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ABSTRACT Rician distribution has been widely utilized to describe wireless fading channel. In the
non-stationary temporal fading channel like industrial scenarios, both the specular and scattered components
of the multi-path fading channel will be time varying. As a result, the online estimation of Rician parameters
is necessary to provide stable wireless service. The traditional estimation approaches of Rician parameters
are designed for channel measurement usage and therefore have to work in the data-aided mode for
online estimation with modulated I/Q samples. To solve this problem, some non-data-aided algorithms
have been proposed in recent years, but only valid in specific scenarios. In this paper, we formulate the
estimation of Rician parameters from modulated I/Q samples as a two-dimensional Gaussian mixture
model to provide a general non-data-aided Rician parameter estimation method. By involving a priori
information of modulation scheme and the motivation of optimized gradient searching, the independent
parameters in the maximum likelihood estimation can be significantly decreased to three, which leads to fast
convergence of the modified expectation–maximization algorithm with high accuracy. The combination of
these modifications has been finally formulated as a Rician mixture model. The numerical results and field
measurements illustrate the feasibility of this methodology.

INDEX TERMS Rician distribution, maximum likelihood estimation, non-data aided, Gaussian mixture
model.

I. INTRODUCTION
The wireless channel of fixed wireless link in the industrial
scenario has been investigated over decades [1]–[9]. Obvious,
the massive metal surfaces in industrial scenarios will lead to
complex fading channel models due to the multi-path effect.
In an ideal fixed wireless link, although the delay and atten-
uation of signals from multiple paths still vary according to
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approving it for publication was Xiao-Sheng Si.

different paths, the combination of these signals will be static
over time. However, most industrial environments are non-
ideal: the nearbymoving objects will generate dynamic paths,
which will also perturb the stationary scattered paths. As a
result, both the specular and scattered power of the received
signal will be time-varying with specific pattern rooted in the
arbitrary mobility pattern of moving objects [9]. Such effect
has been observed and termed as the non-stationary temporal
fading [2], [4], [6], [7], [9]. In the temporal fading channel,
the envelop of the received signal will still follow the Rician
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FIGURE 1. The problem in Rician parameter estimation with
modulated IQ samples.

distribution but with time varying parameters of s and σ due
to the essential varying nature of both specular and scattered
components. Then, the internal thermal noise won’t be the
only source of causing transmission error, which is better
represented by the famous Rician K factor, i.e., K = s2/2σ 2.
If consider the time varying nature of the temporal fading
channel, these Rician parameters must be on-line updated
from time to time to obtain an accurate link quality met-
ric. Otherwise, the transceiver may take wrong actions due
to inaccurate link quality information which may result in
serious consequence. For example, in the wireless closed-
loop control system [10], [11], the wireless networks must
provide strict constraint services on reliability [12] and timing
(e.g. delays) [13]. Otherwise, the closed-loop control system
may become unstable resulting in the unplanned shutdown,
equipment damage, safety risk and economic loss. Nonethe-
less, an online accurate estimation of Rician parameters of
the temporal fading channel is the key to guarantee reliable
services [14], [15].

The estimation of Rician parameters is of considerable
interest. The earlier approaches [16]–[18] only work on the
envelop of the received signal from the fading channel and
rely on the moment based estimation method. The com-
ing after approaches [19]–[21] choose to utilize both the
amplitude and phase information from I/Q streams through
Maximum Likelihood Estimation (MLE) method to increase
reliability and accuracy. However, these approaches are usu-

ally designed for channel measurement of static or stationary
fading channel, i.e., the I/Q stream are utilized only for chan-
nel measurement. Nonetheless, these algorithms fail to be
directly ported from channel measurement system into online
channel estimation system, since the existence of modulated
symbols will discretize the received cluster in constellations,
as shown in Fig.1. Then both the moment based and phase
based methods cannot be directly applied but have to be data-
aided to cancel the self-interference of modulated signals
[22], hence fail to utilize massive modulated I/Q samples.
Against this limitation, the Auto-Correlation Function (ACF)
has been adopted [22] to avoid the data aided requirement,
which, however, cannot be applied within M-ary Phase Shift
Keying (M-PSK) scenarios due to the null ACF. The most
recent work in [23] and [24] employ the fourth order cross
moment statistic to avoid the data aided constraint, which
can only work in the specified Single Input Multiple Output
(SIMO) scenarios, i.e. not applicable in common single input
single output scenarios especially the industrial scenario.

