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ABSTRACT The automatic lung nodule detection system can facilitate the early screening of lung cancer
and timely medical interventions. However, there still exist multiple nodule candidates produced by initial
rough detection in this system, and how to determine authenticity is a key problem. As this work is often
challenged by the radiological heterogeneity of the computed tomography scans and the variable sizes of lung
nodules, we put forward amulti-resolution convolutional neural network (CNN) to extract features of various
levels and resolutions from different depth layers in the network for classification of lung nodule candidates.
Through the use of knowledge transfer, the method can be divided into three steps. First, we transfer
knowledge from the source CNN model which has been applied to edge detection and improve the model
to a new multi-resolution model which is suitable for the image classification task. Then, the knowledge
is transformed from source training progress so that all of the side-output branches in the model will be
considered in the calculation. Moreover, the loss function and objective equation are improved to be image-
wise calculation rather than pixel-wise. Finally, samples production and data enhancement are performed to
train and test a classifier tailored for classification of lung nodule candidates. The experimental results on
the LUNA16 data set show that our method gets an accuracy of 0.9733, a precision of 0.9673, and an AUC
of 0.9954 while being used for lung nodule candidate classification, which is higher than the scores obtained
by most of the state-of-the-art approach. In addition, when the test samples with three different sizes of 26∗

26, 36∗36, and 48∗48 are used to test the multi-resolution CNN, the accuracy rate of all three experiments
exceed 92.81%, which demonstrates that the proposed model is insensitive to input scales.

INDEX TERMS Convolutional neural network, lung nodule candidate classification, multi-resolution
model, knowledge transfer.

I. INTRODUCTION
Lung cancer is one kind of cancer among those which have
caused the most deaths. According to the official report,
the death rate caused by lung cancer has grown from the
top 9 to the top 6 compared with those generated by other
diseases over the past 20 years [42]. And the death toll is still
increasing year by year.

Early pulmonary nodules screening is an effective means
for timely medical intervention and lung cancer reduction.
As a result, a large number of medical slices will be pro-
duced. Considering lung spiral CT scanning for example,
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approving it for publication was Qingxue Zhang.

almost 100 to 300 slice images will be produced for each
patient after being scanned. Looking over and judging such
numerous pictures will inevitably increase doctors’ workload
and even cause error accidents.

As is known to all, computer aided diagnosis sys-
tems (CADs) can make use of the knowledge of more than
one experienced doctor and existing resources to assist radi-
ologists for making medical diagnostics [38], [39]. The diag-
nosis process of lung nodules using CADs often includes
rough nodular detection and nodule candidate judgment [29].
Besides, the rough nodule detection often results in multiple
initial nodule candidates. Some of these nodule candidates are
shown in Fig.1 (b) and (c), which are coarsely detected and
segmented from CT slices similar to Fig.1(a). These initial
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FIGURE 1. One slice image from lung spiral CT scan and some nodule
candidates produced from this kind of image. (a) The CT slice with a
nodule. (b) Some true nodules among the candidates. (c) Some false
positives among the candidates.

FIGURE 2. The inconsistent highlight caused by radiological
heterogeneity. (a) The weakened real nodule regions. (b) The enhanced
lymphatic nodes.

TABLE 1. Diameter distribution of the Lung Nodules in the
LUNA16 data set.

nodule candidates include true nodules (Fig.1(b)) and false
nodules (Fig.1(c)) which look like the true ones. Thus a
decision is required to select the true nodules. And the work
for selecting the true nodules is the candidate classification of
pulmonary nodules, which is exactly what this paper needs to
study.

To solve the classification problem of lung nodule can-
didates, two types of challenging issues must be paid
attention to:

1) The radiological heterogeneity [12] might result in the
invisibility of some nodules whereas other non-nodules are
highlighted. As shown in Fig.2, where (a) is the weakened
real nodule regions whereas (b) is the enhanced lymphatic
nodes. This inconsistent highlight is easy to give rise to the
difficulty of identifying nodules and non-nodules, directly
leading to an increase in false positive candidates and false
negative candidates.

