suggests that balancing the quality of products and the energy
cost required for growth is still a big problem in current plant
factories.

Recently, there have been attempts to analyze and grasp the
relationships among the control parameters of the growing
environment, the quality of products, and the energy cost
required for control [5], [6]. However, there has not been
much discussion on the methodology to unifiedly discuss
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and analyze the relationships amongmultiple control parame-
ters, monitored environmental data, and energy consumption
required for system control.

The construction of a directed graphical model based on
data will provide a useful approach for organizing the rela-
tionships among various monitoring information and dis-
cussing the impact of control results under the exogenous
factors. In particular, the construction of a directed graphi-
cal model based on traditional regression models [7], [8] is
an attractive approach with an excellent interpretability for
grasping and discussing the implicit relationships existing in
the datasets collected in plant factories.

For example, the additive Bayesian Network [9], [10] is an
analysis tool based on the directed graphical model that uses
a class of generalized linear regression models; the model has
been used for analyzing the relationships among the growth
environment, quality of products, and the energy consump-
tion required for the environmental control considering the
effect of the weather conditions [11]. However, the class
of the linear model may be inappropriate for describing
the relationships existing in multivariate data handled at a
plant factory; hence, a methodology is required for explicitly
describing the nonlinear relationships. Therefore, a frame-
work is required for constructing such an analytical model
while actively identifying the linearity/nonlinearity of the
relationship between variables.

In this paper, a strategy for constructing a directed acyclic
graphical model based on partially linear additive models
(PLAMs) is proposed; the proposed method selects a lim-
ited number of variables, directly explains each variable,
and identifies the linear/nonlinear relationships among the
variables based on the given data set. The proposed scheme
consists of two key ideas that have recently developed in the
machine learning community; i.e., regularization schemes for
finding the linear/nonlinear relationships that are used to esti-
mate sparse PLAMs [12], [13] and an enumeration scheme
for finding the next-best alternative sparse regression mod-
els [14]. In our scheme, the search space for obtaining a plau-
sible directed acyclic graphical representation is expected to
be reduced effectively by introducing the sparseness assump-
tion. The major contributions of this paper are as follows:
(i) the concept of a directed graphical model that can rep-
resent the nonlinear additive relationship between variables
is proposed, (ii) a method of selecting the linear/nonlinear
relationships among variables is implemented based on a nat-
ural expansion of the regularized sparse regression scheme,
(iii) a computationally efficient method for finding the plausi-
ble directed acyclic graphical structure corresponding to a set
of PLAMs is discussed, (iv) the proposed scheme is applied
to the dataset collected from a real-world plant factory.

The rest of the paper is organized as follows. In Section II,
the current situation of the growth control in plant factories is
briefly introduced. Traditional approaches for directed graph-
ical model-based analysis are also described in this section.
In Section III, the basic idea of a directed graphical model
composed of partially linear additive models and its diffi-

culties in implementation are described. Then, we propose a
novel directed graphical model for the analysis of the partially
linear additive statistical structure under a kind of sparseness
assumption in Section IV; a computationally efficient and
data-driven model estimation procedure is also described in
this section. In Section V, the proposed approach is applied
to a dataset collected from a real-world plant factory. Finally,
our concluding remarks are provided in Section VI.

II. DATA-CENTRIC DECISION MAKING
IN PLANT FACTORIES
A. GROWTH CONTROL IN PLANT FACTORIES
A plant factory is an idea that realizes sustainable and high-
quality production of crops by applying systematic control
for the cultivation process from an engineering viewpoint.
In general, its main objective is the realization of optimal con-
trol of the environmental conditions by using the information
processing results of the measured physical quantities of the
plants. In particular, the measurement and information pro-
cessing of plant growth states used in this scheme is called the
speaking plant approach [15]. The control of the production
environment based on information processing [1], [2], [16]
utilizing the measurement of crop conditions [17], [18] has
been discussed well from the viewpoint of automated crop
production [3], [19] since the late 1970s. Various applications
of artificial intelligence technology and machine learning
approaches have been studied to realize data-driven operation
and provide decision making support to the plant factories;
e.g., [20] proposed a classification algorithm for the detection
of fungal diseases in crops, and [21] introduced the essence of
fuzzy theory into the operation scheduling of crop production
(see [22] for a comprehensive review of machine learning
approaches applied to the agricultural domain).

Meanwhile, as the plant factories began to be put into prac-
tical use, the importance of grasping the trade-off between
energy consumption and control results began to be recog-
nized from the viewpoints of improving profitability and
reducing environmental impact [23]; therefore, energy-aware
growth control has become a crucial topic [5], [6], [11], [24].
Fig. 1 shows the schematic relationship between the variables
used in a plant factory. The analysis of real-world opera-
tion data plays a key role in grasping such a trade-off. This
study focuses on an approach for analyzing the relationships
among controllable variables and target variables, e.g., crop
quality and power consumption, under the given exogenous
variables, for decision making in the energy-aware operation
in plant factories.

