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ABSTRACT This paper aims to bridge the gap between theory and practice by addressing a real-world
assembly line balancing problem (ALBP), where task times are stochastic and there are zoning constraints in
addition to the commonly known ALBP constraints. A mixed integer programming (MIP) model is proposed
for each of the straight and U-shaped assembly line configurations. The primary objective in both cases
is to minimize the number of stations; minimizing the maximum of stations’ meantime; and the stations’
time variance is considered as secondary objectives. Four different scenarios are discussed for each model,
with differences in the objective function. The models are validated by solving a real case taken from an
automobile manufacturing company and some standard test problems available in this paper. The results
indicate that both models are able to provide optimum solutions for problems of different sizes. The technique
for order preference by similarity to ideal solution (TOPSIS) is used to create reliable comparisons of the
different scenarios and valid analysis of the results. Finally, some insights regarding the selection of straight
and U-shaped layouts are provided.

INDEX TERMS Assembly line balancing, mathematical programming, stochastic, zoning constraints.

I. INTRODUCTION

Assembly lines have traditionally been used for mass and
lean production where one or more product(s) have to be
assembled in an arrangement of workplaces called stations,
which are usually connected by some kind of material han-
dling device (e.g., conveyors and cranes). The assembly line
balancing problem (ALBP) is a well-known decision problem
and has significant impact on the performance and produc-
tivity of assembly plants. ALBP aims to optimally distribute
the assembly tasks among assembly stations while optimizing
one or more objectives (e.g., number of workstations or cycle
time) without violating certain technological, operational,
and spatial constraints [1].

In principle, ALBPs are generally classified into two
groups depending on their assumptions, constants, and objec-
tives. The two groups are simple assembly line balancing
problems (SALBPs) and generalized assembly line balancing
problems (GALBPs) [2], [3].

The associate editor coordinating the review of this manuscript and
approving it for publication was Xiangtao Li.

SALBPs, which make some simplifying assumptions,
are often divided into two types in the literature [4], [5].
In SALBP-1 the cycle time (CT) is given and the aim is to
minimize the number of stations (M). SALBP-2 aims to min-
imize the CT and M is given. Readers interested in knowing
more about SALBP are referred to the comprehensive reviews
by Scholl and Becker [6] and Battaia and Dolgui [7].

GALBPs deal with more practical considerations and
additional constraints raised in the real-world such as
U-shaped assembly lines, variable task times, and zoning
constraints [8], [9]. In other words, all ALBPs that do not
belong to SALBP fall within the scope of GALBP. A good
classification of GALBPs can be found in Boysen er al. [10]
and Becker & Scholl [11].

ALBPs can be grouped into single-model and mixed-
model product types; in the former a single homogeneous
model is assembled, while in the latter more models are pro-
duced. In terms of task time, assembly lines can be classified
as deterministic or stochastic [12]. According to the litera-
ture [13]-[15], the most prominent type of ALBP is SALBP,
where task times are deterministic and only basic ALBP
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constraints are considered. Therefore, it is not surprising
that there is still a significant gap between existing research
and real-world applications. Both researchers and industrial
practitioners are now working toward solving GALBPs as
more realistic assembly line settings and features are taken
into consideration [7], [16], [17]. The current study is targeted
at dealing with GALBP by considering task time variations
and zoning constraints as two important characteristics of
real-world assembly lines.

In real-life assembly, the existence of different sources of
variation threatens assembly targets. One source of variability
that has a significant impact on assembly performance is the
variation in task time due to human or environmental factors
such as workers’ tiredness, workers’ lack of skills, complex
operations, and machine breakdowns. The variation in task
time may result in line stoppages, shortages, or overtime if
it has not been taken into consideration during the planning
phase [18], [19]. Moreover, to cope with real-world ALBPs,
some constraints arising from the practical environment also
have to be considered in addition to the common ALBP
constraints such as the precedence relationship and cycle
time. One of these practical constraints is the restrictive
relationship between tasks, known as zoning constraint [20].
Two types of zoning constraints exist in real-world assembly,
namely, positive zoning, and negative zoning. In cases where
some tasks are compatible or linked due to the equipment, line
shape or space considerations, a positive zoning constraint
should be considered ensuring that they are performed at the
same station. On the other hand, there might be some incom-
patible tasks that cannot be performed at the same station
due to different equipment or the nature of the operations
(e.g., drilling or measuring), which forces the introduction of
a negative zoning constraint [21].

In light of the above discussion and to bridge the existing
research gap, this study proposes two mathematical models,
one per line configuration (straight and U-shaped) to solve
the single-model ALBP while considering both positive and
negative zoning constraints as well as stochastic task times in
addition to other conventional ALBP constraints. The main
optimization criterion for both models is considered to be
the number of stations. Due to the stochastic nature of the
task times, two additional objectives, namely, the maximum
of stations’ mean time and the maximum of stations’ time
variance, are optimized as the secondary objectives.

The remainder of the paper is organized as follows.
In Section II, a comprehensive literature review of straight
and U-shaped stochastic ALBPs is provided. Section III pro-
vides a brief description of the case study. The mathematical
models developed are given in Section IV. Computational
results and their analysis are presented in Section V. Finally,
the concluding remarks are outlined in Section VI.

Il. LITERATURE REVIEW

The literature on ALBP is extensive as different authors have
addressed different types of ALBPs over the past decades,
proposing different models and algorithms, while considering
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different assumptions, constraints, and objectives. Moreover,
there are a few studies in the literature in which the straight
and U-shaped ALBPs have been jointly addressed by propos-
ing meta-heuristic algorithms (e.g., [22], [23]). However,
here we will review only studies addressing the single-model
stochastic ALBP (St-ALBP) for both straight and U-shaped
line configurations, which is the focus of this study. For a
comprehensive review of different types of ALBP, the readers
are referred to recent review studies [7], [24]-[26].

Liu et al. [27] proposed a bidirectional heuristic to cope
with a straight assembly line, working with a set number
of stations and a pre-defined confidence level to ensure that
the workloads at the stations did not exceed the given upper
bound for CT. The objective of the study was merely to
minimize the CT. Erel er al. [28] proposed a beam search
algorithm to minimize the total cost, including the cost of
labor and incomplete operations in U-shaped assembly lines.
In their study, three different levels were proposed for CT,
assuming that CT can be any positive number due to the
stochasticity of the problem. The task incompletion cost was
included in the objective function.

Baykasoglu and Ozbakir [29] developed a rule-based
genetic algorithm (GA) for U-shaped assembly lines to
minimize the number of stations for a given C7. The
algorithm was developed by integrating some priority
heuristic rules, GA, and a well-known computer method
of sequencing operations for assembly lines (COMSOAL).
Agpak and Gokgen [30] dealt with both straight and U-shaped
assembly lines by developing novel chance-constrained
binary integer programming. The aim of their study was to
minimize the number of stations. The authors also presented
a goal programming model to cope with the unreliability of
assembly lines caused by the stochastic nature of the task
times.

