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ABSTRACT This paper is concerned with the spectrum sensing problem for cognitive radio networks with
correlated receiving multiple antennas in the time-varying fading channel. We first consider the scenario that
all the antennas have the same noise variance and present a generalized real-valued weighted-covariance-
based detection (GRWCD) method. In particular, we derive the distribution of the GRWCD statistic under
the null hypothesis, which allows us to develop the theoretical decision threshold for a given false alarm
probability. Besides, we derive the distribution of the GRWCD statistic under the alternative hypothesis,
which enables us to provide a mathematical expression for the detection probability as well as the theoretical
receiver operating characteristic. Meanwhile, we consider a more general scenario of unequal per-antenna
noise variances and present a modified GRWCDmethod as well as the theoretical expressions of the decision
threshold. The simulation results are provided to verify the accuracy of the derived results and show that the
proposed two methods are capable of providing performance improvement over several advanced methods
in the literature.

INDEX TERMS Spectrum sensing, correlated receiving multiple antennas, time-varying fading channel,
cognitive radio network.

I. INTRODUCTION
Cognitive radio (CR) based communication networks have
been put forward as a promising paradigm for designing
the upcoming fifth-generation wireless networks, due to
its unprecedented advantage in spectral efficiency [1]–[4].
The key concept of CR is to allow unlicensed secondary
users (SUs) to opportunistically access the licensed bands
originally allocated to the licensed primary users (PUs), when
no communication activity is needed for PUs. To use the
licensed bands scrupulously without interfering the PUs,
the SUs should firstly probe the activity states of PUs
within a given sensing time through spectrum sensing (SS)
procedure.

Nowadays, there have been many detection meth-
ods for spectrum sensing [5]–[7]. Traditional methods
include energy detection (ED) [8]–[12], matched filter
detection (MFD) [13]–[15] and cyclostationarity feature
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detection (CFD) [16]–[19]. Each method may be preferable
compared with others, depending on the available resources,
information and the environment conditions. For example,
when the SU has prior information regarding the PU’s signal
characteristics, the MFD is considered to be an optimal
coherent detection method for detecting the PU. However,
obtaining prior information about the transmitted signal
is unworkable in most practical applications. If there is
a priori knowledge available regarding the cyclic frequency
of the PU’s signal, the CFD is a popular choice for SS.
However, its performance heavily relies on the accurate
knowledge of cyclic frequency, a small cyclic frequency
offset can lead to significant performance degradation. Also,
the CFD method suffers a high computational complexity,
which hinders its application in real time detection. Unlike
the above two detection methods, ED does not require any
priori information about the PU’s signal and moreover, it has
the lowest computational complexity among these methods.
Despite its advantages, howbeit ED requires the exact knowl-
edge of noise variance to calculate the decision threshold.
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Otherwise, it suffers from severe performance degradation
in the presence of noise uncertainty due to the SNR wall
phenomenon [20].

When multiple antennas are available at the SU, the detec-
tors can overcome the aforementioned limitations, such as
the maximum-minimum eigenvalue (MME) [21], covari-
ance absolute value (CAV) [22], covariance Frobenius
norm (CFN) [22], arithmetic-to-geometricmean (AGM) [23],
scaled largest eigenvalue (SLE) [24], locally most power-
ful invariant test (LMPIT) [25], Hadamard ratio test [26],
volume-based detection (VD) [27], [28] and eigenvalue
moment ratio (EMR) [29] methods have been proposed
without any prior knowledge and can deliver desirable
performance. Whereas, these detection methods focused
mainly on time-invariant channels (i.e., channel state remains
unchanged during a sensing period), and may not perform
well in time-varying channels. Stemming from this point,
Jin et al. [30] studied the SS problem for CR network with
correlated receiving multiple antennas in a time-varying
fading channel, and based on the CAV method, a weighted-
covariance-based detection (WCD) method was proposed
in their work. Moreover, they showed that the WCD
method can achieve significant performance improvements
in comparison with the CAV and CFN methods. However,
the WCD method involves huge complex computations. Fur-
thermore, although an expression for the detection probability
was presented in [30], but was not given in closed form.
Toward this end, in our earlier work [31], we converted
the complex-valued SS problem described by [30] into the
real-valued SS problem and proposed a reduced-complexity
real-valued WCD (RWCD) method. Moreover, we derived
an asymptotic closed-form expression of the detection prob-
ability to gain further insights into the RWCD method and
demonstrated that the RWCD method achieved almost the
same performance as the original WCD method, but with
a lower computational cost. However, the RWCD method
is derived under the assumption of uniform noise variances
across the antennas, in practice, such an assumption may not
hold because the SU receivers are usually uncalibrated.

Motivated by the above researches, this paper focuses on
the SS problem for CR networks with correlated receiving
multiple antennas in time-varying fading channels. To sum
up, the main contribution of this work is twofold.
1) We first consider the scenario where the noise at all

antennas have the same variance, and develop a general-
ized RWCD (GRWCD) method for such a scenario. The
distributions of the GRWCD statistic under the null and
alternate hypotheses are first derived. With the derived
distributions, we present the theoretical expressions of
the decision threshold and detection probability for the
proposed method, which can help bring insights to the
theoretical findings. Also, we show that the RWCD
method given in [31] can be regarded as a special case
of our proposed one.

2) In particular, we consider the scenario that the noise
variances at all antennas are non-uniform, which was

not considered in our earlier work [31], and a modified
GRWCD (MGRWCD) method is proposed.