B. GRAPHICAL STRUCTURE USING REGRESSION
MODELS FOR OPERATION ANALYSIS
Graphical models [25] are useful tools for describing and
interpreting the complex statistical relationships existing in
real-world datasets. In particular, regression-based graphical
representation of statistical models for the description of
dependencies among variables, e.g. traditional path analy-
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FIGURE 1. Schematic relationship among exogenous variables (weather
factors), controllable variables (operation parameters), and target
variables (power consumption and crop quality).

sis [7] and structural equation model [8], have been fre-
quently used in the context of data analysis. Such graphical
representations have been originally developed for describ-
ing linear relationships, and occasionally, they have been
applied to real-world datasets without sufficient verification
of the validity of the linearity assumption among variables,
although real-world data might not satisfy this assumption.
For this reason, several graphical modeling approaches based
on expanded regression methods have been discussed for
grasping the nonlinear variable relationships. For exam-
ple, the structural equation model has mainly evolved to
describe the nonlinear relationships between variables by
handling the latent variables in the model [26]. Some works
have also proposed the use of interaction or quadratic effects
for the representation of nonlinear relationships [27]–[31].
Recently, another regression-based graphical modeling
scheme based on generalized linear models [32], [33] was
proposed to describe a relatively flexible statistical structure
[10], [11], [34]. However, frameworks that can deal with
highly nonlinear relationships have hardly been discussed.
In particular, the utilization of nonlinear regression makes it
difficult to identify the essentially linear relationships among
variables; this will complicate the data-centric decision mak-
ing unnecessarily.

In this study, we focus on an attractive expanded regres-
sion approach based on a partially linear additive model
(PLAM) [13], [35]–[37]; this model belongs to a class of
additive models [38], which is one of the practical white box
models, and is superior in terms of the representability of non-
linear effects and interpretability of the estimation result by
focusing on the additive contribution of each variable. A prac-
tical difficulty in conducting analyses based on a PLAM
is the explicit identification of linear/nonlinear relationships
between variables; however, the idea of regularization for
obtaining a sparse representation [39], which has been inten-
sively discussed in the field of machine learning in recent
years, has incubated fascinating variable selection [40], [41]
and linearity/nonlinearity selection [12], [13], [42] schemes.
In the next section, we discuss the construction approach of
the graphical model based on PLAMs.

III. BASIC IDEA OF GRAPHICAL MODEL BASED ON
PARTIALLY LINEAR ADDITIVE MODELS
A. GRAPHICAL MODEL BASED ON PARTIALLY
LINEAR ADDITIVE MODELS
Let v = (v1, . . . , vP) ∈ RP be the variables1 and S =
{1, . . . ,P} be the index set of these variables. In addition, let
v−p = {vi; i ∈ Sp} be the candidate set of explanatory vari-
ables for vp, where Sp ⊆ (S\{p}) is the candidate index set of
explanatory variables for the representation of vp. We discuss
a class of graphical model based on the following additive
models, which represent linear and nonlinear relationships
flexibly.
Definition 1 (PLAM; Partially Linear Additive Model):

The following regression formulation,

vp ' f p(v−p)

= β0p +
∑
i∈Lp

β ipv
i
+

∑
i∈N p

φip(v
i), (1)

is called a partially linear additive model (PLAM) [35], [36],
where β ip is the coefficient parameter, φ

i
p(·) is a nonlinear

function, and Lp,N p
⊆ Sp are variable index subsets con-

taining linear/nonlinear relationships with the variable vp,
respectively; assume that (∀p ∈ S) Lp ∩N p

= ∅ holds.
In this study, we introduce the following set of cubic spline

bases with (K − 1) knots, i.e.

ψ i
p(v

i) =
[
ψ i
p,k (v

i); k = 1, . . . ,K
]

=

[
vi, (vi−vi(1))

3
+, . . . , (v

i
−vi(K−1))

3
+

]
, (2)

for expressing the nonlinear functionφip where v
i
(1) . . . , v

i
(K−1)

are knots of the spline chosen from quantiles in the sample
set and

(z)+ =

{
0 (z < 0)
z (z ≥ 0).

(3)

Therefore, Eq. (1) is alternatively given as follows:

f p(v−p; θp,Lp,N p)

= β0p +
∑
i∈Lp

β ipv
i
+

∑
i∈N p

∑
k

τ ip,kψ
i
p,k (v

i)︸ ︷︷ ︸
φip(vi)

, (4)

where τ ip,k is the coefficient for the basis ψ i
p,k and θp =

{β0p , {β
i
p}, τ

i
p = [τ ip,k ]} is the whole parameter set of the

model. If Lp andN p are given, one can estimate the parame-
ter θp of PLAM, whose form is given by Eq. (4), as follows:

θ̂
p
= argminθpG

p(θp;Lp,N p) (5)

= argmin
θp

∑
n

{vpn − f
p(v−pn ; θ

p,Lp,N p)}2. (6)

1Throughout this paper, we assume that vp is standardized to have zero
mean and unit variance.
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FIGURE 2. Examples of partially linear additive relationships represented
by a directed graph. The red arrows indicate the linear relationships and
the green arrows indicate the nonlinear relationships. (a): Example of
PLAS, i.e., the partially linear additive relationships represented by the
DAG. The graph implies that v1 ' β0

1 ; v2 ' β0
2 + φ1

2 (v1); v3 ' β0
3 ; and

v4 ' β0
4 + β1

4 x1 + φ3
4 (v3). The SCCs are {Sm

c (A)} = {{1}, {2}, {3}, {4}}.