Bagher et al. [31] developed a novel algorithm for bal-
ancing a U-shaped line with the aim of minimizing the
number of stations, the stations’ idle time, and the prob-
ability of having uncompleted tasks at each station. The
algorithm was designed by combining the imperialist compet-
itive algorithm (ICA) with some priority heuristic rules and
COMSOAL. A study by Cakir et al. [32] targeted balancing
a straight assembly line with the possibility of assigning
tasks to parallel stations. They developed a hybrid simulated
annealing (SA) algorithm with the aim of minimizing the cost
of design and the smoothness index (SI) as a measure for the
variation of workload.

Hazir and Dolgui [19] tackled the problem by propos-
ing two mathematical optimization models and developing
a robust decomposition algorithm in order to find the opti-
mum solution. The optimization objective was to minimize
CT for a given number of workstations in straight assembly
lines. A hybrid particle swarm optimization (PSO) algo-
rithm with variable neighborhood search was proposed by
Hamta et al. [33] to minimize the CT, SI, and total equip-
ment cost. Task times were assumed to be dependent on
worker/machine learning as well as on the task sequences.
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TABLE 1. Summary of the reviewed studies of single-model St-ALBP for straight and U-shaped line configurations.

Additional

Layout constraints

Objectives Solution approach

Study ocC
SL UL PZC NZC —
PS

M

cT BD/

<7 IP  RD SMT STV MP EA HE MH

Cost

Liu et al. [27] ]
Erel et al. [28]

Baykasoglu & Ozbakir [29]
Agpak and Gokgen [30]
Bagher et al. [31]

Cakir et al. [32]

Hazir and Dolgui [19]
Hamta et al. [33]

Zhang et al. [34]

Zhang et al. [35]

Krishnan et al. [36]
Aydogan et al. [12] L d
Piarbast et al. [37]
Saif et al [38]
Zhang et al. [39]
Dong et al. [20]
This study e o M ® d

Note: Straight line (SL), U-shaped line (UL), positive zoning constraint (PZC), negative zoning constraint (NZC), other constraints (OC); parallel
station (PS); station number (M), cycle time (CT), balance delay (BD) / smoothness index (SI), cost (including labor, incompletion, design,
equipment and processing costs), incompletion probability (IP), risk of delay (RD); stations” mean time (SMT), stations’ time variance (STV),
mathematical programming (MP), exact algorithm (EA), heuristics (HE), meta-heuristics (MH).

Zhang et al. [34] proposed an exact enumerative algo-
rithm to balance a straight line and minimize the number
of workstations. They simplified the problem by consider-
ing the optimal assembly sequence as the precedence graph.
Zhang et al. [35] proposed a hybrid evolutionary algorithm to
balance a straight line with the objective of minimizing the CT
and the processing cost for a given number of stations. They
customized the algorithm to improve the convergence speed
by suggesting a unique fitness function strategy and selection
mechanism.

Krishnan et al. [36] proposed a heuristic approach based
on the problem properties to balance a straight line. The opti-
mization objective in this study was to minimize the risk of
delays at each station. They also created a simulation model
to test the validity of the solution found by the heuristic.
Aydogan et al. [12] addressed the problem by proposing a
novel PSO algorithm for balancing a U-shaped line, with the
aim of minimizing the number of workstations. To overcome
the shortcomings of the PSO algorithm, an encoding pro-
cedure, adaptive inertia weight, and mutation were incorpo-
rated in the algorithm. Pinarbasgi et al. [37] proposed a novel
approach based on queuing networks and constraint program-
ming (CP) as well as a mathematical model to balance a
straight line and equalize station utilization (equivalent to S7).
The authors examined the effect of service and flow process
variations on the line balancing results as well as the service
process variation (task time).

A Pareto artificial bee algorithm was proposed by
Saif et al. [38] to deal with a straight assembly line. The
optimization objectives were to minimize C7T and maximize
the sum of the average probability of stations and the prob-
ability of the whole assembly line to ensure that the station
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times would not exceed the CT. Zhang et al. [39] proposed
a hybrid evolutionary algorithm to balance the workload at
workstations in a straight assembly line. The optimization
criteria in this study were the CT and the processing cost over
a given and unchangeable number of workstations.

Recently, a hybrid PSO and SA algorithm and a chance-
constrained mixed zero-one programming model were pro-
posed by Dong et al. [20] to balance the workload in straight
assembly lines. The objectives of both the algorithm and
the model were to minimize the CT and the equipment cost
simultaneously. The authors also considered the negative
zoning constraint (i.e., task pairs that must not be performed
at the same station) in addition to the conventional ALBP
constraints.

A summary of the reviewed papers, including the solution
approaches, objectives, line configuration, and any additional
constraints other than the conventional ones (i.e., precedence
relationship, cycle time, or number of workstations), is given
in Table 1.

Reviewing the literature summarized in Table 1 revealed
that most of the studies on single-model St-ALBP have been
targeted at solving straight line problems using meta-heuristic
algorithms. As for constraints and real-world considerations,
only two studies went beyond the conventional ALBP con-
straints (i.e.,[20] and [32]) by taking into account the pos-
sibility of having parallel stations and a negative zoning
constraint (NZC). The most frequent optimization objectives
are minimizing the number of workstations, cycle time, and
costs.

The information given in Table 1 also shows that no
mathematical optimization model exists in the literature
to treat straight and U-shaped single-model St-ALBPs
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Linked tasks surrounded by
solid line ovals

Incompatible tasks surrounded by
dashed line circles with similar
colors

FIGURE 1. The precedence network of the real case, including the positive and negative zoning constraints.

while considering both negative and positive zoning con-
straints (PZC). Moreover, it can be seen that minimizing the
maximum of stations’ mean time (SMT) and the stations’
time variance (STV) has not been addressed in any of the
previous studies. This is the case even though these objec-
tives can efficiently evaluate and differentiate the solutions
obtained by the optimization models, especially when the
resulting solutions are similar in terms of the number of
stations (M).

Although most of the previous studies have resorted to
meta-heuristic algorithms to cope with St-ALBP complexity
and provide approximate solutions to the problem, practical
size St-ALBPs can be solved to optimality within reasonable
computational time by exact methods with current hardware
and software [40]. Thus, to bridge the existing gap in the liter-
ature and motivation by a real case in an automotive manufac-
turing company, this study aims to propose two mixed integer
programming models to deal with straight and U-shaped
St-ALBP problems considering both NZCs and PZCs.