As demonstrated in our previous work [9], such a Rician
parameter based online estimator from modulated I/Q stream
can significantly increase the link quality estimation per-
formance in the non-stationary industrial fading channel.
If aware that some recently released Commercial off-the-
shelf (COTS) wireless transceivers (e.g., Atmel AT86RF215
[25]) have open the I/Q stream interface, the user-defined link
quality estimator can be deployed in the COTS transceiver to
gain better link capacity and reliability. In this paper, we pro-
pose a novel non-data aided approach to directly estimate
Rician parameters from modulated I/Q streams. As revealed
by Fig.1, the modulated I/Q stream after a Rician fading
channel will form two dimensional Gaussian clusters in the
received constellations, the number of which is decided by
the modulation order. In the data aided model, all the devi-
ations caused by the modulation can be self-cancelled and
the residue deviations will only be contributed by the fading
channel. In the scenario without data aiding, it is straightfor-
ward to treat the received constellations as a classical two
dimensional Gaussian Mixture Model (GMM), which can
be solved by the famous Expectation-Maximization (EM)
algorithm. The estimated results can be utilized to cancel the
modulation interference. However, this method will suffer
from the long converging problem and fail to be utilized in
the online estimation. The proposed method in this paper is
based on the fact that although the exact modulated sym-
bol sequences are unknown, the modulation scheme can be
assumed as a priori information. This essential fact can be
utilized to approximate the optimized gradient search in the
EM algorithm, so that not only the converge process can be
accelerated but also the converged accuracy can be improved.
This problem has been modeled as a 3 Degrees of Freedom
(DoFs) GMM algorithm or termed as the Rician Mixture
Model (RMM) algorithm according to its mathematical form.

The rest of this paper is outlined as follows: section II
provides the problem formulation. The design of 3 DoFs
GMM based estimation method is presented in section III.
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Experiments from numerical simulation and industrial sites
are utilized to validate the proposed algorithm in section IV,
followed by the conclusion in section V.

II. PROBLEM FORMULATION
The narrowband complex baseband representation of Rician
fading channel can be modeled by [17]:

h(t) =

√
K�
K + 1

hsp(t)+

√
�

K + 1
hsc(t), (1)

where the first item hsp(t) is termed as specular component
contributed by the Line of Sight (LOS) path or other strong
dynamic path, while the second item hsc(t) is termed as scat-
tered component representing all other scattered paths. The
parameter� represents the average power of the received sig-
nal, while K represents the ratio between specular power s2

and scattered power 2σ 2. In this context, the received envelop
after fading channel will follow the Rician distribution:

fR(rn|s, σ ) =
rn
σ 2 exp (−

r2n + s
2

2σ 2 )I0(
s · rn
σ 2 ). (2)

where rn is the envelope of the nth sample.
It is easy to notice the existence of a zero order Bessel func-

tion I0(·). As a result, the estimation of K with moment statis-
tics usually requires iterative based algorithm [16]. Another
choice [18] is to estimate Rician parameters through higher
order moment statistics to obtain the closed-form solution,
which may require large samples and suffer from the loss of
accuracy and reliability.

As the received I/Q streams can be utilized for estimation
through the transceiver interface, then it is possible to utilize
both amplitude and phase to obtain a reliable estimation of
Rician parameters. The Rician distribution is derived from the
assumption that the scattered components are independently
distributed in both I and Q dimensions. According to the
central limit theorem, it is reasonable to assume that they all
follow the Gaussian distribution. The joint distribution of I
and Q can be written as:

fI ,Q(ri,n, rq,n|µi, µq, σi, σq)

=
1√
2πσ 2

i

exp(−
(ri,n − µi)2

2σ 2
i

)
1√
2πσ 2

q

exp(−
(rq,n − µq)2

2σ 2
q

),

(3)

where µi and µq are contributed by the specular component,
σi and σq are contributed by all the scattered components,
respectively.

With simple geometrical derivation and a priori informa-
tion of fading channel, the new variable of r , φ, and φ0 can
be introduced to map received signal into polar coordinates:

s2 = µ2
i + µ

2
q

r2n = r2i,n + r
2
q,n

φ0 = arctan
(
µi

µq

)

φn = arctan
(
ri,n
rq,n

)
, (4)

where r is the envelope of the received signal, φ is the
phase of received signal (i.e., calculated from the I/Q stream),
especially φ0 is the phase variation caused by the specular
components in the fading model. The joint Power Density
Function (PDF) of the envelope and phase can be formulated
with the help of Jacobian determinant:

fR,8(rn, φn|s, σ, φ0)

=
rn

2πσ 2 exp (−
r2n + s

2
− 2rns cos (φn − φ0)

2σ 2 ). (5)

With further integration over φ, equation (5) could be
degraded to equation (2). Without any doubt, the joint PDF
will provide more information with introduced phase item.
As shown in [21], following the classical concave method,
the log-likelihood of equation (5) can be simply obtained as:

ln fR,8 (rn, φn|s, σ, φ0)

=
s
σ 2

N∑
n=1

rncos (φn − φ0)

+

N∑
n=1

ln rn −
1

2σ 2

N∑
n=1

rn2 −
Ns2

2σ 2 − N ln
(
2πσ 2

)
.