(b): Example of a directed graph containing a cyclic relationship. The SCCs
are {Sm

c (A)} = {{1,2,3}, {4}} .

Our objective is to find this type of partially linear additive
relationship among variables based on the given data set
{vn = (v1n, . . . , v

P
n )} in order to construct a directed graphical

model for the representation of variable dependencies; in
particular, we assume that the derived structure is a directed
acyclic graph (DAG) as well as the ordinary Bayesian net-
work [43]. Fig. 2 shows examples of the graphical repre-
sentation of the statistical relationship using PLAMs. Here,
variables v are represented as P nodes, and the partially linear
additive relationships among these nodes are represented by
two types of edges representing the linear/nonlinear relation-
ships directed from {vi; i ∈ Lp} and {vj; j ∈ Np} to xp,
respectively. In this study, we call the graphical representation
associated with the DAG shown in Fig. 2(a) the partially
linear additive structure (PLAS), and aim to derive this rep-
resentation based on the given dataset.

Let Ap
= Lp ∪ N p be the explanatory variable index

set of the variable vp. Assume that the set Ap indicates the
edges directed from vi (∀i ∈ Ap) to vp in the graphical
representation. We obtain what we shall call the adjacency
matrix A = [api] ∈ {0, 1}P×P, where its component api is
defined as follows,

api =

{
1 (i ∈ Ap)
0 (i 6∈ Ap).

(7)

The directed graph representation corresponding to this adja-
cency matrix A is discussed in this paper.
Now, we introduce the following idea for this graph repre-

sentation.
Definition 2 (SCC; Strongly Connected Component:)

A strongly connected component (SCC) of a directed graph
is a maximal node subset Sc ⊂ S such that its component
nodes are mutually reachable.

Note that the SCC represents the node set of a maximal
cyclic subgraph, and if there is no node i ∈ Sp such that it is
mutually reachable from p, the corresponding SCC is given

as Sc = {p}. We denote the set of SCCs in the directed graph
corresponding to the adjacency matrix A by {Smc (A);m =
1, . . . ,M}, whereM is the number of SCCs.

By using the idea of SCCs, we focus on the following
property.
Theorem 1 (SCCs of DAG): The graphical representation

of the set of PLAMs is a DAG iff the cardinality of all the SCCs
corresponding to A in the directed graph is equal to 1.

Proof: The definition Ap
= Lp ∪ N p suggests that

the adjacency matrix A represents the corresponding set of
PLAMs. If |Smc (A)| = 1 (∀m) holds, then the graph has no
cyclic paths (e.g. see [44]). �
Now, our task, i.e. finding the DAG representation based

on PLAMs for the derivation of the PLAS, is formulated by
considering the property given in Theorem 1 as follows:

θ̂ = argmin
θ

G(θ ) s.t. |Smc (A)| = 1 (∀m), (8)

where G(θ) is the total objective function evaluating the
whole structure, i.e.

G(θ) =
∑
p∈S

Gp(θp), (9)

where Gp is defined in Eq. (5).

B. NAIVE APPROACH AND ITS ISSUES
Lewis andMcCormick proposed a method so-called the addi-
tive Bayesian network [34] to derive directed acyclic statis-
tical relationships based on the generalized linear regression
model. In their framework, the following two-step strategy
was implemented: 1) enumerate generalized linear models
for possible combination of explanatory variables for all the
variables, and 2) search the best model set that constructs
a DAG. A naive approach for realization of the framework
discussed in this paper can be constructed by extending this
scheme as follows:
• Enumerate PLAMs for possible combination of
explanatory variables for all the variables.

• Search the best model set that constructs a DAG.
In the enumeration step, we assume that the possible com-

bination Rp
= {(Lp,N p)} is given in advance for all the

variables; if there is no prior knowledge about the validity
of the explanatory variables,2 one may adopt

Rp
= {(Lp,N p) | Lp,N p

⊆ Sp,Lp ∩N p
= ∅}. (10)

Then, the PLAM is estimated for each (Lp,N p) ∈ Rp by
optimizing the problem given in Eq. (6). Algorithm 1 shows
a naive implementation of this enumeration step; this algo-
rithm returns a set of estimation results and their correspond-
ing objective values, Qp, for all the possible combinations

2Note that the idea of heuristic constraints, so-called ban list [34], for the
reduction of DAG search space, which explicitly describes the undesirable
edge sets in the graph structure in advance, can be implemented by defining
the candidate index set, Sp, with a limited number of explanatory variables
for each xp.

32186 VOLUME 7, 2019



Y. Fujimoto et al.: Machine Learning Approach for Graphical Model-Based Analysis of Energy-Aware Growth Control

Algorithm 1 Naive Enumeration of Possible PLAMs for Variable vp

Require: dataset {vn}, possible sets of linear/nonlinear relationshipsRp
= {(Lp,N p)}.