Ill. CASE STUDY EXPLANATION

The case studied was a car engine assembly line of a major
Swedish automobile manufacturing company. Although sev-
eral different models of car engines are manufactured and
assembled in this factory, this study is limited to part of the
final assembly of a particular engine. The decision makers
were seeking the best assembly line configuration (straight or
U-shaped) for the chosen part of the car engine’s assembly so
that the related assembly workloads were efficiently balanced
among stations. At the same time, zoning constraints and
uncertainty in operation times had to be taken into account as
well as the conventional ALBP constraints (e.g., cycle time
and precedence relationships).
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All the required data, including the task times, precedence
relationship between tasks, and the zoning constraints for
the product, were collected in collaboration with experts
at the company. Figure 1 shows the precedence relations
between tasks and the zoning constraints for the chosen
part of the engine assembly. In this figure, each node rep-
resents an assembly task numbered from 1 to 41, mean-
ing that producing the product involves 41 assembly tasks.
The one-directional arrows that connect the nodes show the
precedence relationship between tasks, which arise from the
technological requirements. Tasks surrounded by ovals with
solid lines are linked tasks (e.g., tasks 3 and 4), while tasks
surrounded by circles with dashed lines and similar colors are
incompatible (e.g., tasks 10 and 13). All the data about the
case study can be found in Table 7 in the appendix.

The decision makers were looking for a reliable optimiza-
tion tool to balance the assembly line for the product by
considering two scenarios for cycle time (70 and 65 seconds)
as well as two line configurations. The current assembly of
the chosen product was being performed in five assembly
stations with a cycle time equal to 65 seconds. The decision
makers were also interested in knowing whether a higher
cycle time (70 seconds) could result in a line with fewer
stations or a better workload at the stations.

IV. PROBLEM DESCRIPTION AND MODEL FORMULATION
In this section, the description of the problem and the formu-
lation of the model are discussed in detail.

A. PROBLEM DESCRIPTION
The given St-ALBP with zoning constraints, hereafter
referred to as St-ALBP-ZC, can be defined as a number of
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tasks j = 1,...,N), each with a given precedence relation-
ship. It is also assumed that the task times are independent
with known means and variances indicated by #4; and tojz
respectively. Due to the technological requirements of each
product, tasks have to be performed according to a sequence
known as the precedence relationship. Furthermore, there are
zoning constraints among tasks that have to be satisfied. Thus
tasks are assigned to stations (k = 1, ..., K) according to
their precedence relationships and zoning constraints, while
ensuring that the probability of the total of task times assigned
to stations being greater than CT (Py) should stay below
predetermined limits («), as given in Equation (1):

: / 2 _
Py {Zl_ewk ti + Z1—a Zl_ewk 1o} < CT} >1—a (1)

where W; is the set of tasks assigned to station k and Z;_,
is the 1 — o quantile of the cumulative standardized normal
distribution. It is worth mentioning that equation (1) has
been first introduced by Urban and Chiang [41] to model the
assembly line balancing problem with stochastic task times.
To use this equation as a linear constraint in the model, a
few linearization steps are required. The interested readers are
referred to Agpak and Gokgen [30] for a detailed explanation
about linearization process of equation (1).

The main objective of this St-ALBP-ZC is to minimize the
number of assembly stations (M ). However, it is known that
this specific objective reaches a plateau in a few attempts and
there are often many solutions with the same M, although
they may differ in terms of the distribution of tasks among
the stations and solution quality [42]. Therefore, to distin-
guish the best solution among several solutions with the
same M, some additional objectives are needed. In this study,
to guarantee a smooth workload and avoid a high fluctuation
in working time at stations, two additional objectives are
considered aside from the main objective (M). The additional
objectives are maximum stations’ mean time (SMT ,,,,) and
maximum stations’ time variance (STV ,,qx). The SMT 0y
guides the optimization to find a solution with a smoother
station workload in terms of the sum of the mean times of the
tasks. The index that matches SMT ,,,, identifies the station
with the maximum cumulative amount of tasks’ mean times.
It will force the optimization model to assign the tasks to
stations in such a way that all the stations have the same
amount of workload in terms of tasks’ mean times. On the
other hand, it is obvious that smoothing the workload at
stations by only considering the tasks’ mean times may not
provide a valid balance, due to the stochasticity of task-
processing times. In other words, it may happen that several
tasks with high time variation are assigned to the same sta-
tions, resulting in high uncertainty on job completion time,
even though the workload is smooth in terms of the cumu-
lative amount of tasks’ mean times. In such circumstances
the STV 4y index will come in handy to find the station
with the maximum variance in task time. Including this in
the optimization model will re-arrange the tasks among the
stations so that all the stations have an equal sum of tasks’
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time variance. The SMT .4, and STV .4, are calculated using
Equations (2) and (3).

SMTmax = max Z tig 2)
ieWy

STVimax = max | Y to} (3)
ieWy

The assumptions made to model the problem are as
follows:

o The task times are normally and independently dis-
tributed with known means and variances.

o The travel times of operators are ignored.

o There are known zoning constraints among the tasks in
terms of linked and incompatible tasks sets.

« Parallel tasks and parallel stations are not allowed.

o The cycle time is known and fixed.

o The precedence relationship among tasks is known and
unchangeable.

« Tasks cannot be split and each task should be performed
at one station from start to finish.

« Only one task can be performed at a station at a given
time.

o The tasks’ execution times are independent of the
assigned station.

« A large quantity of one homogeneous product is pro-
duced in a continuous and standardized way (mass pro-
duction system).

B. MATHEMATICAL FORMULATION
Two mathematical models are proposed in this section to
deal with straight and U-shaped St-ALBP-ZC. To improve
the efficiency of the models and decrease the computational
time, the models benefit from some realistic upper and lower
bounds for the number of stations to reduce the number
of decision variables and constraints. Moreover, the earliest
and latest stations that each task can be assigned are also
considered to further reduce the number of variables and
constraints. Four different scenarios are tested in relation to
changes in the objectives considered. Due to the importance
of the first objective in the real world, the number of stations
is set as the primary objective in all the scenarios. The order
of objectives in the different scenarios are as follows.
Scenario 1: Minimizing the number of stations
Scenario 2: Minimizing the number of stations and the
maximum of stations’ mean time
Scenario 3: Minimizing the number of stations and the
maximum of stations’ time variance
Scenario 4: Minimizing the number of stations and the max-
imum of stations’ mean time and the maximum
of stations’ time variance
It is worth noting that in scenarios 2 to 4, multiple
objectives are dealt with using the lexicographical order-
ing in which the minimization of the number of stations
is performed first, and then the secondary objective(s) are
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dealt with while ensuring that the primary objective is opti-
mized [43]. Following the lexicographic method, the objec-
tives are arranged based on their importance and optimized
in a hierarchical order. Therefore, the problem is first solved
by satisfying all the constraints and optimizing the primary
objective. Then, the secondary objective is optimized by
constraining the problem to the solution space of the primary
objective. This process continued until all the objectives are
optimized. Interested readers are referred to Coello [44] and
Marler and Arora [45] for a good explanation about lexico-
graphic method.

The notations used in modeling the St-ALBP-ZC are
presented in Table 2.

TABLE 2. Notations used in the mathematical model.