Finally, experimental results reveal that the proposed two
methods are capable of providing performance improvement
over several advanced methods in the literature, including the
RWCD method.
Notation: The operations ∼, | · |, (·)∗ and (·)T indicate

‘‘distributed as’’, absolute value, conjugate operator and
vector transpose, respectively. E[x] and D[x] = E[x2] −
E2[x] represent the statistical expectation and variance of
random variable x, respectively. N (µr , σ 2) denotes the real
Gaussian distribution with mean µr and covariance σ 2,
CN (µc, 6) stands for the circularly symmetric complex
Gaussian (CSCG) distribution with mean µc and covari-
ance 6. IM and 0M are the M × M identity matrix and
M × 1 zero column vector, respectively. amn denotes the
(m, n)th element of a matrix A. The positive odd integer and
nonnegative even integer are denoted by O+ and E0, respec-
tively. 0(·) and 8(·, ·; ·) are the gamma and Kummer’s con-
fluent hypergeometric functions [32], respectively. The real
and imaginary parts of e are denoted by er and ei, respectively.
diag{x} denote the diagonal matrix with diagonal elements
from vector x.

II. SYSTEM MODEL
A. PROBLEM DESCRIPTION
We consider a CR network that consists of a one-antenna PU
and an M -antenna SU operating over time-varying Rayleigh
fading channels, in which SS is performed by the SU to
identify the presence or absence of the PU’s signal in a given
spectrum band. Let denote the hypotheses of the idleness and
activeness of the PU by H0 and H1, respectively. Assume
that each antenna collects K samples within a sensing time,
the received signal vector r(k) ∈ CM×1 at the SU can then be
expressed by{

H0 : r(k) = w(k),
H1 : r(k) = h(k)s(k)+ w(k),

k = 1, . . . ,K , (1)

where k is the time index, s(k) ∼ CN (0, σ 2
s ) is the trans-

mitted signal from the PU, and h(k) ∼ CN (0M , σ 2
h8)

denotes the Rayleigh fading channel vector from the PU to
the SU, in which 8 and σ 2

h denote the receive-side corre-
lation matrix and channel power, respectively. Additionally,
w(k) ∈ CM×1 is the additive CSCG noise vector with
mean zero and unknown diagonal covariance matrix Rw =

diag{σ 2
w1, σ

2
w2, . . . , σ

2
wM }. IfRw = σ

2
wIM , the noise variances

at all antennas are uniform, otherwise non-uniform. Without
loss of generality, s(k), h(k) and w(k) are assumed to be
statistically independent of each other. The received signal-

to-noise ratio (SNR) in power ratio is defined as
Mσ 2s σ

2
h

tr(Rw)
,

where tr(Rw) denote the trace of Rw.

B. CHANNEL MODEL
In this work, we consider the spatial correlation between
antenna elements at SU, and the exponential model is
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adopted here to describe such spatial correlation. As a result,
the (m, n)th element of the receive-side correlation matrix 8
is given by [33]

8mn =

{
ρn−m, m ≤ n
8∗nm, m > n,

m, n = 1, . . . ,M , (2)

where ρ (0 ≤ ρ ≤ 1) is a real-valued correlation
coefficient between two neighboring antennas. With this,
the spatially correlated Rayleigh fading channel h(k) can be
modeled as [31]

h(k) = 81/2h̃(k), k = 1, . . . ,K , (3)

where 81/2 is the matrix square root of 8, and h̃(k) ∼
CN (0M , IM ) is an independent and identically distributed
(i.i.d.) CSCG random vector.

III. GENERALIZED REAL-VALUED WEIGHTED
COVARIANCE-BASED DETECTOR
A. SUGGESTED METHOD I: GRWCD
The method presented in this subsection assume that the
noises at all antennas have the same variance σ 2

w (i.e., σ 2
w1 =

σ 2
w2 = . . . = σ 2

wM = σ 2
w). In our previous work [31],

the complex-valued SS problem described by (1) were con-
verted into real-valued SS problem, as given by

H0 :

{
rr (k) = wr (k),
ri(k) = wi(k);

H1 :

{
rr (k) = hr (k)sr (k)− hi(k)si(k)+ wr (k),
ri(k) = hr (k)si(k)+ hi(k)sr (k)+ wi(k).

(4)

where rr (k) and ri(k) are the real and imaginary parts
of the received signal vector r(k), respectively. Under H0,
rr (k) and ri(k) are independent, both have zero mean and
covariance matrix (σ 2

w/2)IM . While, under H1, rr (k) and
ri(k) are uncorrelated, both have zero mean and covariance
matrix (σ 2

s σ
2
h /2)8 + (σ 2

w/2)IM . Notice form the above that
the covariance matrices of rr (k) and ri(k) differ between
the hypotheses H0 and H1, which can be used to detect
the presence of PU’s signals. To lay the groundwork for the
proposed method, in the following, we will first recall the
RWCD method [31] for the SS problem in (4).

In [31], the sample covariance matrix from the K received
signal vectors is first computed, as given by

Â =
1
2K

K∑
k=1

[
rr (k)

(
rr (k)

)T
+ ri(k)

(
ri(k)

)T]
. (5)

Then, the estimated power of the observed signal is com-
puted as follows:

σ̂ 2
w =

1
M

∑
m=n

âmn, (6)

where âmn is the (m, n)th element of Â.