1: for (Lp,N p) ∈ Rp do
2: Obtain θ̂

p
according to Eq. (6) under Lp and N p.

3: Store a pair Qp(Lp,N p)← (θ̂
p
,Gp(θ̂

p
)).

4: end for
Ensure: Qp

= {Qp(Lp,N p); (Lp,N p) ∈ Rp
}.

Algorithm 2 Hill Climbing Approach for Finding PLAS
Require: Q = {Qp

; p ∈ S}, {Rp
}.

1: function SelectTuple(Lp,N p) F Select the corresponding PLAM for given relation.
2: (θ̂

p
,Gp)← Qp(Lp,N p).

3: return (Lp ∪N p, θ̂
p
,Gp).

4: end function

5: for p ∈ S do F Find initial graph structure.
6: Randomly select (L̄p, N̄ p) ∈ Rp.
7: (Āp, θ̄

p
, Ḡp)← SelectTuple(L̄p, N̄ p).

8: end for
9: while |Smc (Ā)| 6= 1(∃m) do F Find initial DAG.

10: Randomly select p ∈ S.
11: (L̆p, N̆ p)← (L̄p, N̄ p), Ăp

← Āp.
12: Randomly select (L̄p, N̄ p) ∈ {(Lp,N p) ∈ Rp

| (Lp ∪N p) ⊂ Ăp
}

13: (Āp, θ̄
p
, Ḡp)← SelectTuple(L̄p, N̄ p)

14: end while
15: G←∞
16: while

∑
p Ḡ

p < G do
17: {(L̆p, N̆ p)} ← {(L̄p, N̄ p)}, {Ăp

} ← {Āp
}. F Back up the current best.

18: for p ∈ S do
19: for (L̆p, N̆ p)∈{(Lp,N p) ∈ Rp

| |Āp
∪ (Lp ∪N p)|−|Āp

∩ (Lp ∪N p)|=1} do F Remove/add an edge.
20: (Ăp, θ̆

p
, Ğp)←SelectTuple(L̆p, N̆ p)

21: if |Smc (Ă)| = 1(∀m) and
∑

p Ğ
p < G then

22: (L̇p, Ṅ p)← (L̆p, N̆ p), G←
∑

p Ğ
p. F Store the current best DAG.

23: end if
24: end for
25: end for
26: (L̄p, N̄ p)← (L̇p, Ṅ p).
27: end while
Ensure: {(L̄p, N̄ p); p ∈ S}

(Lp,N p) ∈ Rp. Note that the enumeration procedure given
by Algorithm 1 can be applied for all p ∈ S in parallel.
In the DAG structure search step, we can naively adopt

the idea of the hill climbing method [45], which has also
been adopted in the structure search step of the additive
Bayesian network. This approach finds a local minimum
of the total objective function by iteratively replacing the
local PLAMs in a greedy manner; the edges, which provides
the greatest decrease in the objective function, are sequen-
tially added/removed while keeping the DAG constraints.
Algorithm 2 shows a procedure for finding the PLAS rep-
resented by the DAG. At lines 5-14, an initial DAG structure
is randomly assigned using the enumerated candidates {Qp

}.

At lines 18-25, the next best DAG structure is greedily
adopted by focusing on each substructure Ăp. Note that
Algorithm 2 derives one of the local minima; therefore, the
best result from multiple trials of the various initial states is
adopted from the viewpoint of the total objective function.
Multiple trials of Algorithm 2 for selecting the best result
can also proceed in parallel. It should also be stressed that
the SCCs for checking the DAG constraint in this procedure
can be found in the linear computational time by applying the
depth-first search algorithm [46], [47].

The above-mentioned naive approach enables the construc-
tion of a directed graphical model based on a set of PLAMs;
however, the following two points become issues: 1) the size
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of the search space in the DAG search step, and 2) structural
overfit for the given data set.

The computational time required for the DAG search step
in the naive approach basically depends on the number of
combinations of candidate PLAMs to be evaluated. If no
prior knowledge is applied to create a set of candidates Rp,
the number of possible candidates derived with Eq. (10)
becomes |Rp

| = 3P−1 for each vp. Therefore, in this case,
the structure search of the graphical model based on PLAMs
inherently requires searching a solution in the huge space of∏

p |Rp
| = 3P(P−1). Since the naive approach with a very

large search space intuitively produces a large number of local
solutions, the problem of obtaining a relatively good solution
becomes very difficult.

The optimization problem shown in Eq. (6) corresponds to
the maximum likelihood estimation of the PLAM parameters
used for representing the target vp under the assumption
of Gaussian error distribution. Therefore, the minimization
problem Eq. (8), which focuses on the structure constructed
by such PLAMs, is also derived as a kind of maximum like-
lihood estimation under the constraint of being a DAG. Note
that in general, such maximum likelihood estimation tends to
derive a model structure overfitted to the learning data. For
example, the idea of majority consensus network [48] has
been proposed for alleviating the overfitting problem in the
random-restart hill-climbing algorithm [34]. This approach
adopts a network composed of the directed edges existing in
a majority of networks derived from the various initial DAGs
by the hill climbing approach so as to reduce the overfitting.
However, such a majority consensus network does not gener-
ally guarantee to be a DAG and significantly depends on the
random initial conditions. Therefore, an efficient approach is
required to control the structural overfitness to the given data
while satisfying the DAG constraints.