(6)

where N is the number of samples.
Then, the MLE estimation of Rician parameters from

received I/Q streams can be written as:

ŝ =
1
N

N∑
n=1

rn cos(φn − φ0)

2σ̂ 2
=

1
N

N∑
n=1

r2n − ŝ
2

φ̂0 = arctan

[∑N
n=1 rn sin(φn)∑N
n=1 rn cos(φn)

]
. (7)

Simply applying K = s2/2σ 2 will lead to a high accuracy
and reliable estimation of Rician K factor due to the utiliza-
tion of additional phase information. Be aware that in the non-
stationary fading channel, all parameters are time varying and
should be rewritten as a function with variable of time. Yet,
the estimation of RicianK factors requires the online fashion.
Without any doubt, the above algorithm can only work with
non-modulated signal or require a priori information on the
transmitted symbols, which has been shown in the upper area
of Fig.1. If take M-PSK as an example scenario, equation (5)
should be rewritten as:

fR,8(rn, φn)

=
rn

2πσ 2 exp (−
r2n + s

2
− 2rns cos (φn − φ0 − φs,n)

2σ 2 ), (8)

where φs,n is the modulation phase for each symbol. For
the QAM based modulation, additional as,n denoting the
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modulation amplitude for each symbol should be further
involved. If with the known transmitted symbol information,
i.e. Data Aided model, as,n and φs,n could be self-cancelled,
the problemwill be a standard Rician parameter identification
problem. But the number of symbols with known information
is usually limited, e.g. preamble or pilot symbols. As a result,
all the rest modulated symbols with as,n 6= 1 and φs,n 6= 0
cannot be utilized to estimate Rician parameters with the clas-
sical MLE algorithm, which may cause a higher estimation
variation. Be aware that in this case even the moment based
method is unable to estimate the Rician parameters due to
the multiple levels of modulated amplitude, which has been
shown in the lower area of Fig.1. As discussed, a general
algorithm to utilize the massive modulated signal to estimate
Rician parameters is still an open and challenging problem.

III. 3 DoF GAUSSIAN MIXTURE MODEL
As shown in equation (8), the current problem is to
identify distribution parameters from modulated symbol
streams, where as,n & φs,n will be discretized with differ-
ent modulation schemes. Take the popular Quadrature Phase
Shift Keying (QPSK) modulation scheme utilized in IEEE
802.15.4 system as an example. This can be intuitively under-
stood as a single cluster decentralized into four clusters,
which are equally separated in a phase circle of constellations.
Similarly, other modulation schemes will also form different
regular cluster pattern in the constellations, which can be
modeled as a mixed two dimensional Gaussian distribution:

fI ,Q(ri,n, rq,n|µi,m, µq,m, σi,m, σq,m)

=

M∑
m=1

ωm
1√

2πσ 2
i,m

exp(−
(ri,n − µi,m)2

2σ 2
i,m

)

×
1√

2πσ 2
q,m

exp(−
(rq,n − µq,m)2

2σ 2
q,m

), (9)

where M is the modulation order, e.g., 4 for QPSK, 8 for
8-PSK, and 16 for 16-QAM; µi,m & µq,m are the coordinates
of each cluster center, decided by both the fading effect
and modulation scheme; similarly, σi,m & σq,m represent the
deviation degree caused by the fading effect; and finally ωm
refers to the weight for each cluster. To be brief, equation (9)
can be rewritten with the general two dimensional Gaussian
function:

fI ,Q(xn|µ,6)) =
M∑
m=1

ωmG (xn|µm,6m) , (10)

where G(·) denotes the PDF of two dimensional Gaussian
distribution. xn = [ri,n, rq,n]T describes the received symbol,
µm = [µi,m, µq,m]T describes the center of each cluster

with index m, and 6m =

[
σi,m COVI ,Q

COVQ,I σq,m

]
describes the

variation of each cluster with indexm. Be aware, COVI ,Q and
COVQ,I are the covariances of the two dimensional Gaussian
distribution, and are in fact 0 with known constraint of Rician

distribution. µ and 6 refer to the sets of µm and 6m respec-
tively. Consequently, the probability of the current symbol
belong to the mth cluster can be modeled as:

pn,m =
ωmG (xn|µm,6m)∑M
j=1 ωjG

(
xn|µj,6j

)
,

(11)