2) The lung nodules are often in different sizes and variable
shapes. As Table 1 shows, the diameter distribution of the
lung nodules in the LUNA16 [29] data set changes in a wide
range, which allows the large nodules for better identification
whereas the small nodules show lower degree of identifica-
tion when both are identified by a network model. It is just
like that the lung nodules show different resolutions while
facing the network. This will undoubtedly bring challenges
to the discrimination of the network. Furthermore, the vari-
able shapes of lung nodules also pose a challenge to the

discrimination ability of the network, as mentioned in Fig.1,
some lung tissues are very similar to the real nodules in shape
which may lead to an increase in false positives.

To address those problems, we transfer and improve a
multi-resolutionCNN for lung nodule candidate classification
by the way of knowledge transfer. With this method, both
small nodules seemingly in low resolution and large nodules
seemingly in high resolution can be recognized.

The knowledge transferred is from [24] which is viewed
as the source domain. The network model in source domain
can extract the features with different sizes and levels from
the hidden layers of various depths, so that it can retain the
main objectives described in low frequency characteristics as
well as strengthen the weakened details with high frequency
characteristics. By transferring this knowledge to the target
domain, it is equivalent to mapping nodule candidates into
features of different resolutions. Thus the algorithm in the
target domain can overcome the feature representation dif-
ficulties caused by the inconsistent sizes and shapes of lung
nodules and the radiological heterogeneity.

FIGURE 3. The multi-resolution depth feature mapping from
multi-resolution CNN model. The grid rectangular block reflects the size
of feature map. The sparser the grid is, the smaller the size of the
feature map.

Our basic idea about the transferredmulti-resolutionmodel
is shown in Fig.3. The feature mapping of different res-
olutions can be obtained from the side-outputs after each
convolution block (each convolution block contains multiple
layers of convolution) and corresponding pooling layers at
different depths. And then all of these features are pooled or
cropped into the same size and aremerged together to train the
classifier. The technical detail will be described in section III.

Our contribution can be concluded as followed:
1) We transfer and improve a multi-resolution convolu-

tion neural network to complete the extraction of different
frequency characteristics of the nodule candidates. It is the
first time for this kind of structure being used for lung nodule
candidate classification. The experimental results show that it
is effective to overcome the obstacle caused by the large vari-
ation in sizes and shapes of lung nodules and the radiological
heterogeneity.

2) The network prototype applied in the edge detection
of images is ‘‘image-input/image-output’’ pattern, which is
for pixel-wise classification. We successfully resolve the
critical technical problems of transforming ‘‘image-input/
image-output’’ pattern to ‘‘image-input/label-output’’ pattern,

VOLUME 7, 2019 32511



W. Zuo et al.: Multi-Resolution CNN and Knowledge Transfer for Candidate Classification

meanwhile, giving a successful attempt to convert the pixel-
wise classification into an image-wise classification either.
In addition, it bridges the technical gap between different
fields of image application.

3) We improve the training and testing scheme of the
source network to make the network performance better in
target domain. As a result, we get a much more obvious
distinction between classes and achieve higher scores onmost
of the classification metrics on lung nodule candidate clas-
sification. During the training phase, multiple classifiers are
added to the branches in different depths respectively for loss
calculation, and multi-level gradient iteration is carried out
at the same time to jointly act on the update of weight value,
thus speeding up the convergence of the network.While at the
testing phase, the classification performance is improved by
averaging the prediction results of the classifiers connected at
the fusion layer and the deepest layer, whereas the prediction
results of shallow classifiers with low reliability are ignored.

The rest of the paper is organized like this: Section II
presents the related work on CADs of lung nodule classifi-
cation. In section III, the details of the knowledge transfer
method for network structure design and sample making are
introduced. And then in section IV, the comparison of various
experiments and corresponding results are presented. Based
on these experiences, we make a further analysis about some
key issues of the proposed approach in section V. And in the
end, we give the conclusion in section VI.