IV. GRAPHICAL MODEL BASED ON PARTIALLY LINEAR
ADDITIVE MODELS UNDER SPARSENESS ASSUMPTION
The naive approach introduced in the previous section is a
natural extension of the existing implementation; however,
this approach has issues of computational cost caused by the
huge search space and overfitness caused by the design of
the objective function. In this section, we discuss a novel
scheme for finding the PLAS for construction of a directed
graphical model by introducing the sparseness assumption in
the explanatory variables.

Consider that the following form of additive model f p(·)
is constructed for the explanation of vp using the variables
indicated by Sp,

vp ' f p(v−p; θp,Sp)

= β0p+
∑
i∈Sp

{
(ξ ip+τ

i
p,1)v

i
+

K∑
k=2

τ ip,kψ
i
p,k (v

i)

}
︸ ︷︷ ︸

φip(vi)

, (11)

where θp = {β0p , ξ
i
p, τ

i
p = [τ ip,k ]} is a parameter set, ξ ip

and τ ip,1 are coefficients for representing the linear trend on

vi, ψ i
p,k (·) is a basis function, and τ ip,k is the coefficient of

the basis ψ i
p,k for representing the nonlinearity. Note that the

reparameterized term of the additive model shown in Eq. (11)
reduces to a linear term with β ip = ξ ip when (∀j) τ ip,j = 0
holds. We also note that when τ ip,k 6= 0 holds for any k ≥ 2,
the corresponding φip(v

i) expresses the nonlinear term.
To evaluate a model given by Eq. (11) using data set
{vn}, we focus on the minimization problem of the following
objective function:

Gpλ(θ
p
;Sp) =

∑
n

{
vpn − f

p(v−pn ; θ
p,Sp)

}2
+ λ�(θp), (12)

where λ is a positive regularization parameter and �(θp) is a
regularization term.We particularly focus on the learning task
for finding appropriate linear/nonlinear relationships explain-
ing a specific variable vp while searching the sparse variable
representation by using the data set {vn}; therefore, we apply
the following type of regularization:

�(θp;Sp) =
∑
i∈Sp

(
|ξ ip| + ‖τ

i
p‖2

)
. (13)

Note that the regularizer, Eq. (13), is motivated by the tech-
nique so-called overlap group lasso [49], and it tends to
reduce the coefficient ξ ip and/or the coefficient vector τ ip to
become zeros. Therefore, the minimizer of Eq. (12) with the
regularizer given by Eq. (13) enables the selection of one of
the following states:

• vi is linearly related to vp when ‖τ ip‖2 = 0 and ξ ip 6= 0,
• vi is nonlinearly related to vp when τ ip,j 6= 0 for any
k ≥ 2,

• vi is unrequired for explanation of vp when |ξ ip| = 0 and
‖τ ip‖2 = 0.

This property derives a sparse PLAM for the target vari-
able vp. The parameters θp in the additive model can be
estimated by using the group decent algorithm [50].
Here, we focus on the construction of a DAG structure

containing two types of directed edges for representing the
linear/nonlinear relationships of a set of PLAMs. Assume that
the parameter θp in the model is obtained for each variable vp;
our requirement for a set of models {f p(·)} is that the cor-
responding directed graphical representation is acyclic. Let
θ = {θp; p = 1, . . . ,P} be the parameter set of PLAMs for P
variables and

Ap
θ = {i | |ξ

i
p| 6= 0 or ‖τ ip‖2 6= 0} (14)

be the variable index set derived from the given parameter θp.
We construct the adjacency matrix Aθ of the graphical repre-
sentation by using the estimation results {Ap

θ } in accordance
with Eq. (7). By introducing the regularizer shown in Eq. (12),
the whole optimization problem, Eq. (8), is slightly modified
as follows:

θ̂ = argmin
θ

Gλ(θ; {Sp}) s.t. |Smc (Aθ )| = 1 (∀m), (15)
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Algorithm 3 Enumerate PLAMs Under Overlap Group Lasso Constraint for Variable vp

Require: {vn},Sp, λ.
1: Set target C ← Sp and discovered links D← ∅.
2: θ̂

p
← argmin θp G

p
λ(θ

p
; C). F Estimate sparse PLAM under possible regressors.

3: Initialize min-heap T p
← {(θ̂

p
, C,D)} with key Gpλ(θ̂

p
; C).

4: for i = 1, 2, . . . do
5: Extract (θ̂

p
, C,D) from heap T p. F The current best PLAM is popped from the heap.

6: Store a pair (θ̂
p[i]
,Gp[i]λ )← (θ̂

p
,Gpλ(θ̂

p
; C)). F The PLAM is stored as the i-th best.

7: for d ∈ Ap

θ̂
p[i] and d 6∈ D do F Select a regressor with nonzero coefficients not involved in D.