Later, the estimated elements a′mn(m < n) and weight
coefficients wl(l = 1, . . . ,M − 1) are computed as

a′mn =
âmn
σ̂ 2
w
, (7)

wl =
∑

n−m=l

a′mn. (8)

Finally, the test statistic and decision rule of the RWCD are
given as follows:

TR =
M−1∑
l=1

(
wl

∑
n−m=l

|a′mn|

)
H1
≷
H0

λR, (9)

where λR is the decision threshold of the RWCD method.
By adding a power operation p (0 < p ≤ 1) on |a′mn|,

we now propose a GRWCD method as follow:

TG ,
M−1∑
l=1

(
wl

∑
n−m=l

|a′mn|
p

)
H1
≷
H0

λG, (10)

where TG and λG are the test statistic and decision thresh-
old of the proposed GRWCD method, respectively. Careful
inspection of (15) reveals that the RWCD method in [31] can
be viewed as a special case our proposed one when p = 1.
Moreover, as we will shown in our simulations, the proposed
GRWCD method is capable of outperforming the RWCD
method.

B. SUGGESTED METHOD II: MGRWCD
It can be observed that, for the RWCD andGRWCDmethods,
the estimated elements a′mn in (7) are based on the assumption
that the noise variances at all antennas must be equal, other-
wise, they cannot offer a high sensing performance. In this
subsection, to relax such a assumption, we consider a more
general scenario that the noises at different antennas have
unequal variances (i.e., σ 2

w1 6= σ 2
w2 6= . . . 6= σ 2

wM ), and
present an MGRWCD method here.
Step 1: The first step is the same as that in (5);
Step 2: Compute the square root of the estimated power âmm

at the mth antenna via

σ̂wm =
√
âmm, m = 1, . . . ,M . (11)

Step 3: Compute the estimated elements c′mn(m < n) via

c′mn =
âmn

σ̂wmσ̂wn
(12)

Step 4: Compute the weight coefficients τl(l = 1, . . . ,
M − 1) via

τl =
∑

n−m=l

c′mn (13)

Step 5: After the above four steps, the test statistic and deci-
sion rule of the MGRWCD method are given by

TM ,
M−1∑
l=1

(
τl

∑
n−m=l

|c′mn|

)
H1
≷
H0

λM , (14)

where λM is the decision threshold of the MGRWCD
method.
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IV. PERFORMANCE ANALYSIS
For facilitating the development of the theoretical analysis,
the following Proposition 1 is introduced.
Proposition 1: Suppose that η ∼ N (µ, σ 2) is a

real Gaussian random variable with mean µ and vari-
ance σ 2. Then, for a nonnegative integer q and real number
ξ (0 < ξ ≤ 1), the expectation of ηq|η|ξ is given as follow.
1): If q ∈ O+,

E
[
ηq|η|ξ

]
= µσ ξ+q−12

1−ξ−q
2 e−

µ2

2σ2
0(ξ + q+ 1)

0( ξ+q+12 )

×8
(ξ + q+ 2

2
,
3
2
;
µ2

2σ 2

)
.

2): If q ∈ E0,

E
[
ηq|η|ξ

]
= σ ξ+q2

ξ+q
2
0( ξ+q+12 )
√
π

8
(
−
ξ + q
2

,
1
2
;−

µ2

2σ 2

)
.

Proof: Case 1: For a positive odd integer q, we have

E
[
ηq|η|ξ

]
=

1
√
2πσ 2

∫
∞

−∞

ηq|η|ξ e−
(η−µ)2

2σ2 dη

=
2
ξ+q
2 σ ξ+q
√
π

e−
µ2

2σ2

[ ∫
∞

0
ηξ+qe−η

2
+

√
2ηµ
σ dη︸ ︷︷ ︸

I1

−

∫
∞

0
ηξ+qe−η

2
−

√
2ηµ
σ dη︸ ︷︷ ︸

I2

]
. (15)

Solving the integral terms I1 and I2 with the aid
of [32, eq.(20)]∫
∞

0
ηνe−η

2
−ηγ dη = 2−(ν+1)/20(ν + 1)eγ

2/8D−ν−1
( γ
√
2

)
,

where

Dθ (z) , 2θ/2e−z
2/4
[ √π
0( 1−θ2 )

8
(
−
θ

2
,
1
2
;
z2

2

)
−

√
2πz

0(− θ2 )
8
(1− θ

2
,
3
2
;
z2

2

)]
.

Then, after a lengthy mathematical manipulations, we attain
the desired expression for E[ηq|η|ξ ].
Case 2: For a nonnegative even integer q, referring to the

fact that E
[
ηq|η|ξ

]
= E

[
|η|ξ+q

]
, we have [32]

E
[
ηq|η|ξ

]
= E

[
|η|ξ+q

]
= σ ξ+q2

ξ+q
2
0( ξ+q+12 )
√
π

×8
(
−
ξ + q
2

,
1
2
;−

µ2

2σ 2

)
.

(16)

To this end, we complete the proof of Proposition 1.

A. PERFORMANCE OF TG
Based on the assumption that the noise variances are equal,
we will derive the distributions of the GRWCD statistic under
the null and alternate hypotheses in the following.
Lemma 1: For sufficiently large K andM , the distribution

of the test statistic TG under the hypothesisH0 can be approx-
imated as follows:

TG|H0 ∼ N
(
0, σ 2

0

)
, (17)

where σ 2
0 is given by

σ 2
0 =

1
2
M (M − 1)b5 +

2
3
M (M − 1)(M − 2)b4b1

+
1
4
M (M − 1)(M − 2)(M − 3)b3b21

+
1
3
M (M − 1)(M − 2)b3b2, (18)

in which b1 =
√

1
πKp0(

p+1
2 ), b2 =

√
1

πK2p0(
2p+1
2 ), b3 =

1
2K , b4 =

√
1

πKp+20(
p+3
2 ) and b5 =

√
1

πK2p+20(
2p+3
2 ).