II. RELATED WORKS
Among all the current applications of CAD, the task of
classifying lung nodules is most similar to that of this paper.
Therefore, we conducted some investigations on the current
state of the art of lung nodule classification methods.

To the best of our knowledge, there are two main types
of methods for the automatic classification of lung nodule
currently, namely, traditional methods [2]–[6] andmethods of
classification using convolutional neural networks and deep
learning [7]–[17].

The hand-crafted features are often used in tradition
methods for nodule auto-classification. These features may
include those primary level features like the texture [3],
shape [2]–[4] and size [3] of lung nodules. And it may also
include the high level characteristics abstracted from primary
level features such as small waves [4], Local Binary Patterns
(LBP) [5] and Histogram of Oriented Gradients (HOG) [6]
etc. The features used are self- designated, lack of self-
learning ability like computers, and the traditional methods
are not intelligent enough to work in an ‘‘end-to-end’’ way.

However, the method using convolutional neural net-
works (CNN) can handle the above situation. As a more
automated approach, the CNN method uses raw image data
as input and can be directly classified as output, which is an
‘‘end to end’’ way of working. Currently, there are two main
ways of classifying lung nodules through convolution neural
network: 1) The 3D volume data is directly used by building a
3D-depth learningmodel to extract features. 2) The 3D data is

first transformed into a series of 2D images, and then features
are extracted from these 2D images by building a 2D depth
learning model.

In the case of the 3D CNN [7]–[10], [32], it’s utilized
more often to segment and locate lung nodules. For example,
both Chen et al. and Dou et al. have used 3D CNN for
segmentation work [7], [8]. But the recent work in the paper
of Anirudh et al. [9] shows that a method of using weakly
labeled data has completed the classification of lung nodules
successfully by training a 3D network. In the method, some
fixed-size rectangular regions around those points marked as
nodules are determined and then used as inputs to train a four-
layer 3D CNN to complete the classification task. It’s more
efficiently for this method to make use of the spatial corre-
lation information between CT slices. But the computational
cost and the waste of memory capacity make it not suitable to
be designed too complicated in the network structures of 3D
CNN [30], [31], which affects the accuracy of the extracted
features.

To avoid the above mentioned situation, 2D CNN meth-
ods are often used in nodules classification tasks [11]–[17],
[34], [35], [41]. Among these 2D CNNmethods, Li et al. [14]
proposed a 7-layer convolutional neural network based
on AlexNet structure [18] to classify lung nodules, and
Kumar et al. [15] proposed a 5-layer auto-encoder to extract
deep features for lung nodules classification. What’s more,
Hua et al. [16] proposed a deep belief network and a con-
volutional neural network to complete the same lung nodule
classification task.

While, in these 2D CNN approaches, some cases are sim-
ilar to ours in form, which all are committed to solving
the challenging problem of lung nodules classification men-
tioned above. For example, Shen et al. have put forward
two different models of multi-scale CNN [11] and multi-crop
CNN [12] to describe the characteristics of the nodules at
different levels. The multi-scale CNN method takes images
with three different sizes as inputs to train three CNNs respec-
tively. And the output features from these three CNNs are
then concatenated together for classifier training. This treat-
ment improves the classification performance in a limited
degree.

The multi-crop CNN [12] is an improvement on the multi-
scale CNN [11]. Instead of employing the multi-scale infor-
mation of input, the multi-crop CNN takes advantage of the
information from the hidden layer. That is, the central regions
of feature map from one certain layer are cropped into pieces
in different sizes, which are then combined together to form a
new feature map to add to the next layer so as to improve the
network structure. The results show that this method works
the best when the feature map comes from the shallowest
layer. This shows that, just like the multi-scale CNNmethods,
this approach is mainly based on low-level features in shallow
layer which is near the input layer. However, the improvement
on classifier performance is very limited only by carrying out
changes on the shallow layer of the network, which is proved
by the comparison experiment in section IV.
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The multi-view CNN proposed by Liu and Kang [13] is
another improvement on the multi-scale CNN. In the method,
the input images in different sizes are resized to the same size
to makemulti-view areas. By taking these multi-view areas as
the multiple input channels, the CNN is trained and realizes
the function of extracting multi-scale features. But as we can
see, this approach does not change the way at all by making
a change only on the input compared with the previous one.