Nonetheless, the current form of problem can be treated
as a classical GMM and solved by the famous EM solution,
which iteratively converges to the optimized estimations of
µ̂m, 6̂m and ω̂m. Be aware that µm and 6m are in fact
large number of parameters: the size of µm is 2 for each
cluster, while the size of 6m is 4 for each cluster. Further
considering one more parameter of ωm for each cluster, there
will be 2 + 4 + 1 = 7 parameters waiting for estimation of
each cluster. Then, the overall number of parameters waiting
for estimation will be 7M in total, as there are M clusters.
Obviously, the converge process will be correlated with the
modulation order M , e.g. the larger the M is, the longer
and harder the converge process will be. Consequently, long
converge process will cost high computation resources and
time, which can not be afforded in the online estimation
algorithm with time constraints. This is why we decide not
to simply adopt the classical EM solution.

Without any doubt, some a priori information from mod-
ulation scheme can be utilized as constraints for this mixed
Gaussian distribution, which can significantly ease the solv-
ing complexity. Normally, the transmitted number of symbols
will be much larger than the modulation order, which can lead
to the constraints of the equal weights of ωm = 1

M for each
cluster. As a result, equation (11) can be rewritten as:

pn,m =
G(xn|µm,6m)∑M
j=1G(xn|µj,6j)

. (12)

The log-likelihood function can be written as:

ln fI ,Q(xn|µ,6) =
N∑
n=1

ln
M∑
m=1

1
M
G(xn|µm,6m), (13)

As expected, even with simplified ωm, the above equation
cannot be analytically solved. However, by applying the
Jensen’s inequality, the lower bound of the above equation
can be obtained as:

ln fI ,Q(xn|µ,6) ≥
N∑
n=1

M∑
m=1

pn,m ln
G(xn|µm,6m)

M · pn,m
. (14)

Now, the problem can be equalized to the Max-Min prob-
lem in the M-step, and the iterative estimation of pn,m in the
E-step. In the classical EM solution, the MLE solution will
be utilized in the M-step to maximize the lower bound of
likelihood function. As discussed earlier in this section, it is
reasonable to utilize the a priori information of modulation
scheme in this scenario. If treat the MLE algorithm as the
analytical optimized solution of convex coordinates, then the
EM solution is an equalized form of the gradient search prob-
lem with pseudo maximized solution in each iterative cycle.
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FIGURE 2. The scheme of 3 DoFs MLE estimation of Gaussian Mixture
Model.

Obviously, a priori information of the modulation scheme
can be utilized to guild the optimized gradient searching.

Similar to ωm, the modulation scheme is also a utilizable
a priori information. Considering a transceiver pair over
fading channel, once the modulation scheme was negotiated
by two transceivers, the pattern of transmitted constellations
will be fixed, which will then be scaled in the amplitude,
rotated in phase, and resulted in the received constellations.
As shown in Fig.2, although there are 7M explicit parameters
in equation (9), the essential DoFs are only 3 with known
modulation scheme. This is due to the fact that the relative
distances and angles among constellations are fixed due to
modulation scheme. The fading channel will only cause all
the constellations, an indivisible whole, to scale in amplitude
s, to rotate in angle φ0, and to scatter in the variation of
amplitude σ . For example, if the constellation in the first
quadrant has been rotated with φ0, all the other three constel-
lations in different quadrant will also suffer from the same φ0
rather than other angle. It is not likely all the 7M parameters
will change independently, instead they have been essentially
correlated with 3 DoFs system. In other words, the optimized
direction in the gradient search can only occur in −→s , −→σ
and
−→
φ0 .

After some algebra, equation (9) could be rewritten in the
mixed Rician fashion and termed as RMM:

fR,8(rn, φn|s, σ, φ0)=
M∑
m=1

fm(rn, φn|s, σ, φ0, am, φm)
M

(15)

where s, σ , and φ0 are the fading channel related parame-
ters; am and φm have been treated as the known modulation
parameters for the mth transmitted constellation. The PDF
fm(·) for each cluster can be simply defined with modified
equation (5):

fm(rn, φn|s, σ, φ0, am, φm)

=
rn

2πσ 2

× exp (−
r2n + ams

2
−2amrns cos (φn−φ0−φm)

2σ 2 ), (16)

It was expected that the current form of RMM will regulate
the gradient search only in s, σ and φ0. By applying equation
(15) (16) into equation (14) to instead fIQ(·) and G(·) respec-
tively. Following the derivation in equation (6), the pseudo-
MLE of parameters in the M-step can be easily obtained with
respect to s, σ and φ0.