Proof: For convenience of analysis, we let Tl =
wl

∑
|n−m|=l

|a′mn|
p. Accordingly, the test statistic TG can be

rewritten as TG =
∑M−1

l=1 Tl . Because the random vari-

ables {a′mn,m < n} ∼ N
(
0, 1

2K

)
under hypothesis H0

are independent [31]. Consequently, {Tl, l = 1, . . . ,M −
1} are also independent. Therefore, we have E[TG|H0] =∑M−1

l=1 E[Tl |H0] and D[TG|H0] =
∑M−1

l=1 D[Tl |H0]. With
the Proposition 1, we can derive the expectations of Tl and T 2

l
as follow:

E[Tl |H0] = E

wl ∑
|n−m|=l

|a′mn|
p


= E

 ∑
|n−m|=l

a′mn

 ∑
|n−m|=l

|a′mn|
p


= 0 (19)

and

E
[
T 2
l |H0

]
= E

w2
l

( ∑
n−m=l

|a′mn|
p

)2


= E

( ∑
n−m=l

a′mn

)2 ( ∑
n−m=l

|a′mn|
p

)2


= E

 ∑
n−m=l

a′mn
2

( ∑
n−m=l

|a′mn|
p

)2


= (M − l)E

a′mn2
( ∑
n−m=l

|a′mn|
p

)2
. (20)
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Combing (19) and (20) yields

D[Tl |H0] = (M − l)× [b5 + 2(M − l − 1)b4b1
+ (M − l − 1)(M − l − 2)b3b21
+ (M − l − 1)b3b2], (21)

where b1 =
√

1
πKp0(

p+1
2 ), b2 =

√
1

πK2p0(
2p+1
2 ), b3 = 1

2K ,

b4 =
√

1
πKp+20(

p+3
2 ) and b5 =

√
1

πK2p+20(
2p+3
2 ).

As a consequence, the variance of TG|H0 is given by

σ 2
0 =

M−1∑
l=1

D[Tl |H0]

=
1
2
M (M − 1)b5 +

2
3
M (M − 1)(M − 2)b4b1

+
1
4
M (M − 1)(M − 2)(M − 3)b3b21

+
1
3
M (M − 1)(M − 2)b3b2. (22)

Thus, the proof is complete.
With a given false alarm probability Pf , the decision

threshold λG can be theoretically calculated by

λG = σ0Q−1
(
Pf
)
, (23)

in which σ0 =
√
σ 2
0 denotes the standard deviation, Q−1(·) is

the inverse function of Q(·) and

Q(x) =
1
√
2π

∫
∞

x
e−t

2/2dt. (24)

FIGURE 1. Theoretical decision threshold versus simulated decision
threshold for the proposed GRWCD method, where K = 200 and
M = {5,8} (a) p = 1/4; (b) p = 1/2.

In Fig. 1, we compare the theoretical decision threshold
derived in (23) with the simulated decision threshold. It can
be seen from Fig. 1 that the theoretical results track simulated
results quite well, which confirms our analysis.

Detection Probability: In general, it is difficult to derive
an accurate expression for the detection probability under the
hypothesis H1 since the random variables

{a′mn,m < n} ∼ N
(

ρn−m

1+ 1
SNR

,
1
2K

)
(25)

are no longer independent [31]. Howbeit these ran-
dom variables {a′mn,m < n} under at low SNR are

approximately independent. By applying the central limit
theorem, we have the following lemma 2.
Lemma 2: Under the hypothesis H1, with sufficiently

large K and M , the statistic TG at low SNR regime approxi-
mately follows the Gaussian distribution, i.e.,

TG|H1 ∼ N
(
µTG|H1 , σ

2
TG|H1

)
, (26)

where

µTG|H1 = E[TG|H1] =
M−1∑
l=1

E[Tl |H1], (27)

σ 2
TG|H1

= D[TG|H1] =
M−1∑
l=1

D[Tl |H1], (28)

in which Tl |H1 = wl
∑

n−m=l
|a′mn|

p and

E[Tl |H1]

= (M − l)
(
µlσ

p
1 2
−p
2 e
−

µ2l
2σ21
0(p+ 2)

0( p+22 )
8
(p+ 3

2
,
3
2
;
µ2
l

2σ 2
1

)
+ (M − l − 1)µlσ

p
1 2

p
2
0( p+12 )
√
π

8
(
−
p
2
,
1
2
;−

µ2
l

2σ 2
1

))
with µl =

ρn−m

1+ 1
SNR

and σ1 =
√

1
2K . Moreover,

D[Tl |H1]

= (M − l)×
(
gl1 + (M − l − 1)(gl2 + 2gl3 + 2gl4

+ 2gl5)+ (M − l − 1)(M − l − 2)(gl6 + gl7

+ 4gl8)+ (M − l − 1)(M − l − 2)(M − l − 3)gl9
)

−E2[Tl |H1],

where

gl1 = σ
2p+2
1 2

2p+2
2
0( 2p+32 )
√
π

8
(
−

2p+ 2
2

,
1
2
;−

µ2
l

2σ 2
1

)
,

gl2 = (µ2
l + σ

2
1 )

(
σ
2p
1 2

2p
2
0( 2p+12 )
√
π

8
(
−

2p
2
,
1
2
;−

µ2
l

2σ 2
1

))
,

gl3 =
(
µlσ

p
1 2
−p
2 e
−

µ2l
2σ21
0(p+ 2)