8: θ̂
p
← argmin θp G

p
λ(θ

p
; C \ {d}).

9: Insert (θ̂
p
, C \{d},D) to T p with key Gpλ(θ̂

p
; C \{d}).

10: D← D ∩ {d}.
11: end for
12: end for
Ensure: Qp

λ = {Qp[i]
= (θ̂

p[i]
,Gp[i]λ )}.

Algorithm 4 Hill Climbing Approach for Finding PLAS Based on Sparse PLAMs

Require: {{(θp[i],Gp[i]λ )} = Qp
λ; p ∈ S}.

1: Set Āp
← ∪iAp

θ̂
p[i] (∀p) and construct adjacency matrix Ā with {Āp

}. F Consider all possible links in candidates.

2: Set θ̄
p
← θ̂

p[1]
(∀p) and S̄ ← ∅.

3: for m = 1, . . . , |{Smc (Ā)}| do F Identify possible nodes constructing cyclic subgraphs.
4: if Smc (Ā) > 1 then
5: S̄ ← S̄ ∪ Smc (Ā).
6: Randomly select (θ̄

p
, Ḡpλ) ∈ Qp

λ (∀p ∈ Smc (Aθ̂ )).
7: end if
8: end for
9: while |Smc (Aθ̄ )| > 1(∃m) do F Find initial DAG.

10: Randomly select p ∈ S̄.
11: Randomly select (θ̄

p
, Ḡpλ) ∈ Qp

λ.
12: end while
13: G←∞
14: while

∑
p Ḡ

p
λ < G do

15: Ğpλ← Ḡpλ (∀p)

16: for p ∈ S̄ do
17: for (θ̆

p
, Ğpλ) ∈ {Q

p[i]
λ |

∣∣∣|Ap
θp[i]
| − |Ap

θ̄
|

∣∣∣ = 1,Qp[i]
λ ∈ Qp

λ} do F Remove/add an edge.

18: if |Smc (Aθ̆ )| = 1(∀m) and
∑

p Ğ
p
λ < G then

19: θ̇
p
← θ̆

p
, and G←

∑
p Ğ

p
λ. F Store the current best DAG.

20: end if
21: end for
22: end for
23: θ̄ ← θ̇ .
24: end while
Ensure: {θ̄

p
; p ∈ S}

where
Gλ(θ; {Sp}) =

∑
p∈S

Gpλ(θ
p
;Sp). (16)

Now, to obtain the optimizer of Eq. (15), we adopt the same
enumerate and search strategy as the naive approach, but in a
relatively efficient way.

In the enumerate step, we utilize the idea inspired from the
enumerate lasso [14]; this algorithm efficiently enumerates
good regression models with various subsets of regressors in
ascending order with the lasso regularization based on their
objective values. In our context, we focus on the following
proposition.
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Proposition 1 (Different Support Solutions to Overlap
Group Lasso): Given Sp and S̄p ⊆ Sp, the objective function
of the overlap group lasso model, Eq. (12), has the following
property,

min
θp

Gpλ(θ
p
;Ap

θ̂
p ) = min

θp
Gpλ(θ

p
; S̄p)

= min
θp

Gpλ(θ
p
;Sp), (17)

if S̄p ⊇ Ap

θ̂
p holds, where

θ̂
p
= argminθpG

p
λ(θ

p
;Sp). (18)

Proof: The explanatory variables set Ap

θ̂
p defined in

Eq. (14) suggests that ξ̂ ip = 0 and ‖τ ip‖2 = 0 for i ∈
(Sp \ Ap

θ̂
p ). Therefore, the explanatory variables subset Ap

θ̂
p

used in the first formulation of Eq. (17) does not violate
the optimality of θ̂

p
. Similarly, we can see that the second

formulation of Eq. (17) also does not violate the optimality
of θ̂

p
under the condition that Ap

θ̂
p ⊆ S̄p ⊆ Sp holds. �

Proposition 1 suggests that if S̄p satisfies Ap

θ̂
p ⊆ S̄p ⊆

Sp, θ̂
p
is also a minimizer of Gpλ(θ

p
; S̄p). This property

significantly reduces the computational cost for the param-
eter estimation by avoiding redundant enumeration under the
given λ. Algorithm 3 shows the procedure for enumerating
possible PLAMs under the given Sp and λ. Note that T p at
line 3 indicates the heap of triplets composed of the estimated
parameter, candidate subset of explanatory variables, and
the objective value, which are sorted in ascending order of
objective value Gpλ; the condition at line 7 is given to avoid
redundant search. Algorithm 3 returns a sorted list of a
limited number of good models for vp from the viewpoint
of the individual objective function Gpλ. The enumeration
procedure shown in Algorithm 3 can also be applied for all
p ∈ S in parallel.

Algorithm 4 describes a hill climbing approach for
selecting a plausible DAG based on a set of PLAMs
derived using Algorithm 3 under the sparseness assumption.
Basically, the procedure follows the naive approach given in
Algorithm 2. However, the number of targeting structures can
be drastically reduced from the naive approach by enumerat-
ing the component PLAMs in Algorithm 3; the number of
structural candidates to be searched is

∏
p |Q

p
λ| �

∏
p |R

p
λ|.