ŝ =
1
N

N∑
n=1

M∑
m=1

pn,m
rncos(φn − φ0 − φm)

am

2σ̂ 2
=

1
N

N∑
n=1

M∑
m=1

pn,m[r2n − (ŝ · am)2]

φ̂0 = arctan[

∑N
n=1

∑M
m=1 pn,mrnsin(φn − φm)∑N

n=1
∑M

m=1 pn,mrncos(φn − φm)
]. (17)

And equation (12) could still be utilized in the E-step.
It is easy to prove that such a solution is compatible with
the classical EM solution with 2 dimension GMM, but with
additional regulation that all the fine tune in θ (parameters)
should be mapped to−→s and

−→
φ0 . This is due to the fact that the

essential improvement is the optimized gradient search with
known information of modulation scheme.

Similar to many other GMM-like algorithms, the per-
formance of the proposed optimized gradient search based
RMM is closely related to the initial configurations. In other
words, it can be further increased with K -means pre-
processing, which can provide a rough estimation as the
inputs.

IV. EXPERIMENT VALIDATION
A. NUMERICAL RESULTS
The performance of the proposed methodology is first eval-
uated by numerical experiments implemented in Maltab.
Compared to fields experiments presented in subsection B,
the main benefit of numerical experiment is the known true
values of Rician parameters s, σ and their variation K .
In each numerical experiment, the preset Rician parameters
will be utilized to generate a stream of I/Q samples last
127byte*8bit*16chip. These numbers are set according to
the most popular IEEE 802.15.4 transceiver in the wireless
industrial applications [26]. The generated I/Q stream will
be processed by four chosen estimation algorithms , includ-
ing the Data Aided mode with all known symbols (DA-all),
the Data Aided mode with only limited number of known
pilot symbols (DA-pilot), the classical GMM based non-
data aided mode (GMM), and the proposed 3 DoFs GMM
mode or briefly referred as its formulation Rician Mixture
model (RMM) in the following section. The estimated result
will be compared with the known ground truth to evaluate the
performance of four chosen method.

The intuitive results of how the GMM/RMM estimation
can fit the faded symbols have been firstly provided in Fig.3.
In Fig.3 (a) the classical GMM algorithm provided by Mat-
lab has been applied to the I/Q streams in the QPSK sce-
nario. In Fig.3 (b) the proposed RMMmethodology has been
applied to the same streams. The K factor for this scenario
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FIGURE 3. The typical estimated results: (a) QPSK with GMM in ideal scenario; (b) QPSK with RMM in ideal scenario; (c) 16-QAM with GMM in
ideal scenario; (d) 16-QAM with RMM in ideal scenario; (e) QPSK with GMM in challenge scenario; (f) QPSK with RMM in challenge scenario.

has been set to be 10, which contributes an easy problem for
GMM estimation as the clusters are far away from each other.
The received symbols have been shown with the scattered
plots in the figure, while the estimated results have been
shown in the contour form of the two dimensional Gaussian
distribution. Clearly, both methods have achieved almost per-
fect fitting performance. It will also be clear that the situation
will be tougher in the 16-QAM scenario as shown in Fig.3
(c) and Fig.3 (d) with same configuration. As expected the
classical GMM method failed to fit all 16 clusters, since 5 in
16 potential clusters have beenwrongly estimated. This is due
to the increased DoFs, i.e. from 7× 4 = 28 to 7× 16 = 112.
As a result, the risk of convergence with false results will

be increased. Due to the similar reason, as the DoFs has
been decreased from 7 × 16 = 112 to 3 in the proposed
RMM method, the estimation result is still perfect to fit all
16 clusters. In Fig.3 (e) and Fig.3 (f), the configuration of
K has been significantly decreased to only 1, which leads to
significantly overlapped constellations. Again, the classical
GMM method failed to converge to the known ground truth,
while the proposedRMMmethod still successfully converged
even in this challenging scenario.