0( p+22 )
8
(p+ 3

2
,
3
2
;
µ2
l

2σ 2
1

))2

,

gl4 = σ
2p+2
1 2

2p+2
2
0( p+32 )
√
π

8
(
−
p+ 2
2

,
1
2
;−

µ2
l

2σ 2
1

)
×
0( p+12 )
√
π

8
(
−
p
2
,
1
2
;−

µ2
l

2σ 2
1

)
,

gl5 = µ2
l σ

2p
1 2−pe

−
µ2l
2σ21
0(2p+ 2)

0( 2p+22 )
8
(2p+ 3

2
,
3
2
;
µ2
l

2σ 2
1

)
,

gl6 = (µ2
l + σ

2
1 )
(
σ
p
1 2

p
2
0( p+12 )
√
π

8
(
−
p
2
,
1
2
;−

µ2
l

2σ 2
1

))2

,

gl7 = µ2
l σ

2p
1 2p

0( 2p+12 )
√
π

8
(
− p,

1
2
;−

µ2
l

2σ 2
1

)
,
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gl8 = µ2
l σ

2p
1 e
−

µ2l
2σ21
0(p+ 2)

0( p+22 )
8
(p+ 3

2
,
3
2
;
µ2
l

2σ 2
1

)
×
0( p+12 )
√
π

8
(
−
p
2
,
1
2
;−

µ2
l

2σ 2
1

)
,

gl9 = µ2
l

(
σ
p
1 2

p
2
0( p+12 )
√
π

8
(
−
p
2
,
1
2
;−

µ2
l

2σ 2
1

))2

.

Proof: See Appendix.
Then, based on (26), the detection probability Pd for the

proposed GRWCD method is obtained as

Pd = Q
(
λG − µTG|H1

σTG|H1

)
. (29)

B. PERFORMANCE OF TM
Based on the assumption that the noises at all antennas have
different variances, the goal of this subsection is to derive
the distribution of the test statistic TM |H0, as given by the
following Lemma 3.
Lemma 3: For sufficiently large K andM , the distribution

of the test statistic TM under the hypothesisH0 can be approx-
imated as follows:

TM |H0 ∼ N
(
0, σ 2

0

)
, (30)

where σ 2
0 is defined in (18).

Proof: Under the assumption of unequal per-antenna
noise variances, we let rrm(k) and r

r
n (k) denote the mth and

nth element of the received signal vector rr (k), respectively.
Conditioned on H0,

{
rrm(k) = wrm(k)

}
∼ N (0, σ

2
wm
2 ) and{

rrn (k) = wrn(k)
}
∼ N (0, σ

2
wn
2 ). Consequently, we have

E
[
wrm(k)w

r
n(k)

]
=
σ 2
wm

2
δ(m− n) (31)

and

E
[
wrm(k)w

r
n(k)w

r
m′ (k)w

r
n′ (k)

]
= E

[
wrm(k)w

r
n(k)

]
E
[
wrm′ (k)w

r
n′ (k)

]
+ E

[
wrm(k)w

r
m′ (k)

]
×E

[
wrn(k)w

r
n′ (k)

]
+ E

[
wrm(k)w

r
n′ (k)

]
E
[
wrm′ (k)w

r
n(k)

]
After some manipulations, we obtain

E
[
wrm(k)w

r
n(k)w

r
m′ (k)w

r
n′ (k)

]

=


3
(
σ 2
wm

2

)2

, n = n′ = m′ = m;

σ 2
wmσ

2
wn

4
, (m = m′) 6= (n = n′);

0, others.

(32)

As a result, for m 6= n, we obtain

E
[
rrm(k)r

r
n (k)

]
=
σ 2
wm

2
δ(m− n), (33)

D[rrm(k)r
r
n (k)] =

σ 2
wmσ

2
wn

4
. (34)

Similarly, we also have

E
[
r im(k)r

i
n(k)

]
=
σ 2
wm

2
δ(m− n), (35)

D[r im(k)r
i
n(k)] =

σ 2
wmσ

2
wn

4
. (36)

Hence, for m 6= n, according to central limit theorem (CLT),
we have

âmn =
1
2K

K∑
k=1

[
rrm(k)r

r
n (k)+ r

i
m(k)r

i
n(k)

]

∼ N

0,
σ 2wmσ

2
wn

4

2K

 (37)

Then,1 we have

c′mn ∼ N
(
0,

1
2K

)
, m 6= n. (38)

It can be found that, when the number of samples K is
large enough, the random variables {a′mn,m < n} and
{c′mn,m < n} under hypothesisH0 have the same distribution
N
(
0, 1

2K

)
. Therefore, the rest of the proof is the same as that

in Lemma 1. Consequently, for sufficiently large K and M ,
we have TM |H0 ∼ N

(
0, σ 2

0

)
.

FIGURE 2. Theoretical decision threshold versus simulated decision
threshold for the proposed MGRWCD method, where K = 200 and
M = {5,8} (a) p = 1/4; (b) p = 1/2.

As a result, the decision threshold λM of the MGRWCD
method can be calculated by using (23). In Fig. 2, we depict
the theoretical decision threshold versus simulated decision
threshold for the proposed MGRWCD method, where the
noise variances are set as [0 − 1 1.2 − 0.8 0.6]dB for
the case of M = 5, while the noise variances are set as
[−1 0 1.5 −0.5 −1.8 1 −0.6 1.4]dB for the case ofM = 8.
It can be clearly seen that the simulated thresholds match well
with theoretical results, thus validating our analysis.

V. NUMERICAL RESULTS
With the aforementioned mathematical derivations and theo-
retical analysis, we present experimental results to evaluate
the detection performance of the proposed GRWCD and
MGRWCD methods in this section.