Considering the state of the art, we proposed our multi-
resolution 2D CNN model by means of knowledge transfer.
Compared with the above 2D CNN methods, our model has
a great improvement in structure, which makes the classifi-
cation effect competitive. The specific structural differences
are discussed in section V. For specific performance improve-
ment, please refer to the experimental part in section IV.

III. METHODOLOGY
In this section, we describe the details of knowledge transfer
method applied in the classification of lung nodule candi-
dates.

The idea of knowledge transfer is similar to that of trans-
fer learning [1], [36], [37]. According to the definition of
transfer learning, it aims to help improve the learning of
the target predictive function fT (•) in target domain with the
knowledge in resource domain and resource task [1]. Our
knowledge transfer method is also intended for this purpose.
But, unlike the transfer learning in which the knowledge
is often directly inherited from the source domain without
change, our knowledge transfer approach aims to transfer
knowledge from the source domain but make corresponding
improvements to obtain similar information to facilitate tasks
in the target domain. To do that, we first carry out knowledge
transfer from the model in source domain to get the similar
model in target domain. Then, we transfer knowledge from
the training progress in source domain into the target domain
to complete the classification algorithm for target domain.
After that, the samples production and data enhancement in
target domain are completed to retrain the transferred model
because the feature space in target domain is different from
that in the source domain. As described below, we will intro-
duce our methods from the above three aspects respectively.

A. KNOWLEDGE TRANSFERRING FROM MODEL
AND IMPROVEMENTS ON STRUCTURE
The source model in [24] can simultaneously extract the
high frequency and low frequency information of the edge
while being applied to the edge detection task. This particular
function inspires us. As we mentioned earlier, nodules of
different sizes which look like in multiple resolutions need
to be analyzed with multi-level features. Thus, we can trans-
fer knowledge from model in source to the target, that is,
we retain the main structure of the source model in the target
domain but make the following modifications:

1) The network model in [24] remains four pooling layers
in its backbone which are from pool1 layer to pool4 layer.

We removed the pool4 layer and only retained the first three
pooling layers. This is because our input images are relatively
small, too many pooling layers may lose their information,
resulting in missing important details.

2) As the modified model will be adapted to the classifi-
cation task, the labels feed to the output sides are no longer
images, but a series of single-valued vectors (‘‘1’’ or ‘‘0’’),
sowe do not need to interpolate the compressed features back.
Instead, we will remove the up-sampling section of the side-
output branches but add the pooling parts to them.

3) We add a certain size of padding to the first convolu-
tional layer and the third pooling layer so that we can obtain
the uniform size of feature maps with different levels. This
conduct brings two huge benefits: a) It is convenient for the
subsequent layer to concatenate all of these feature maps of
the same size. b) It contributes to the selection of the kernel
size of the pooling portion of each side-output branch, which
can be selected twice as large as the size of its stride, so that
the mapping scope of the pooling operation can be covered
with each other without missing important information.

FIGURE 4. The structure of the multi-resolution CNN model. The numbers
in each rectangular block represent the number and size of the filter
kernel.

After the above improvements, the final model structure
is shown in Fig.4. Similar to the model referred in [24],
we reserve five side-output parts and their corresponding
sigmoid classifiers which are named as sigmoid with an
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appended number from 1 to 5 (such as: sigmoid5), each
side-output branch is connected to different layers from the
backbone of the network. The receptive field of each side-
output branch can be obtained by calculating the receptive
field of the corresponding layer in the backbone of the
network.

According to this calculation, the corresponding relation-
ship between each branch and the receiving field is shown
in Table 2. As can be seen from Table 2, each side-output
branch has different receptive field size. The deeper the layer,
the larger the receptive field is. We can finally complete the
extraction of different resolution features by integrating all of
these feature maps in different receptive field sizes.