After the intuitive results, the quantitative performance
will be presented and discussed. Fig.4 shows the Root Mean
Square Error (RMSE) results of all four evaluated algorithms
in the QPSK scenario. The RMSE calculations follow the
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FIGURE 4. The RMSE performance with different K in QPSK scenario.

standard algorithm as shown in equation(18):

RMSE =

√√√√ 1
R

R∑
r=1

(K̂r − Kr )2 (18)

where R is the repeated numbers of each experiment. In
the experiments, K will be increased from 1 to 10. In the
DA-all mode, all the received I/Q samples are assumed with
known symbol information. Obviously, this is not a realistic
mode, as it contains no information and can only be utilized
to estimate the channel status. But there are other efficient
candidates if all the transmitted bandwidth can be invested in
the channel estimation. Yet, this method was chosen to act as
a rough lower bound of the estimation error for the proposed
algorithms1. In the DA-pilot mode, around 1% I/Q samples
are assumed with known symbol information, these symbols
are usually termed as pilot symbols in the transceiver design,
which contribute to the brief name of DA-pilot.

In Fig.4, the DA-all method performs the best achieving
only 0.013 RMSE in the estimation of K with the configura-
tion of K = 1, and 0.087 RMSE with K = 10. Obviously,
the GMMmethod performs the worst showing similar trends
but higher error, i.e. 0.63 RMSEwithK = 1, and 9.57 RMSE
with K = 10. It is interesting to notice that the DA-pilot
method shows similar but slightly better performance than
the GMM method, increasing the RMSE from 0.15 to 1.04,
which means that the GMM method costs much more com-
putation resources to converge to a worse result. This may
explain why there is no previous published work attempt-
ing to utilize GMM in Rician parameter estimation. On the

1We are aware of the I.I.D assumption, the Lag pre-process in [22] can
be further employed to satisfy such assumption and increase the estimation
performance.

FIGURE 5. The RMSE performance with different φ0 in QPSK scenario.

other side, the proposed RMM method has shown the trends
approximating the lower bound (DA-all), i.e. from 0.15 to
0.08 with turning point of 0.038 when K = 3. The slightly
worse performance with small K is reasonable as the clusters
in constellation will involve large overlap, which increases
not only the difficulty of convergence but also the accuracy
of estimation results. After K = 3, the proposed RMM
method quickly converges to almost the similar performance
of DA-all.

There is a logical paradox here, that with the increased K ,
the difficulty of estimation will be eased as the cluster will be
far away from each other. Normally, the RMSE of estimation
results should be decreased in this scenario but not for the esti-
mated K in the experiments. This can be understand, if recall
the fact that s and σ are the directly estimated parameters,
which will be further utilized to calculate K . Now, if refer to
the lower sub-figure of Fig.4, all the RMSE performances of
estimated s and σ are decreasing with increasingK . However,
the estimation error of σ will be significantly amplified in
the calculation of K = s2/2σ 2, which finally leads to the
increasing RMSE of K .

Fig.5 provides the RMSE with different φ0 in the QPSK
scenario, where the K factor has been set as 1, i.e. a chal-
lenge scenario. As expected, the estimation error is stable
for all four validated methods. The DA-all method shows a
stationary pattern around 0.05, which is the best accuracy.
The proposed RMM method shows the second lowest error
around 0.04. The other two candidates show much worse
performance around 0.61 and 5.37 RMSE for DA-pilot and
GMM respectively. These results reveal two facts: firstly, all
four methods are not sensitive to the specular path delay, i.e.
the variation of φ0; secondly, the proposed RMM method is
still the best candidate approaching the ‘lower bound’ DA-all.
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FIGURE 6. The RMSE performance with different K in 16-QAM scenario.

Fig.6 provides the RMSE with different K in the 16-QAM
scenario. The performance is very similar to the results shown
in Fig.4, except the slightly increased challenge due to the
deeper modulation order as shown in Fig.3. The RMSE
performance of K in DA-all method increases from 0.04 to
0.47 with K increasing from 1 to 10. The almost similar per-
formance has been achieved by RMMwith RMSE increasing
from 0.24 to 0.47 with turning point of 0.14 when K = 3.
At the same time, the DA-pilot method shows RMSE increas-
ing from 0.16 to 1.49, while the GMM method increasing
from 0.39 to 8.36. These results confirm the performance
rank still applicable in the 16-QAMscenario, but with slightly
worse performance than the QPSK scenario. It should be
noticed that the RMSE performances of s and σ in GMM
method fail to decrease as other methods, which hints the
fact that GMM may usually hard to converge to the ground
truth in the 16-QAM scenario. As Fig.5 already demonstrated

FIGURE 7. The convergence with different K in QPSK scenario.

FIGURE 8. The convergence with different K in 16-QAM scenario.

the insensitive nature with φ0, the similar experiment was not
shown for 16-QAM.