1It is readily to verify that, {σ̂ 2wm/σ
2
wm}

M
m=1 ∼ N

(
1, 1

K

)
, where σ 2wm

denotes the true noise power at the mth antenna. When K → ∞, σ 2wm can
be approximately replaced by σ̂ 2wm.

34378 VOLUME 7, 2019



A.-Z. Chen et al.: Generalized Real-Valued Weighted Covariance-Based Detection Methods

A. THE PERFORMANCE OF GRWCD METHOD
Fig. 3(a)-(d) show the theoretical (green ‘‘o’’ points) and
simulated (solid line) receiver operating characteristic (ROC)
curves of ‘‘p = 1/4, M = 5’’, ‘‘p = 1/4, M = 8’’,
‘‘p = 1/2, M = 5’’ and ‘‘p = 1/2, M = 8’’ settings,
respectively, in which ρ = 0.5, K = 400 and SNR =
{−17,−15,−13,−11}dB. From Fig. 3, we can see that the
results obtained by Monte Carlo simulations are quite tight
with the theoretical ones in the low SNR regime, validating
the theoretical analysis that has been derived in (29).

FIGURE 3. Theoretical ROC versus MC ROC, where K = 400 and
SNR = {−17,−15,−13,−11}dB: (a) p = 1/4, M = 5; (b) p = 1/4, M = 8;
(c) p = 1/2, M = 5; (d) p = 1/2, M = 8.

FIGURE 4. Pd versus SNR at Pf = 0.05, where K = 500: (a) ρ = 0.4,
M = 5; (b) ρ = 0.8, M = 7.

Performance Comparisons: Now, we perform numerical
simulations to compare the performance of the following
five methods: our proposed GRWCD with p = {1/4, 1/2},
RWCD, EMR, VD and CAV. Considering the comparison
fairness, the decision thresholds and false alarm probabilities
of all the considered methods are obtained by simulation,
each result is obtained by averaging over 105 Monte Carlo
runs. Fig. 4 shows the detection probability Pd against SNR
for all compared methods, under ‘‘ρ = 0.4, M = 5’’
and ‘‘ρ = 0.8, M = 7’’, respectively. The following
observations can be made: 1) The proposed GRWCDmethod
deliver the best performance among these compared meth-
ods in all scenarios. 2) The detection probabilities of all

FIGURE 5. (a) Pd versus K at SNR = −15 dB, where M = 5, ρ = 0.6 and
Pf = 0.05; (b) Pd versus p at SNR = −14 dB, where M = 5,
K = {400,500,600}, ρ = 0.6 and Pf = 0.05.

the considered methods increase as the SNR increases. This
is because the power of h(k)s(k) increases when SNR is
increased, leading to substantial performance improvement.
3) By comparing Figs. 4(a) and 4(b), we can notice that the
performance of all methods are improved by increasing the
correlation parameter ρ. This is because all methods utilize
the correlation between receive antennas to distinguish the
primary signal from noise, consequently, the increase of ρ
brings performance improvements to all considered methods.
To further illustrate the performance of the proposed method,
Fig.5 (a) depicts the detection probabilities of all compared
methods with respect to the number of samples K , where
M = 5, Pf = 0.05, ρ = 0.6, SNR = −15 dB and K varies
from 400 to 1800. Notice from Fig. 5 (a) that, the performance
of all methods improves as K increases, and our proposed
method offer the best performance among all. In particular,
the proposedmethod always outperforms the RWCDmethod.
The reason may be that, in the low SNR regime, a power
operation p (0 < p ≤ 1) can understate the signal component
in the received samples when the PU is present.

The impact of the power operation p on the behavior of
the proposed detector is shown in Fig. 5 (b), where Pfa =
0.05, M = 5, K = {400, 500, 600}, ρ = 0.6, SNR =
−14 dB, and p varies from 0.1 to 1. As we can see that,
in general, the performance of the proposed method degrades
as p increases.

B. THE PERFORMANCE OF MGRWCD METHOD
In this subsection, we compare the proposed MGRWCD
method with the CAV method [22], the LMPIT method [25],
the Hadamard method [26], the VD method [28], and the
RWCD method [31] in terms of the detection probability.

Figs. 6(a)-6(d) depict the detection probability Pd versus
SNR for all compared methods with Pf = 0.05, where the
noise variances are [0 −1 1.2 −0.8 0.6]dB and [−1 0 1.5 −
0.5−1.8 1−0.6 1.4]dB in Figs. 6(a)-6(b) and Figs. 6(c)-6(d),
respectively. As expected, the MGRWCD method signifi-
cantly outperforms the RWCDmethod. The reason is that the
RWCD method is derived under the assumption of uniform
noise variances across the antennas. Thus its performance can
degrade under such non-uniform noise conditions. Moreover,
our method, MGRWCD, significantly outperforms the other
methods.
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FIGURE 6. Pd versus SNR at Pf = 0.05, where: (a) ρ = 0.5, M = 5 and
K = 300; (b) ρ = 0.5, M = 5 and K = 600; (c) ρ = 0.8, M = 8 and
K = 300; (d) ρ = 0.8, M = 8 and K = 600.

VI. CONCLUSION
In this work, by adding a power operation p on the RWCD
method, we develop two generalized real-valued weighted-
covariance-based detection (GRWCD) methods for cognitive
radio network with correlated receiving multiple antennas.
In addition, we also derive the theoretical expression of the
decision threshold for the proposed two methods, and the
accuracy of the derived results are supported by simula-
tions. Numerical results reveal that the proposed twomethods
can attain performance improvement compared with several
advanced methods in the literature.