Notation Definition
Indices
i,j Task index (i,j = 1, ...,N)
k,l Station index (k,l = 1, ... ,K)
Parameters
N Number of tasks
CcT Given cycle time
K Upper bound on the number of stations; K < N
Pr. . _{1; if task i is the predecessor of task j
Tij Precedence matrix: .
0 o ] otherwise
ZCL-J]’- PZC matrix: {1, if task i is linked to task]
0; otherwise
zc; NZC matrix: {(1), if task i is incompatible with task j
; otherwise
t; Processing time of task i; t;~N (tu;,to;%)
Wy Set of tasks assigned to station k
Sty Time of station k; st ~N(Xiew, thi, Liew, to7)

Myin  Theoretical minimum number of workstations

Maximum number of workstations

Upper bound on the probability of total tasks’ time assigned to
stations exceeds the CT

Decision variables

M Number of stations

SMT,,4, Maximum of the stations” mean time

STVimax Maximum of the stations’ time variance

{l; if task i is assigned to station k in main precedence network

mmux

o

Xik

0; otherwise
1; if task i is assigned to station k in phantom precedence network
Vik 0; otherwise
s {1; if station k is established
k 0; otherwise
L Auxiliary variable to make sure the feasible assignment of task
ivk

i and v to station k

Considering the given St-ALBP-ZC description and
assumptions, the following mixed integer programming (MIP)
model is proposed for the straight line.

Mmax

HM= > 5

k=[mmin]

Min § (2) M, SMTax 4
(3) M, STV nax
(4) M, SMTmax + STVimax
L;
Subjectto : Y " xy =1 Vi=1,....N 5)
k=E;
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L L

Z (Mmax — k + D — Z (Mmax —k+ 1)xjk
k=E; k=E;j

>0; VG, ) € Pr; (6)

N N
CT? - 2CT Z tixi + Zt,u?x,-k
i=1 i=1

N—-1 N N
+2 Z Z Tt yUivk — Z%_a Zlff,-zxik
i=1 v=i+1 i=1
>0; Vk=1,..., Mmax @)
N
CT x Sp — Y tpixix = 0;

i=1

Yk =1,..., Mmax ®
Xik + xpk — ik < 15
Vk=1,...,mmax; i=E;...,L;
v=Fy,...,L; i #v ©)]
Xik + Xk — 2uivk = 0;
Vk=1,...,mma; 1=E;,..., L
v=E,, ...,L; i#vV (10)
Xik = Xjk; V(i,j)eZCl;rszl,...,mmax
(11)
Xik + X <15 VL) € ZC Yk =1, ..., Mima
(12)

N

Zt,uixik < SMTax;
i=1

Vk=1,..., Mma

13)

N
Z to'izxik < $TViax;
i=1

Vk =1, ..., Mmax

(14)
Xik > Sk uivk € {0, 1};
ihv=1,....Nk=1,..., mnax;
SMTmax, STVimax € RT (15)

where E; and L; are the earliest and the latest stations for
processing task i, respectively, calculated by Equations (16)
and (17) in which Pre; and Suc; indicate the predecessors and
the successors of task i, respectively. Also, Equations (18) and
(19) calculate my;, and my,,y, respectively. It is worth men-
tioning that using the above bounds, searching the problem
space for optimality will be performed more efficiently by
avoiding redundant task assignments [46].

ti+ Yt + e X Jtof + 3 107
JjePre; JjePre;

CT :

E;

i=1,...,N (16)
Li = mpax + 1
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ti+ Y ipjt oo X Jtof+ Y to}

jeSuc; j€Suc;
CcT ’
i=1,...,N (17)
N N
Zt,LL,'-FZ]_a X X:IO'I-2
i—1 =1
M = | - o ’ —1<M (18)
N
Z L
= min { N, =1 1,
Mmax CT +1—maxtu; +
Vi
N
Dl
i=1
X 1 19
CT +1 + (19

Equation (4) represents the objectives for the four different
scenarios. Constraint (5) ensures that each task is assigned to
only one station between its earliest and latest possible sta-
tions. Constraint (6) guarantees that the precedence relations
between tasks are not violated. Constraints (7) and (8) ensure
that the probability of exceeding the given CT will always
stay under the predetermined limit («). Constraints (9) and
(10) are used to make the auxiliary variable (u;,x) dependent
on x;; and x,; so that using these constraints all the feasible
assignments of task 7 and v to station k£ will be made possible.
Constraint (11) guarantees that the PZCs between the linked
tasks are satisfied. Moreover, constraint (12) ensures that the
NZCs among tasks are satisfied through maintaining that only
one of the unlinked tasks can be assigned to each station.
Constraint (13) is used to determine the maximum stations’
mean time SMT ;.. In addition, the maximum stations’ time
variance, STV jqx, 18 determined by constraint (14). Finally,
constraint (15) defines the domains of the decision variables,
which are binary and positive real numbers (RT).

Based on the model proposed for the straight line (see
Equations 4 to 15), the following MIP model is proposed for
the U-shaped line.

Min: objectives given in Equation (4)

stipik =X +yi; Vi=1,...,N; Vk=1,... mpax

(20)
Li
Zpik=1; Vi=1,...,N 1)
k=E,
L; L;
Z(mmax —k+ Dpi — Z(mmax — k+1)pjk > 0;
k=E; k:Ej
V(i,j) € Pr; (22)
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N N
CT? —=2CT ) twipix + Y _ t1ipik

i=1 i=1

N-1 N N
423> titpuie — 2y Y 1o} pix = 0;
i=1 v=i+1 i=1
Vk = 1,...,mmax (23)
N
CT X S = Y twipix = 05 Yk =1, muax (24)
i=1

Dik +Dvk —uivk <15 Yk =1,..., Mmax;

i=E,...,.L; v=E,...,L; i#v (25)
Dik + Pvk — 2upk 2 0; V=1, ..., mmax;
i=E,...,.L;v=E,...,L;i#v (26)

pik =pj; V) € ZCT; V=1, mmax  (27)
v(@,J) eZCl.jf; Vk =1,..., Mmax
(28)

pik + ok < 1

N

Z“’Lipik S SMThax; Yk =1,..., mmax (29)
i=1

N

Zto'jzpik < STVmax; Yk =1,..., mmnax (30)
i=1
Xik, Vik» Piks Sk Uivk € {0, 1};
Lhv=1,....,.Nk=1,..., mnax;

SMTax, STVmax € R* 3D

The descriptions of Equations (21) to (31) are similar to
Equations (5) to (15), except for the decision variable xji
which is replaced by a new zero-one decision variable, pj,
calculated by Equation (20).

V. RESULTS AND ANALYSIS

This section reports on the optimization of the case study
using the above MIP models. Some standard test problems
will also be analyzed. An efficient multi-attribute decision-
making approach called TOPSIS is used to analyze the results
and provide managerial insight.