In order to further reduce the search range of the combination
of component PLAMs, the following proposition is used.
Proposition 2 (Screening of Acyclic Subgraphs): Let
{{(θp[i],Gp[i]λ )} = Qp

λ; p ∈ S} be a set of pairs composed of a
parameter set of PLAM, θp[i], and its corresponding objective
function, Gp[i]λ , where [i] indicates the i-th best model from
the viewpoint of the objective function value in the set, Āp

=

∪iAp

θ̂
p[i] , be the possible parent nodes for v

p, and Ā be the

adjacency matrix constructed with {Āp
}. The directed graph

based on Ā suggests that θp[1] is a subset of the minimizer of
Eq. (15) if |Smc (Ā)| = 1 holds for Smc (Ā) 3 p.

Proof: The SCCs of the directed graph based on Ā
with a single node vp indicates that the node vp does not

FIGURE 3. Cultivation system used in the case study. (a) Schematic image.
(b) Appearance of the system.

violate the DAG constraint regardless of which candidate
model combination is adopted. This suggests that the PLAM
parameter θp[1] is a subset of the minimizer given in Eq. (15)
since Gp[1]λ ≤ Gp[i]λ holds for any i > 1. �
Proposition 2 suggests that we can screen nodes that can

adopt the best component PLAM in terms of the objec-
tive function before the search process; the search space of
the optimization problem composed of combinations of the
model candidates derived by Algorithm 3 can be further
reduced by this procedure. We also note that multiple trials
of Algorithm 4 for selecting the best whole structure can be
conducted in parallel.

V. CASE STUDY: MODELING BASED ON
REAL-WORLD DATA
In this section, a graphical model is constructed based on the
dataset collected from a real-world plant factory by using the
proposed approach.

A. DERIVATION OF PARTIALLY LINEAR
ADDITIVE GRAPH STRUCTURE
In this case study, we focus on a dataset intermittently col-
lected at a pilot cultivation system in a plant factory for the
period from April 2015 to July 2018; the dataset consists of
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TABLE 1. Variables for model construction.

FIGURE 4. Tipburn of frillice lettuce.

records of 2,047 frillice lettuces and the average environmen-
tal data during their cultivation period. Fig. 3(a) shows the
schematic image of the target system and Fig. 3(b) shows its
appearance [51], [52]. The pilot system is capable of harvest-
ing five heads of frillice lettuce a day. The system operates
various controllable parameters for growing the plants. The
daily operation schedule consists of a 16-hour light period
and an 8-hour dark period. The average growth environment
and growth result for each crop were recorded. Table 1 shows

FIGURE 5. Result of cross validation. The cross validation error is
minimized at λ = 0.1.

the recorded data used in the evaluation. Typical variables
indicating the quality of the target crops include the weight
of the crops and the number of leaves in which tipburn has
occured (see Fig. 4).

In our proposed procedure, firstly, the sparseness parame-
ter λ was tuned according to the three-fold cross validation
from the viewpoint of the total sum of squared errors to the
validation data subset. The number of bases was set as K = 6
in Eq. (2). Algorithm 4 was performed from 1,000 different
initial states. Fig. 5 shows the result of the cross validation.
The average of the mean squared errors was minimized at
λ = 0.1.

Fig. 6 shows the graphical model derivedwith the proposed
method by using all the datasets under the selected parameter,
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FIGURE 6. Graph structure derived by using the proposed method. Square nodes show the controllable variables. The colors of the nodes show the
types of variables: purple for representing crop quality; pink for scheduled environmental variables; blue for growing environmental parameters;
yellow for exogenous variables; and green for power consumption. Variable names written in red/blue show the variables of the light/dark periods.

FIGURE 7. Example of the derived relationships between variables:
(a) outside temperature versus power consumption at external control
panel (200[V]), (b) outside temperature versus power consumption of
chiller unit, (c) amount of potassium in nutrient solution versus pH of
nutrient circulation tank, and (d) pH of nutrient circulation tank versus
the number of leaves with tipburns.

i.e. λ = 0.1. The arrows in the results indicate the direct rela-
tionships of the expected change in the other variables when
a variable is controlled. For example, the arrows from v32 to
v40 and v42 indicate the relationships between the outside air
temperature and the power consumptions. Fig. 7(a) shows the
concrete relationship between the outside air temperature and
the power consumption at the external control panel (200V);

FIGURE 8. The number of candidates for DAG search.

note that the variables shown in Fig. 7 are standardized and
plotted by subtracting the expected value of the influence
of other explanatories. Since the power consumption of the
plug heater accounts for most of the electric power moni-
tored at the external control panel, this result supports an
intuitive interpretation that more energy is required when the
outside temperature is low. Fig. 7(b) shows another example
of the relationship between the outside air temperature and
the power consumption of the chiller unit; since the chiller
unit is used to lower the room temperature, the higher the
outside temperature, the more the power consumption that is
required. The results derived by the proposed approach natu-
rally extracts these types of nonlinear relationships. Fig. 7(c)
shows an example of the relationship between the pH of
the nutrient circulation tank and the amount of potassium in
the nutrient; a linear relationship was selected as a result of
the partially linear model construction based on the overlap
group lasso. Fig. 7(d) shows the relationship between the
pH of the nutrient circulation tank and the number of leaves
with tipburn; the result suggests a nonlinear relationship by
which the number of tipburns tend to decrease when the pH is
relatively high. We expect that the analyses performed using
such procedures can provide valuable knowledge for realizing
energy-aware crop quality control.