APPENDIX
PROOF OF THE LEMMA 2
Following a similar derivation procedure given in [31],
we derive the expectation of T 2

l |H1 as follows.

E
[
T 2
l |H1

]
= E

( ∑
n−m=l

a′mn

)2 ( ∑
n−m=l

|a′mn|
p

)2


= E
[ ∑
n1−m1=l

a′m1n1

∑
n2−m2=l

a′m2n2

×

∑
n3−m3=l

|a′m3n3 |
p

∑
n4−m4=l

|a′m4n4 |
p
]
. (39)

Notice that the expression of∑
n1−m1=l

a′m1n1

∑
n2−m2=l

a′m2n2

∑
n3−m3=l

|a′m3n3 |
p

∑
n4−m4=l

|a′m4n4 |
p

includes (M − l)4 elements, each of them is the prod-
uct of four random variables, and these elements can
be divided into nine different groups according to their
statistical expectations. As proved in [31], {a′mn,m −

n = l} ∼ N
(

ρl

1+ 1
SNR
, 1
2K

)
. Thus, we have

{a′m1n1 , a
′
m2n2 , a

′
m3n3 , a

′
m4n4} ∼ N

(
ρl

1+ 1
SNR
, 1
2K

)
. For nota-

tional convenience, we let µl =
ρl

1+ 1
SNR

and σ1 =
√

1
2K in the

following.
The first group comprised ofM − l elements, and the four

random variables meet

a′m1n1 = a′m2n2 = a′m3n3 = a′m4n4 . (40)

By setting q = 2 and ξ = 2p in the Proposition 1, we obtain

gl1 = E
[
(a′m1n1 )

2
|a′m1n1 |

2p
]

= σ
2p+2
1 2

2p+2
2
0( 2p+32 )
√
π

8
(
−

2p+ 2
2

,
1
2
;−

µ2
l

2σ 2
1

)
.

The second group comprised of (M − l)(M − l−l) elements,
and the four random variables meet(

a′m1n1 = a′m2n2

)
6=
(
a′m3n3 = a′m4n4

)
. (41)

By setting q = 0, ξ = 2p in the Proposition 1, and using the
fact that E

[
(a′m1n1 )

2
]
= µ2

l + σ
2
1 , we have

gl2 = E
[
(a′m1n1 )

2
|a′m3n3 |

2p
]

= E
[
(a′m1n1 )

2
]
E
[
|a′m3n3 |

2p
]

= (µ2
l + σ

2
1 )×

(
σ
2p
1 2

2p
2
0( 2p+12 )
√
π

8
(
−

2p
2
,
1
2
;−

µ2
l

2σ 2
1

))

= (µ2
l + σ

2
1 )

(
σ
2p
1 2

2p
2
0( 2p+12 )
√
π

8
(
−

2p
2
,
1
2
;−

µ2
l

2σ 2
1

))
.

The third group comprised of 2(M − l)(M − l−l) elements,
and the four random variables meet(

a′m1n1 = a′m3n3

)
6=
(
a′m2n2 = a′m4n4

)
; (42)

or (
a′m1n1 = a′m4n4

)
6=
(
a′m2n2 = a′m3n3

)
. (43)

Then, by setting q = 1 and ξ = p in the Proposition 1, we get

gl3 = E
[
(a′m1n1 )a

′
m2n2 |a

′
m3n3 |

p
|a′m4n4 |

p]
= E2 [a′m1n1 |a

′
m1n1 |

p]
=

(
µlσ

p
1 2
−p
2 e
−

µ2l
2σ21
0(p+ 2)

0( p+22 )
8
(p+ 3

2
,
3
2
;
µ2
l

2σ 2
1

))2

.

The fourth group comprised of 2(M − l)(M − l−l) elements,
and the four random variables meet(

a′m1n1 = a′m2n2 = a′m3n3

)
6=
(
a′m4n4

)
; (44)

or (
a′m1n1 = a′m2n2 = a′m4n4

)
6=
(
a′m3n3

)
. (45)
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Then, letting q = 0, ξ = p + 2 and q = 0, ξ = p in the
Proposition 1, respectively, we have

gl4 = E
[
(a′m1n1 )a

′
m2n2 |a

′
m3n3 |

p
|a′m4n4 |

p]
= E

[
(a′m1n1 )

2
|a′m1n1 |

p
]
E
[
|a′m3n3 |

p]
= E

[
|a′m1n1 |

p+2
]
E
[
|a′m3n3 |

p]
=

(
σ
p+2
1 2

p+2
2
0( p+32 )
√
π

8
(
−
p+ 2
2

,
1
2
;−

µ2
l

2σ 2
1

))
×

(
σ
p
1 2

p
2
0( p+12 )
√
π

8
(
−
p
2
,
1
2
;−

µ2
l

2σ 2
1

))
= σ

2p+2
1 2

2p+2
2
0( p+32 )
√
π

8
(
−
p+ 2
2

,
1
2
;−

µ2
l

2σ 2
1

)
×
0( p+12 )
√
π

8
(
−
p
2
,
1
2
;−

µ2
l

2σ 2
1

)
.

The fifth group comprised of 2(M − l)(M − l−l) elements,
and the four random variables(

a′m1n1 = a′m3n3 = a′m4n4

)
6=
(
a′m2n2

)
; (46)

or (
a′m1n1

)
6=
(
a′m2n2 = a′m3n3 = a′m4n4

)
. (47)

Then, by setting q = 1 and ξ = 2p in the Proposition 1, and
using the fact that E

[
a′m2n2

]
= µl , we have

gl5 = E
[
a′m1n1a

′
m2n2 |a

′
m3n3 |

p
|a′m4n4 |

p]
= E

[
a′m1n1 |a

′
m1n1 |

2p
]
E
[
a′m2n2

]
= µlσ

2p
1 2

−2p
2 e
−

µ2l
2σ21
0(2p+ 2)

0( 2p+22 )
8
(2p+ 3

2
,
3
2
;
µ2
l

2σ 2
1

)
×µl

= µ2
l σ

2p
1 2−pe

−
µ2l
2σ21
0(2p+ 2)

0( 2p+22 )
8
(2p+ 3

2
,
3
2
;
µ2
l

2σ 2
1

)
.