A. COMPUTATIONAL RESULTS

The proposed models in this study were tested using a
set of computational experiments. The case study was
addressed first using the MIP models proposed for straight
and U-shaped lines. Then a set of standard test problems
were solved. The problems can be found at the homepage for
assembly line optimization research [47]. The MIP models
were coded in GAMS and solved using CPLEX. This is a
standard mathematical solver that has proven its performance
in solving different optimization problems such as job shop
scheduling [48], resource allocation [49] and flight reschedul-
ing [50]. A PC with a Core i7 2.4 GHz processor and 8 GB
of RAM was used. Tables 3 and 4 show the results obtained
for both straight and U-shaped lines. To investigate the effect
of different combinations of objectives on the solutions, all
the problems were solved for the four different scenarios
defined in Section B. Mathematical formulation. The results
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TABLE 3. Results of the proposed MIP model for four scenarios of the straight assembly line.

bosten cr T g sof dor M - @) MSMTpar - ) MSTVpar = ) M,SMTma,CJrSTVmCa;U
3

rovlem & F E Var Con M SMTyge STV oo M SMTax STVnas oo M SMToae STVoge 0 M SMTge STVoar o

Casc 70 1.64 4 6 4388 474 5 696 800 0.6 5 634 917 1464 5 698 742 1 5 643 755 148

study 196 4 6 4388 474 5 684 927 009 5 634 1054 2066 5 69.1 742 144 5 643 755 173

65 1.64 4 7 4418 594 5 647 1044 028 5 634 906 62 5 650 755 248 5 643 755 333

196 4 7 4418 594 5 644 894 022 5 634 1072 683 5 650 755 205 5 643 755 222

Jackson 21 164 2 4 213 85 3 180 4Il 006 3 160 408 009 3 180 396 009 3 160 408 0.4

196 2 4 213 85 3 180 411 008 3 160 408 011 3 180 396 009 3 160 408 006

14 164 3 6 311 217 4 140 396 005 4 130 396 016 4 140 396 009 4 130 396 038

196 3 6 311 217 4 140 396 006 4 130 396 025 4 140 396 006 4 130 396 0.2

Mitchell 39 1.64 2 4 702 94 3 380 355 009 3 350 380 006 3 380 333 025 3 360 333 028

196 2 4 702 94 3 380 355 003 3 350 380 008 3 380 333 009 3 360 333 013

26 164 4 8 1238 404 5 260 343 003 5 210 276 006 5 250 251 011 5 210 262 033

196 4 & 1238 404 5 260 343 009 5 210 276 055 5 250 251 084 5 210 262 097

Buxey 47 164 6 15 3601 2397 7 470 9.68 077 7 470 1017 3.83 7 470 808 1278 7 470 808 118l

196 6 15 3601 2397 7 470 915 036 7 470 893 069 7 470 808 08 7 470 808 63

41 164 7 17 43313594 8 410 927 088 8 410 908 114 8 410 806 827 8 410 806 1803

196 7 17 43313594 8 410 911 066 8 410 895 048 8 410 806 175 8 410 806 092

Gunther 49 1.64 10 21 8440 6415 11 480 1491 3.67 11 480 1492 252 11 480 1491 356 11 480 1491 31.06

196 10 21 8440 6415 11 49.0 1494 191 11 480 1493 1456 11 490 1491 344 11 480 1491 27.88

44 164 11 23 9411 7807 12 440 1493 648 12 440 1493 2561 12 440 1491 553 12 440 1491 20.69

196 11 23 9411 7807 12 44.0 1491 333 12 440 1491 395 12 440 1491 414 12 440 1491 728

Killbrid. 56 1.64 9 21 118936796 10 560 1304 45 10 560 1338 997 10 560 1296 1068 10 560 1296 622

196 9 21 118936796 10 560 1338 201 10 560 1298 205 10 560 1296 9.3 10 560 1296 4.64

62 164 8 19115635478 10 62.0 1344 264 10 560 13.00 331 10 61.0 1295 436 10 560 1295 153.83

196 8 19115635478 10 620 1320 277 10 560 13.89 7.66 10 620 1295 528 10 560 1295 343

Tonge 527 164 6 10175101438 7 5240 6606 033 7 5030 7318 624 7 5260 5991 889 7 5210 5991 12.79

196 6 10175101438 7 521.0 77.63 034 7 5020 64.59 286 7 5270 5928 401 7 521.0 5991 637

364 164 9 17 254133587 10 3640 6532 115 10 3520 58.56 43.88 10 3640 5818 5263 10 3630 58.18 69.01

196 9 17 254133587 10 364.0 61.07 122 10 3520 60.73 4405 10 364.0 5818 5296 10 363.0 5818 70.89

TABLE 4. Results of the proposed MIP model for four scenarios of the U-shaped assembly line.

= : ot por M @) MSMTgy O M5 T () M SM Ty 5T Vi
Problem €T ¢ & & var con. m smr,s1v,, TV M smT, STV TV M sMT, STV, TV v osmr, sty CPYU
N time time time

Case 70 1.64 4 6 4798 721 5 69.0 933 033 5 634 866 916 5 696 735 605 5 638 755 658
study 196 4 6 4798 721 5 69.4 812 028 5 634 849 1769 5 700 735 339 5 638 755 1126
65 1.64 4 7 4828 841 5 647 794 036 5 634 866 2644 5 650 755 114 5 638 7.55 1844

196 4 7 4828 841 5 649 872 037 5 634 831 5585 5 646 755 994 5 638 755 21.29

Jackson 21 1.64 2 4 279 131 3 210 409 016 3 160 408 011 3 200 396 009 3 160 408 0.11
196 2 4 279 131 3 210 416 022 3 160 408 009 3 200 396 011 3 160 408 02

14 164 3 6 399 274 4 140 398 008 4 130 396 013 4 130 396 011 4 130 396 0.16

196 3 6 399 274 4 130 396 006 4 130 396 0.5 4 140 396 026 4 130 396 0.19

Mitchell 39 1.64 2 4 828 184 3 39.0 381 006 3 350 379 019 3 380 333 02 3 360 333 017
196 2 4 88 184 3 390 38 009 3 350 379 017 3 380 333 023 3 360 333 023

26 164 4 8 1448 536 5 260 320 014 5 210 296 337 5 250 251 356 5 210 262 518

196 4 8 1448 536 5 260 320 0.9 5 210 296 419 5 250 251 417 5 210 262 606

Buxey 47 1.64 6 15 4007 2636 7 47.0 9.8 187 7 470 1073 1064 7 470 817 5249 7 470 817 11599
196 6 15 4007 2636 7 47.0 11.18 192 7 470 876 1236 7 470 817 5661 7 470 817 24598