TABLE 2. The sizes of receptive fields (rf) and output feature maps (fm)
in the backbone of the network.

B. KNOWLEDGE TRANSFERRING FROM TRAINING
PROGRESS AND TRICKS ON ALGORITHM
It can be observe the source task in [24], which is ostensibly
for edge detection, but is actually a kind of pixel-wise clas-
sification task. That is to say, the main idea of the algorithm
in source domain is similar to the general classification task.
Therefore, knowledge transfer can be carried out from the
training process of the source task into the target algorithm
to help improve the learning of the target predictive function.
However, since the classification method of the target field
is based on the whole image rather than on pixels, the loss
function must be improved, such as, being calculated over
the whole image. Besides that, in the test phase, in order to
meet the requirements of image-wise classification accuracy
for the target domain, the test method is improved too. The
specific algorithm in the training and testing phase is as
follows:

1)Training phase
During the training period, we reserve the loss values from

5 side-output branches and 1 fusion layer and adopt the
method of ‘‘joint training with separate calculation’’. That is,
these loss values are calculated independently in the forward
recursion, but they work together for upgrading the weight
when the gradient values are passed backward by using the
stochastic gradient descent algorithm. The specific process is
as follows:

Suppose that the training set contains m sample pairs
{(X (i),Y (i)), i = 1, 2, · · · ,m}. Where X (i) represents the ith
raw image which works as the input sample, Y (i)represents
the corresponding label of X (i). Then the loss function of the

nth side-output branch can be defined as:

lnside(W ,w
n) = −

m∑
i=1

Y (i)logP(Y (i)
= 1|X (i),W ,w(n))

−

m∑
i=1

(1− Y (i))logP(Y (i)
= 0|X (i),W ,w(n)) (1)

where W represents the parameter set of network standard
layers, w(n)(n = 1, 2, · · · , 5) represents the parameter set of
those layers which only present in the nth branch. P(Y (i)

=

1|X (i),W ,w(n)) and P(Y (i)
= 0|X (i),W ,w(n)) represent the

probability of ‘‘1’’ and ‘‘0’’ of the sample X (i) which are
predicted by the classifier in the ith branch respectively.
We put the parameters W and w(n) together and denote them
asW ′, then the probability values can be calculated according
to the formula (2) and formula (3):

P(Y (i)
= 1|X (i),W ′) = 1/

(
1+ e−W

′TX (i)
)

(2)

P(Y (i)
= 0|X (i),W ,w(n)) = 1− P(Y (i)

= 1|X (i),W ,w(n))

(3)

Similarly, the loss function of fusion layer can be obtained,
as shown in formula (4). Because that is the same kind of clas-
sifier used in the fusion layer and the side-output branches,
the formula (1) and formula (4) are similar in form.

lfuse
(
W ,WN ,wfuse

)
= −

m∑
i=1

Y (i)logP(Y (i)
= 1|X (i),W ,WN ,wfuse)

−

m∑
i=1

(1− Y (i))logP(Y (i)
= 0|X (i),W ,WN ,wfuse) (4)

In the formula, WN
= (w(1),w(2),w(3),w(4).w(5)) is the

integrated representation of the parameters of those layers in
each branch, and wfuse is the fusion weight obtained through
adaptive training of the network. The model structure shows
that the loss value of fusion layer has relationship both with
the network parameters in each branch and with what in
fusion layer.

The final objective equation is:

(W ,WN ,wfuse)∗ = argmin(
5∑

n=1

αnlnside(W ,w
(n))

+βlfuse(W ,WN ,wfuse)) (5)

where αn and β are the weight coefficient allocated to each
classifier, and their numerical setting is shown in section IV.

In the training phase, the parametersW ,WN and wfuse can
be updated with the stochastic gradient descent method at the
end of each batch of data for training, until they are trained
to meet accuracy requirements. The experimental results are
shown in section IV.