32192 VOLUME 7, 2019



Y. Fujimoto et al.: Machine Learning Approach for Graphical Model-Based Analysis of Energy-Aware Growth Control

FIGURE 9. Graph structures under various λ. (a) λ = 0.0001 (#links = 234). (b) λ = 0.1 (#links = 177). (c) λ = 0.2 (#links = 162). (d) λ = 0.3
(#links = 136). (e) λ = 0.5 (#links = 113). (f) λ = 0.7 (#links = 101).

B. DISCUSSION
Now, we briefly discuss about the computational difficulty
and the model consistency of the proposed approach under
various λ.

Fig. 8 shows the size of the search space required for
finding the optimal DAG for the given dataset. In the case of
the naive approach, the size of the search space, i.e.

∏
p |Rp
|,

is very large in this problem. However, in the proposed
approach, the size of the search space

∏
p |Q

p
λ| is significantly

reduced under the sparseness assumption by setting the λ
value. The result indicates that the proposed approach realizes
efficient reduction of the space for searching the appropriate
DAG structure with PLAMs as its components.

Fig. 9 shows the derived graph structures under various
λ. The results show that the number of links decreases and
becomes a sparse structure as the value of λ increases. This
property suggests that the mechanism for controlling the
over-fitting in the graphical modeling works well as expected
by adjusting the number of links between nodes. Note that
the links existing under situations where λ is large also

exist even under situations where λ is small in most of the
substructures in the derived graphs; these arrows imply a
relationship between variables that is determined to be con-
sistently related regardless of the value of λ, suggesting that
there is an explicit relationship. Fig. 10 shows the subgraphs
under various λ in the corresponding graph structure shown in
Fig. 9, focusing on the node subset {v13, v21, v23, v25, v27, v29}.
For example, variables v25, v27, v29 are used as explanatories
for v21 under any λ value; the result implies that these three
variables are essentially important for explaining v21. The
directed links consistently existing under different λ support
the fact that there are very clear relationships among these
variables. Meanwhile, focusing on v25 and v29, the direction
of the arrow between these variables changes depending on λ.
As shown in this example, the result has some sub-structure
whose link presence and direction changes discontinuously
with changes in the value of λ. In the graph structure derived
in the previous subsection, the model is derived accord-
ing to a policy that selects a whole structure with low
expected mean squared error by adopting cross validation.
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FIGURE 10. Subgraph structures focusing on {v13, v21, v23, v25, v27, v29} under various λ. (a) λ = 0.0001. (b) λ = 0.1. (c) λ = 0.2. (d) λ = 0.3.
(e) λ = 0.5. (f) λ = 0.7.

However, discontinuous and inconsistent changes in the sub-
structures corresponding to changes in the value of λ can lead
to degradation of the interpretability in the analysis; hence,
this is an open issue in our proposed approach.

VI. CONCLUDING REMARKS
In this paper, we introduced an idea of directed graphical
modeling based on sparse partially linear additive models and
proposed approaches to find a sparse partially linear additive
structure for the construction of directed acyclic graphical
representations. We provided the results of a case study
using a multivariate dataset collected at a real-world plant
factory and showed that the proposed scheme is effective for
finding strong linear/nonlinear relationships among variables
while efficiently reducing the search space for obtaining the
plausible directed acyclic graph. The proposed analytical
model will provide an interpretable estimate of the expected
operational effect of plant factories under the changes in
exogenous factors such as weather conditions; e.g., the pro-
posed approach can be used in realization of data-driven deci-
sion making for operations in plant factories that minimize
the expected energy cost while keeping the expected crop
quality [11].

This study proposed an approach for analyzing the
energy-aware growth control in plant factories; however,
the proposed approach is expected to be applicable to var-
ious analyses based on the statistical relationship described
by the directed acyclic graphical structure between various
variables. In this paper, we particularly focused on the class
of ordinary (partially linear) additive models; however, but
our scheme can be easily extended to a broader class of gen-
eralized additive models by introducing arbitrary link func-
tions. We expect that our proposed scheme provides a novel
approach for describing statistical relationships while identi-
fying linearity/nonlinearity. The proposed approach will be
useful when flexible and interpretable statistical structures
among variables are required while focusing on the gener-
alization performance. In this paper, we adopted a hill climb-
ing approach for obtaining relatively good solutions within
a finite time, which works well under a large number of
variables; however, the realization of efficient and scalable
exact search is an interesting future work. We will continue
discussing an open issue regarding the lack of structural
consistency against changes in the value of λ, which was

mentioned during the discussion of our case study, as our
future work.We also plan to release the scripts for data-driven
construction of the proposed model near future.
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