41 164 7 17 4795 3862 8 410 974 229 8 410 974 2797 8 410 811 4352 8 410 811 1757

196 7 17 4795 3862 8 41.0 998 331 8 410 927 2931 8 410 811 4566 8 410 811 45697

Gunther 49 1.64 10 21 9210 6843 10 49.0 1496 576 10 49.0 1493 11.68 10 490 1491 36459 10 49.0 1491 456.63
196 10 21 9210 6843 10 49.0 1495 12.63 10 49.0 1494 2047 10 490 1491 37231 10 490 1491 501.79

44 164 11 23 10251 8270 12 440 1491 12634 12 410 1491 315 12 410 1491 57369 12 410 1491 567.96

196 11 23 10251 8270 12 44.0 1491 326 12 410 1491 515 12 410 1491 639 12 410 1491 79

Killbrid. 56 1.64 9 21 12793 7306 10 56.0 1345 851 10 560 1332 213 10 560 1295 006 10 560 1295 2.3
196 9 21 12793 7306 10 56.0 1371 1276 10 560 1348 852 10 560 1295 32816 10 560 1295 627

62 1.64 8 1912463 5990 9 62.0 1337 3.6 9 620 1372 9546 9 620 1296 97717 9 620 1296 473.88

196 8 19 12463 5990 9 620 1502 353 9 620 1315 2849 9 620 1296 19767 9 620 1296 353.08

Tonge 527 1.64 6 10 18490 2014 7 527.0 7220 127 7 503.0 7326 3951 7 5260 5991 3562 7 521.0 5991 364
196 6 10 18490 2014 7 527.0 64.84 1.03 7 502.0 62.64 3284 7 5260 5991 7195 7 521.0 59.91 4574

364 1.64 9 17 26813 4373 10 363.0 60.68 1006 10 352.0 5938 12032 10 3640 58.18 27929 10 363.0 58.18 32933

196 9 17 26813 4373 10 364.0 59.72 2.15 10 3520 60.73 16532 10 3640 5818 32573 10 363.0 5818 595.92

obtained for each scenario appear in Table 3 and 4 in the
columns (1) M; (2) M, SMT ,,,c; 3) M, STV ;510 and (4) M,
(SMT 1ax + STV pax), respectively.

As for the test problems, the means of the task times (fu;)
are considered to be equal to the deterministic task times
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given in the literature by assuming a normal distribution for
task times. The variances of the task times (tal.z) are generated
using the uniform distribution U (0, (141;/2)?).

In Tables 3 and 4, the problem name and given CTs (two
CT's for each problem) are reported in the first two columns.
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FIGURE 2. CPU times obtained by straight line model for each scenario and each problem.
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FIGURE 3. CPU times obtained by U-shaped line model for each scenario and each problem.

It is worth mentioning that considering the stochastic nature
of tasks’ times, a safety level is used in this study to assure
that the processing times at the stations will not exceed CT.
For instance, a safety level of 0.95 (o« = 0.05) means that the
stations’ times will not exceed the CT 95% of the time. Thus,
each problem was solved for two different levels of safety,
(95% and 97.5%) which are associated with safety factors of
Zi—¢ = 1.64 and Z;_, = 1.96, respectively, and shown in
column Z; _,.

Columns my,;, and my,,, specify the minimum and the
maximum number of stations, respectively, for the cor-
responding CT and safety levels, calculated using Equa-
tions (18) and (19). Moreover, the number of variables and
constraints for each problem are reported under the columns #
of Var. and # of Con., respectively.

According to Tables 3 and 4, for all the scenarios the
resulting number of stations (M) is the same for each value
of CT. This result was predictable given the lexicograph-
ical ordering of objectives and the assignment of higher
optimization priority to the number of stations. Different
values of the other two objectives, SMT ;4 and STV 4y,
were obtained for each scenario. According to the dominance
concept, when comparing different solutions in terms of a
few objectives with a minimization purpose, solution g is
said to be dominated by solution g’, if and only if, for all
the objectives Objég,) < Objé 2 (I =1, ..., number of objec-
tives). For example, for the case study in Table 3, comparing
the results obtained for scenarios (2) to (4) with the results
obtained for scenario (1), one can observe that scenario (4)
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is the only scenario that could dominate scenario (1) in
terms of all objectives (i.e., Mu)y < M); SMTmaxy =
SMTmax1y; STVmax@wy =< STVmax)). However, scenar-
ios (2) and (3) could not dominate scenario (1) in terms
of STV ,ax because STVmaxpy > STVmax(). The same
is true for SMT . because SMTmaxzy > SMTmax .
Comparing scenario (1) with scenarios (2) to (4) for all the
problems solved and for both line configurations (straight
and U-shaped), it can be observed that scenario (4) dominates
scenario (1) in all problems. Apart from this, no further judg-
ment can be made regarding the dominance of scenario (4)
over scenarios (2) and (3). Therefore, to make a reliable
and comprehensive comparison of all the scenarios, a multi-
attribute decision-making approach is used to analyze the
results in the next section.

Tables 3 and 4 show a considerable difference between
the minimum and maximum computational times to reach
optimality for different problem sizes. The smallest CPU time
is less than one second and the largest is 977 seconds. The
minimum and maximum obtained CPU times were 0.09 and
55.85 seconds for the case study, respectively. These obtained
times were respectively related to scenario (1) for the straight
line and scenario (2) for the U-shaped line.

Figure 2 and 3 show the CPU times in logarithmic scale
(base 10) of scenarios (1) to (4) for all the problems solved
by the straight and U-shaped line models, respectively. The
horizontal axis indicates the problems. The labels were cre-
ated by abbreviating the problem’s name and adding the CT
value and the safety factor, separated by hyphens.
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According to Figure 2, scenario (4) resulted in a higher
CPU times for most of the test problems except the case study
and a very few other exceptions. This higher computational
time can be justified because all the three optimization objec-
tives are included in scenario (4).

Figure 3 for the U-shaped line also shows that a higher CPU
time was required by scenario (4) compared to other scenarios
for the majority of the problems solved.

Straight line U-Shaped line

g 200
3
2
£ 150
Q
£
E 100
|®
[}
&
£ 50
>
<

0

Scenario 1 Scenario 2 Scenario 3  Scenario 4

FIGURE 4. Comparison of average CPU times for different scenarios for
the straight and U-shaped lines.

To investigate the effect of the line configuration on the
computational time, the average CPU times of each scenario
for the straight and the U-shaped line configurations are pre-
sented in Figure 4. According to Figure 4, the U-shaped line
model took more time to find the optimum solution in all four
scenarios compared to the straight line model. This higher
computation time was expected as there are more possibilities
for assigning tasks to stations in the U-shaped line model,
which has a larger solution space.