2)Testing phase
After the training phase is completed, the multi-resolution

CNN can be used to predict the lung nodule candidates.
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Denote the predicted result as Ŷ , Ŷ ∈ (0, 1). Since six
classifiers from five side-output branches and one fusion
layer are designed in this network. Then, the predicted results{
Ŷ (n)
side, n = 1, 2, . . . , 5

}
and Ŷfuse can be obtained from the

side-output branches and fusion layer respectively while
being given the input image X . Where n represents the num-
ber of side-output branches, which ranks from shallow to
deep according to the position connected to the backbone, and
n = 5 indicates the deepest layer.

The final unified output classification results can be
obtained by combining those predictions. Different from the
treatment in [24], we just integrate the predictions of the
deepest branch and the fusion layer as the final predicted
result. The classifiers of other branches are used only for
auxiliary training instead of contributing to the test results.
Specific reasons are displayed in section IV. And the final
output classification results are:

Ŷout = Average(Ŷfuse, Ŷ
(5)
side) (6)

C. SAMPLES PRODUCTION AND DATA ENHANCEMENT
The source and the target are different in feature spaces,
so we need to make our own samples to retrain the transferred
network.

The data set we are using comes from the Grand Challenge
on Lung Nodule Analysis 2016 (LUNA16) [29]. Through the
use of the publicly available LIDC/IDRI database [25], [26]
after being screened, the LUNA16 data set retains 888 CT
scans from 888 different patients. These CT scans are all
consistent in annotations made by at least three experts.
The LUNA16 data set also provides document containing
annotated information about the location of the nodules in
those CT scans. In the annotation file, a list of 1186 nodules’
coordinates and their diameter values is given. By use of these
locations in the annotation file, we make our own samples.

The samples production process is divided into two stages.
In the first stage, the central coordinates of nodules and
non-nodules are extracted. In the second stage, we take the
coordinates extracted in the first stage as the centers, expand
the space around the centers to form some square patches,
and then segment the square patches and label them with the
corresponding class labels to get samples.

In the first stage, we extracted the center point coordinates
of the positive samples on the basis of the world coordi-
nates of the 1186 nodules provided in the annotation file.
We convert the world coordinates of these nodules into voxel
coordinates first, then take out the coordinate points every few
pixels along the x-axis, y-axis and z-axis respectively. And
these coordinates are counted as center coordinates of the
positive samples. This method, in fact, is equivalent to taking
a series of target points near each nodule location, which is
an expansion of the number of positive samples.

As for the extraction of the central coordinates of negative
samples (non-nodules), we take the points that are randomly
sampled in the lung area. For the chest CT images contain the
lung areas and bone areas, the negative sample coordinates

obtained are more practical by limiting the sample range in
the lung areas.

After the first phase, we get all the points expressed in
voxel coordinates. In the second stage, we will find those
slices from the CT scans where those points are located
according to their z coordinate. In each of these slices, we take
the point (x, y) which is defined by x and y coordinates as
center point and crop a certain size of square patch around the
center point. These square patches are the samples we need.
The sample extraction process is shown in Fig.5.

FIGURE 5. The process of the sample extraction. First, the slice position
can be found according to the z coordinate. Then the sample can be cut
out according to the given x and y coordinates.

FIGURE 6. Positive and negative sample patches. (a) The positive sample
patches with spherical contours in irregular shapes and different sizes.
(b) The negative samples without typical spherical contours.

Based on the above method, we obtained 71,160 negative
sample patches in size of 36∗36 and 55752 positive sample
patches in the same size. We put these samples together to
form a sample set including 126,912 samples. Fig.6. shows
these sample patches. We can see that there are some high-
lighted portions with spheroidal contours contained in the
positive samples which are known as nodules or part of the
nodules, but we cannot obviously find those kinds of contours
in the negative samples.
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IV. EXPERIMENTS AND RESULTS
In this section, a series of comparative experiments and
corresponding evaluation results will be introduced. For
example, in order to prove that the network structure and
training scheme of this article works better than that of others,
we conducted a comparison between the relevant network
structures and the training schemes. In order to prove that
our method is insensitive to image scales and robust to multi-
resolution problems, we compared the classification results of
the images with different input sizes and resolutions. In addi-
tion, we compared our method with the state-of-art approach
to verify that ours is more competitive in dealing with
the classification of lung nodule candidates with different
resolutions.