Given the estimation accuracy, the complexity of all four
methods will be evaluated in Fig.7 and Fig.8. Without any
doubt, the time computation cost is as important as the esti-
mation accuracy to decide whether the proposed method can
be employed in the intention application. To achieve this
objective, the number of iteration cycles before convergence
has been chosen as the performance metric. The converge
condition have been set to 0.1%. Also as the DA-all and DA-
pilot are not iteration based, the number of iteration cycles
are assumed as 1 and not drawn in the figures. Be aware
that similar MLE solution has been utilized in all four meth-
ods, so the computational cost for each iteration cycle can
be roughly assumed to be the same. The QPSK scenario
has been provided in Fig.7 first. The performance of RMM
shows the clear and reasonable pattern, 4 iteration cycles
in the most challenging scenario with K = 1 and quickly
decreases to only 2 iteration cycles in almost all other sce-
narios. As already mentioned, in each iteration cycle, a stan-
dard MLE algorithm will be deployed with linear complex-
ity, the overall computational cost for RMM can be simply
afforded in most applications2. For the GMM, it is clear that
GMM costs more iteration cycles with an average number
around 9. It is interesting to notice that the maximum cost of
GMM appeared at K = 4. If refer to Fig.3, clusters will be
heavy overlap with each other with small K . In this scenario,
there could be many near optimal solutions existed to fit such
overlapped constellations. As a result, the GMMmethod may
easily converges to one of the near optimal solution very fast
instead being able to find the ground truth. With increasing
K , the clusters will centrifuge with each other, and the ground
truthwill become significant in the solution space. As a result,
the GMM method now has the possibility to approach the
ground truth with longer searching iterations shown in Fig.7.

2In this paper, the algorithms are implemented in Maltab running on an
Intel Xeon E5-2603 CPU @ 1.6GHz, which provide a time cost around
28ms per iteration cycle. It should noted that the actual time cost can be
hundreds or even thousands smaller in a hardware implementation with
simple optimization of the code, which can be employed to obtain a rough
estimation of time costs.
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The 16-QAM scenario has been provided in Fig.8.
As expected, both RMM and GMM require more iteration
cycles to converge. RMM costs 19 iteration cycles when
K = 1 and around 10 iteration cycles in most scenarios.
If recall the intuitive results shown in Fig.3, it can be easily
noticed that GMM is usually mis-converged to local optimal
results. Consequently, the iteration cycles are only with math-
ematical meaning. Moreover, it is interesting that this mis-
converged result is the main reason of the large estimation
error. But even with this mis-converged result, the GMM
algorithm costs more iteration cycles around 30 and as high
as 56.The peak around K = 4 may due to the similar
reason of QPSK scenario. These results demonstrate that the
proposedRMMalgorithm not only provides the best accuracy
(as DA-all can only be assumed as a rough lower bound), but
also affordable deploy cost.

B. FIELD RESULTS
In this subsection, the proposed algorithm will be evaluated
with field experiments in a real-life industrial site. In the
experiments, two NI USRP-2922 SDR transceiver platforms
with omni-directional antennas have been deployed to form
a fixed wireless link, which enable the utilization of the
baseband I/Q stream. The transmitted signals are configured
with QPSKmodulation with carrier frequency of 2.4GHz and
915MHz. The frame length has been set to 5ms, but without

inter-packet guard time to be equivalent to the continuously
sampling of the channel. As a result, each estimation is
based on the per frame manner. The configuration of ‘QPSK’
and ‘5ms’ is employed to be similar with the popular IEEE
802.15.4 wireless transceivers utilized in industry applica-
tions [26]. However, due the storage speed limitation of hard-
disk, the number of per frame have been decreased to enable
full recordation. Similar as the numerical experiments, all
the received I/Q streams have been recorded and processed
in an off-line mode, i.e., processed by the same four esti-
mation algorithms implemented in Matlab. In the DA-all
method, all the received I/Q stream will be self-cancelled
with known transmitted symbols. Similarly, in the DA-pilot
method, the first 1% symbols are assumed with known sym-
bol information, e.g. the preamble utilized in IEEE 802.15.4.
The GMM and RMM methods are deployed with no known
symbol information. The estimated s and σ of each frame in
the selected scenarios have been provided in Fig.9, where the
estimated s are shown in the dot lines and the estimated σ are
shown in the solid lines.