B. ANALYSIS OF THE RESULTS
A multi-attribute decision-making (MADM) approach is
needed to compare the results and rank the different scenarios
in terms of all the considered objectives. Although a variety
of MADM approaches can be found in the literature (see
Zahedi Khameneh and Kilicman [51] for the most recent
review of MADM approaches), the technique for order of
preference by similarity to ideal solution (TOPSIS) was cho-
sen in this study. This choice was made mainly due to the
proven performance of TOPSIS in dealing with different
types of ALBPs [52]-[54]. It also has outstanding ability to
distinguish between different scenarios and rank them. More-
over, TOPSIS has been shown to be a successful approach
in cases where the objectives have different dimensions or
one objective is much larger than the others (e.g., STV jyax K
SMT 145 in most of the problems in this study) [54].
TOPSIS relies on the concept that the best scenario should
have a minimum distance from the positive ideal solution
and a maximum distance from the negative ideal solution.
Interested readers are referred to Hwang and Yoon [55] for
a good explanation and detailed information about TOPSIS.
In this study and following standard TOPSIS implementation
procedure, there are seven steps in ranking the scenarios.
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Step 1: For each test problem, the results obtained by
scenarios (1) to (4) are used to form matrix D for TOPSIS
calculations as shown in Equation (32).

M SMTax STVimax

St X1 X2 x13
§2 | x21 X2 X23 (32)
S3 | X31  X32 X33
S4 [ X411 Xa2  X43
where xg; is the /th objective of the scenario s for each test
problem.

Step 2: The normalized decision matrix R with element r;
is calculated using Equation (33):

Xsl

V 213:1 (Xsl)2

Step 3: The weighted normalized decision matrix V' with
element vy is calculated using Equation (34):

s=1,2,3,4,1=1,2,3 (33)

I'si =

v =wrrg; s=1,2,3,41=1,2,3 34

where w; indicates the weight of the /th objective. The sum
of the weights of the objectives has to be equal to one,
that is, ) "y; w; = 1. Since minimizing M is prioritized over
minimizing SMTqy and STV .4y, after some pilot studies the
weights for objectives M, SMT ., and STV 4, Were set to
0.5, 0.25 and 0.25, respectively.

Step 4: The positive and the negative ideal solutions are
calculated using Equations (35) and (36).

Vvt =] v v]} = {(maxvgll € L), (minvg|l € L)};

s=1,2,3,4;, [=1,2,3 35)
V™ = {v; vy, v3} = {(minvg|l € L), (maxvg|l € L")};
s=1,2,3,4, [=1,2,3 (36)

where L and L’ are associated with positive and negative
measures, respectively. Since all the objectives in this study
are negative measures that have to be minimized (i.e., M,
SMT pax and STV ,,4¢), the positive and the negative ideal
solutions are the solutions with the minimum and the max-
imum values, respectively, for all objectives.

Step 5: Two measures called distances from the positive
and the negative ideal solutions for each scenario are calcu-
lated using Equations (37) and (38).

3
; Y=V s=1.2.3 (37)
\ =1

3
Dy = Z(Vsl v s=1,2,3 (38)
I=1

Step 6. Finally, the relative closeness (RC) index of sce-
nario s from the negative ideal solution is calculated using
Equation (39).

RCy=D;/D; +D}; s=1,2,3 (39)
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The RC lies between zero and one. The larger the value
of RC, the better the performance of the corresponding
scenario s.

Step 7: Finally, the scenarios are ranked in descending
order based on their RC values in which ranks 1 and 4 are
assigned to the best and the worst scenarios, respectively.

The basic version of TOPSIS assumes that no interaction
exists among criteria which is rarely true for the real-world
problems. This is due to the Euclidean distance applied in
calculation of distance from the positive and negative ideal
solutions [56]. To overcome this disadvantage, a new measure
called Mahalanobis distance is applied in this study which
are calculated by Equations (40) and (41) as a substitute for
Equations (37) and (38), respectively.

-1
Dj=\/(rs,—v,+)TszTZ Qg —v); s=1,23
(40)

-1
D;=\/<rsz—v;>TszTZ Qra—vy) s=1,2,3
(41)

where T indicates the transpose and €2 is the diagonal matrix
of weight with elements Q = diag(x/wy, /W,, v/W3). The
271 is the inverse of the covariance matrix which includes
the correlations between criteria.

TABLE 5. Ranking of scenarios (1) to (4) for each test problem by TOPSIS
for the straight and U-shape lines.

Straight line

7 U-shaped line
OO @™

O @G @

Problem CcT

Case study 70 164 2 4 3 1 4 3 2 1
196 3 4 2 1 2 4 3 1

65 164 4 3 2 1 3 4 2 1

196 3 4 2 1 4 3 2 1

Jackson 21 164 3 1 2 1 31 2 1
196 3 1 2 1 31 2 1

14 164 2 1 3 1 2 1 1 1

196 2 1 3 1 11 2 1

Mitchell 39 164 2 4 3 1 4 3 2 1
196 2 4 3 1 4 3 2 1

26 164 4 3 2 1 4 3 1 2

196 4 3 2 1 4 3 1 2

Buxey 47 164 2 3 1 1 2 3 1 1
196 3 2 1 1 32 1 1

41 164 3 2 1 1 2 2 1 1

196 3 2 1 1 32 1 1

Gunther 49 164 2 3 1 1 32 1 1
196 4 2 3 1 32 1 1

4 164 2 3 1 1 32 1 1

196 3 2 1 1 2 1 1 1

Killbridge 56 164 2 3 1 1 32 1 1
196 3 2 1 1 32 1 1

62 164 4 2 3 1 3 4 2 1

196 4 2 3 1 32 1 1

Tonge 527 164 3 4 2 1 4 3 2 1
196 4 3 2 1 4 3 2 1

364 164 4 1 3 2 4 3 2 1

196 4 3 2 1 2 4 3 1

Average rank 3.0 2.6 2.0 1.0 3025 1.6 1.1

Table 5 shows the ranking of the scenarios by applying
TOPSIS for each test problem for both straight and U-shaped
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lines. For example, in the case study with CT of 70 and safety
factor of 1.64 for the straight line, the ranking of scenarios (1)
to (4) by TOPSIS is 2, 4, 3 and 1, respectively. In the same
way rankings 4, 3, 2 and 1 are found for scenarios (1) to (4)
for the U-shaped line.

According to Table 5, scenario (4) was ranked first in all the
test problems for straight line except for the ‘“Tonge’ prob-
lem with a CT of 364 and a safety factor of 1.64. Similarly,
scenario (4) has been ranked first in almost all problems for
U-shaped line except for Mitchell with a CT of 26 and safety
factors of 1.64 and 1.96. It is worth mentioning that when two
or more scenarios have the same rank, the other scenarios are
ranked after them. For instance, in the “Jackson” problem
with a CT of 21 and a safety factor of 1.64, scenarios (2) and
(4) have been equally ranked (i.e., first in this example) and
the ranks of the remaining scenarios have been decreased by
one (i.e., becoming 2 and 3 instead of 3 and 4).

In the last row of Table 5, the average rank of each scenario
for both line configurations is presented. According to the
calculated average ranks, for both straight and U-shaped
lines, scenario (4) was ranked first followed by scenarios (3),
(2) and (1), which are placed in the second to fourth rank,
respectively.