The sixth group comprised of(M − l)(M − l−l)(M − l − 2)
elements, and the four random variables meet(

a′m1n1 = a′m2n2

)
6= a′m3n3 6= a′m4n4 . (48)

Using the fact that E
[
(a′m1n1 )

2
]
= µ2

l + σ
2
1 and letting q = 0

and ξ = p in the Proposition 1, we have

gl6 = E
[
a′m1n1a

′
m2n2 |a

′
m3n3 |

p
|a′m4n4 |

p]
= E

[
(a′m1n1 )

2
]
E
[
|a′m3n3 |

p]E [|a′m4n4 |
p]

= E
[
(a′m1n1 )

2
]
E2 [
|a′m3n3 |

p]
= (µ2

l + σ
2
1 )×

(
σ
p
1 2

p
2
0( p+12 )
√
π

8
(
−
p
2
,
1
2
;−

µ2
l

2σ 2
1

))2

= (µ2
l + σ

2
1 )
(
σ
p
1 2

p
2
0( p+12 )
√
π

8
(
−
p
2
,
1
2
;−

µ2
l

2σ 2
1

))2

.

The seventh group comprised of (M− l)(M− l−l)(M− l−2)
elements, and the four random variables meet

a′m1n1 6= a′m2n2 6=
(
a′m3n3 = a′m4n4

)
. (49)

Then, by setting q = 0, ξ = 2p in the Proposition 1, and
using the fact that E2

[
(a′m1n1 )

]
= µ2

l , we have

gl7 = E
[
a′m1n1a

′
m2n2 |a

′
m3n3 |

p
|a′m4n4 |

p]
= E2 [(a′m1n1 )

]
E
[
|a′m3n3 |

2p
]

= µ2
l × σ

2p
1 2

2p
2
0( 2p+12 )
√
π

8
(
−

2p
2
,
1
2
;−

µ2
l

2σ 2
1

)
= µ2

l σ
2p
1 2p

0( 2p+12 )
√
π

8
(
− p,

1
2
;−

µ2
l

2σ 2
1

)
.

The eighth group comprised of 4(M− l)(M− l−l)(M− l−2)
elements, and the four random variables meet(

a′m1n1 = a′m3n3

)
6= a′m2n2 6= a′m4n4;(

a′m1n1 = a′m4n4

)
6= a′m2n2 6= a′m3n3;

a′m1n1 6=
(
a′m2n2 = a′m3n3

)
6= a′m4n4; (50)

or

a′m1n1 6=
(
a′m2n2 = a′m4n4

)
6= a′m3n3 . (51)

Then, by setting q = 1, ξ = p and q = 0, ξ = p
in the Proposition 1, respectively, and using the fact that
E
[
a′m2n2

]
= µl , we have

gl8 = E
[
a′m1n1a

′
m2n2 |a

′
m3n3 |

p
|a′m4n4 |

p]
= E

[
a′m1n1 |a

′
m1n1 |

p]E [a′m2n2

]
E
[
|a′m4n4 |

p]
= µlσ

p
1 2
−p
2 e
−

µ2l
2σ21
0(p+ 2)

0( p+22 )
8
(p+ 3

2
,
3
2
;
µ2
l

2σ 2
1

)
× µl

× σ
p
1 2

p
2
0( p+12 )
√
π

8
(
−
p
2
,
1
2
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µ2

2σ 2
1

)
= µ2

l σ
2p
1 e
−

µ2l
2σ21
0(p+ 2)

0( p+22 )
8
(p+ 3

2
,
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2
;
µ2
l

2σ 2
1

)
×
0( p+12 )
√
π

8
(
−
p
2
,
1
2
;−

µ2
l

2σ 2
1

)
.

The ninth group comprised of (M − l)(M − l−l)(M − l −
2)(M − l − 3) elements, and the four random variables meet

a′m1n1 6= a′m2n2 6= a′m3n3 6= a′m4n4 . (52)

Using the fact that E
[
a′m1n1

]
= µl and E

[
a′m2n2

]
= µl , while

letting q = 0, ξ = p in the Proposition 1, we have
gl9 = E

[
a′m1n1a

′
m2n2 |a

′
m3n3 |

p
|a′m4n4 |

p]
= E

[
(a′m1n1 )

]
E
[
(a′m2n2 )

]
E
[
|a′m3n3 |

p]E [|a′m4n4 |
p]

= E2 [(a′m1n1 )
]
E2 [
|a′m3n3 |

p]
= µ2

l

(
σ
p
1 2

p
2
0( p+12 )
√
π

8
(
−
p
2
,
1
2
;−

µ2
l

2σ 2
1

))2

.

Thus, the variance of Tl underH1 is derived as

D[Tl |H1] = (M − l)

×

(
gl1+(M − l − 1)(gl2+2gl3 + 2gl4 + 2gl5)

+ (M − l − 1)(M − l − 2)(gl6 + gl7 + 4gl8)

+ (M − l − 1)(M − l − 2)(M − l − 3)gl9
)

−E2[Tl |H1]. (53)
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