Most field measurements were obtained in a rolling mill
of the state key lab of Rolling and Automation, Northeastern
University, Shenyang, China, which is around 300× 20× 10
meters large, with a big gantry crane near the roof. In the
experiment, a logistical vehicle and operators were asked to
work around the transmission link to emulate four typical

FIGURE 9. The results from field experiment: (a) strict LoS working scenario without nearby moving reflectors; (b) normal LoS working
scenario; (c) LoS scenario with nearby logistic vehicle; (d) LoS scenario with nearby operators.
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industrial working scenarios. In general, four scenarios have
been employed to evaluate the proposed algorithm:

The results shown in Fig.9 (a) are from strict LoS work-
ing scenario without any nearby moving reflectors, which
lead to the almost static s shown with the dot lines in the
upper area and σ shown with the solid lines in the lower
area. As there is no ground truth in the field experiment,
the similarity with DA-all results can be roughly employed
to evaluate the performance of DA-pilot, GMM, and RMM.
It is clear that all algorithms show good fitting performance
with s, while strong jitters can be noticed in the estimated
σ with DA-pilot method and GMM method. The high peak
in the GMM estimated σ means a mis-converged estima-
tion occurring in a random pattern. Similar as the numerical
experiment shown in section IV.A, the estimated s and σ will
be utilized to further calculate K , the qualitative RMSEs of
estimated K have been provided in Table 1. As expected,
RMM method achieves the best RMSE of 104.8260, while
GMM and DA-pilot achieve 428.0779 and 998.7046 respec-
tively. The performance rank of DA-pilot is slightly different
with numerical results shown in section IV.A, which may due
to the decreased pilot samples in the field experiments(i.e.,
same 1% pilot ratio with less samples per frame in the field
experiments). This can also be inferred from the higher jitter
in Fig.9 (a).

TABLE 1. The RMSE of K of evaluated algorithms in typical scenarios.

The results shown in Fig.9 (b) are from the LoS scenario
with normal working rolling mill, i.e., the product line was
in the working state with running components as well as
moving crane, vehicles and operators. As a result, the tem-
poral fading effect with both varying s and σ can be noticed.
The estimation performances with this varying scenario are
still satisfied, except more mis-converge events occurred,
i.e., 12 times for GMM method and 2 times for RMM
method. Still, RMM shows the best performance with RMSE
of 187.7393, while the RMSEs for GMM and DA-pilot are
264.9381 and 376.1614 respectively.

The results shown in Fig.9 (c) are from the LoS scenario
with a logistical vehicle moving around acting as a strong
reflector. As this vehicle was asked to moving close to the
transmission pair, the deep fading effects can be noticed,
where all estimation method show biased estimation in σ
around frame index of 600. The proposed RMMmethod still
shows the best performance in this challenge scenario, i.e.
the RMSE of 70.1969, while 237.5179 for GMMmethod and
251.4746 for DA-pilot method.

The results shown in Fig.9 (d) are from the LoS sce-
nario with one operator passing by the transmission pair.
Due to the slow speed and low reflection ratio, this scenario
shows an almost continuously decreasing pattern. Similar

as previous three scenarios, the RMM method achieves the
best performance with 230.3929 RMSE while GMMmethod
achieves 461.5084 RMSE and DA-pilot method achieves
886.1513 RMSE.

Without any doubt, the RMM method shows the closest
performances with DA-all in all four scenarios as well as the
best qualitative RMSE results, which demonstrate its appli-
cable in different channel scenarios. The GMM and DA-pilot
algorithm show not only bias but also high jitter in all four
scenarios, which may lead to significant mis-understanding
of the link quality. It may also worth to mention that the
common iteration number for GMM in the experiments is
5 while 2 for RMM. Without any doubt, these field exper-
iments further validate the efficiency of proposed RMM to
enable its wider application.

V. CONCLUSION AND FUTURE WORKS
This paper has proposed a novel general method to estimate
the Rician K factor without data-aid requirement. The prob-
lem was characterized as a GMM estimation with a priori
information of modulation scheme. Then the DoFs in GMM
estimation has been significantly decreased from 7M to 3,
i.e. the fading can only affect the scale of specular compo-
nent s, the variation σ , and the rotation φ0. Consequently,
the EM algorithm to estimate GMMparameters wasmodified
to approach the optimized gradient search. Based on this
understanding, the 3 DoFs GMM can be further formulated
as an RMM based algorithm. Both numerical experiment and
field experiment demonstrated the near optimal accuracy of
the proposed algorithm with affordable computation cost.

It worths to note that, although this work was designed for
the temporal fading channel, the principle of the proposed
algorithm can be straightforwardly extended to more gen-
eral scenarios with the modification of Doppler effect to the
phase item following the similar derivation shown in [21].
The proposed algorithm can also be further incorporated
with Kalman filter or similar algorithms like in [9] to obtain
a predictive link quality estimator for wireless link in the
temporal fading environment, which has been believed to be
able to further promote the application of wireless industrial
networks and other similar applications.
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