To provide managerial insight into the effective selection
of line configuration as well as to help the decision makers
in making a wise decision, the results obtained by scenario
(4) for the U-shaped line are compared against the results
achieved for the straight line. Table 6 shows the results of
the comparison. The findings are reported separately for the
case study and the standard test problems. The problems were
compared for all three objectives and the results are presented
as the percentage of worse, equal, and better solutions.

TABLE 6. Comparison of U-shaped versus straight line results obtained
by scenario (4) in terms of different objectives.

Case study Test problems
M SMTpax STVipax M SMTpae  STViar
Worse 0% 0% 0% 0% 17% 33%
Equal  100% 0% 100% 83%  75% 58%
Better 0%  100% 0% 17% 8% 8%

In the case study, when the results for the U-shaped
line were compared with the results of the straight line in
terms of M, the results were equal (i.e., 5 stations). Thus,
no worse and better results are reported (i.e., 0%). In terms
of SMT 4%, the U-shaped line shows its superiority over the
straight line by providing better results for all the solved case
study instances (4 instances). However, there is no difference
between the results obtained by straight and U-shaped lines
in terms of STV .4« Increasing the CT from 65 to 70 seconds
does not improve the quality of the solutions and provides no
advantage either in relation to M or SMT ;4 and STV ;4
as the value of all the objectives in scenario (4) remained
unchanged for both line configurations and both safety fac-
tors. In summary, these results imply that the company which
requested the case study is currently working with the correct
values of M, CT, and line configuration. However, the results
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TABLE 7. Case study information.*

Task # Predecessor tu (Sec.) to (Sec.) Linked task Incomp. task

Task # Predecessor tu (Sec.) to (Sec.) Linked task Incomp. task

1 - 53 2.0

2 1 3.1 1.0

3 2 6 2.0

4 3 7.1 1.0 3

5 2 6.5 1.0 4

6 5 7.1 1.0

7 4 11.1 2.0

8 6 11.1 1.0

9 - 11.2 4.0 7
10 - 33 1.0

11 10 12.6 1.0

12 11 15.5 5.0 11

13 - 3.6 1.0 10
14 10 2.7 1.0

15 10 16.5 7.0

16 9 9.9 3.0

17 10 8.5 1.0

18 17 4.4 1.0

19 10 2.7 1.0 16
20 14,19 9.4 2.0 18
21 17 8.9 2.0

22 21,26 11 1.0 21

23 - 49 1.0

24 23 4.5 1.0

25 19,14,22 72 2.0 22
26 - 10.3 1.0

27 25 2.4 1.0 25
28 26,27 5.1 1.0

29 28 8.8 1.0 28

30 20,26 15.7 7.0

31 30 11.9 2.0

32 31 53 2.0

33 31 49 1.0 31
34 32,33 18.1 3.0

35 34 13.5 1.0

36 35 3.2 1.0 34
37 32,33 2.7 1.0

38 37 4.5 2.0

39 - 33 1.0 37
40 38 4.7 2.0

41 40 8.4 4.0

*The zoning constraints as well as the means and the variances of the task times were randomly generated due to the confidentiality of the company data.

of this study suggest that the assignment of tasks to stations
can be reconsidered to minimize the SMT,,, and conse-
quently smooth the workload at stations.

For test problems, Table 6 suggests that the U-shaped
line resulted in equal or fewer stations for all the solved
test problems. Thus, it is safe to recommend the use of the
U-shaped line if minimizing the number of stations is the
prime or only objective; but it is hard to draw a general
conclusion about the other objectives. However, the straight
line provided better solutions for a slightly larger portion of
the problems than the U-shaped line. In regard to SMT .y,
both U-shaped and straight lines resulted in the same value
for the majority of the test problems solved (75%). However,
the straight line showed better performance in 17% of the
problems solved, while this number was only 8% for the
U-shaped line. In terms of STV .., the same results were
found by straight and U-shaped lines for slightly more than
half of the test problems solved (58%), while the U-shaped
line resulted in 8% better and 33% worse results compared to
the straight line.

Overall, the analysis of results by TOPSIS showed that
scenario number (4) is almost always ranked first. It is
therefore the preferred scenario. The comparative analysis
of the U-shaped and straight lines for scenario (4) reeval-
uated the advantage of using the U-shaped line in the case
study. Additionally, the U-shaped line appeared to be a good
choice for reducing the number of stations for assembly lines
with different sizes and characteristics. However, a coherent
and general conclusion could not be reached with regard to
STV uax and SMT ;... Therefore the decision should be made
case by case.

VI. CONCLUSIONS
This study, which was inspired by a real problem encountered
in an automotive manufacturing company, contributes to the
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body of ALBP knowledge. It bridges the gap in the literature
by proposing two mathematical programming models for
balancing straight and U-shaped assembly lines where the
stochastic task times and the zoning constraint (ZC) between
tasks are considered simultaneously. The main objective of
the proposed models is to minimize the number of stations.
In addition, other objectives including the maximum of sta-
tions’ mean time and the maximum of stations’ time variance
were also optimized. To show the effect of the objectives
on the St-ALBP-ZC solutions, four different scenarios were
designed by considering various combinations of objectives,
and then solved for both straight and U-shaped lines. The
computational results on the real case and some standard test
problems taken from the literature showed the effectiveness
of the proposed models in solving St-ALBP-ZC within a
reasonable computational time.

A multi-attribute decision-making approach (TOPSIS) was
used to obtain a reliable analysis of the results for each sce-
nario for both straight and U-shaped lines. The TOPSIS anal-
ysis showed that scenario (4) (i.e., using all the objectives)
resulted in better solutions for both straight and U-shaped
lines. In addition, by comparing the results obtained for
scenario (4) for both the straight and U-shaped lines in the
case study, the U-shaped line was found to be the preferred
configuration as it resulted in better or equal solutions for all
the objectives. It was also found that the U-shaped line always
provided equal or better solution in terms of the number of
stations compared to the straight line for all the solved prob-
lems. Therefore, the U-shaped line is the recommended line
configuration where the prime optimization objective is the
number of stations. However, the straight line showed equal
or better performance in the majority of the test problems
solved compared to the U-shaped line, in terms of both the
maximum of stations’ time variance and the maximum of sta-
tions’ mean time. But, considering that the U-shaped line also
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resulted in better solutions in a few cases including the case
study, no general recommendation can be provided regarding
the line preference to optimize the two secondary objectives
considered. Therefore, a case-based study is recommended
where objectives other than the number of stations should be
optimized.

Future studies can consider extending the proposed models
to include other real-world restrictions such as equipment,
or ergonomic considerations. In addition, efficient meta-
heuristics could be developed to address the St-ALBP-ZC
and compare their performance with the optimization models
proposed in this study for both straight and U-shaped lines.

APPENDIX
See Table 7.
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