The details of these experiments are described below.

A. THE EXPERIMENT SETTINGS AND EVALUATE METRICS
We train our network model on one GTS1080 Ti GPU and
use the keras as the deep learning framework which bases on
the backend of Tensorflow. In order to process medical image
formats, we also use professional plug-ins like pydicom and
SimpleITK.

Our experimental process is divided into training and test-
ing phases. During the training phase, the training parameters
are mainly selected through experience. We set the learning
rate to 0.0001, the momentum to 0.9, the batch size to 256,
and complete the training through an iterationwith 50 epochs.
In both of the two phases, we choose the hyper-parameters of
αn and β mainly through empirical testing. That is, the loss-
weight αn for each side-output branch is set to 1, and the
fusion layer weight β set to 1 too.

In order to evaluate the results of the classification experi-
ment, we used the evaluation metrics such as accuracy, preci-
sion, recall [28] and AUC [27].The detailed description about
these metrics refer to [27].

In addition, in order to evaluate the experimental results in
the same data set, we also employed the evaluation metrics
provided by the LUNA16 challenge, which are the sensi-
tivities at 1/8, 1/4, 1/2, 1, 2, 4 and 8 FPs per scan and the
Competition Performance Metric (CPM) respectively [29].

B. CLASSIFICATION PERFORMANCE UNDER DIFFERENT
NETWORK CONFIGURATIONS AND
PREDICTION SCHEMES
After observing the structure of our multi-resolution CNN
model described in section III, we discover that the side-
output branches of the network seems to make more con-
tributions to the processing of multi-resolution information.
So we try to change the network configuration by removing
these branches or their corresponding classifiers, and conduct
the lung nodular classification experiments with the modified
configurations and corresponding training methods. These
comparisons are described in the item 1) below.

It can be noticed that, in section III, we have used the
average outputs of multi-resolution CNN’s deepest branch

and fusion layer as the final prediction in the prediction phase.
We explain the reasons by experiment and try to compare this
with other prediction schemes as well, which are introduced
in the item 2) below.

1) Network configurations and training schemes
comparison

In order to verify that the multi-resolution CNN network
has a better performance, based on the network structure
mentioned in section III, we have designed two training
schemes with two structural changes. The first option is to
remove all of the side-output branches of the multi-resolution
CNN network, retaining the main part and the classifier in the
deepest layer only. We named this scheme as MRC_trunk.
The second option is just like the description in section III.
All of the five side-output branches and the final fusion layer
are connected to their respective classifiers. While training,
there are six loss functions corresponding to their respective
six classifiers being calculated at the same time to promote
the weights updating. This scheme is named as MRC_6loss.

FIGURE 7. The training loss curve of the MRC_trunk scheme and our
MRC_6loss scheme.

FIGURE 8. The training accuracy curve of the MRC_trunk scheme and our
MRC_6loss scheme.

We set the training cycles of the two experiments to
50 epochs, and depict the loss values and accuracy values
in the training process as curves shown in Fig.7 and Fig.8
respectively. As can be seen from the figures, although all of
these experiments could eventually converge, theMRC_6loss
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with a faster decline trend for its loss value has fallen
to 0.1010 only in the 19th epoch, whereas the loss value
of MRC_trunk falls to the same level almost after the
35th epoch. Similarly, in the training accuracy curve of the
three schemes, the training accuracy of MRC_6loss is shown
to be a faster growth too, and it is completely beyond that of
MRC_trunk only after the 10th epochs. This is because each
of the side-output branches of MRC_6loss could contribute
to the updating of the parameters of its previous layers when
the gradient iteration is carried out by using the stochastic
gradient descent method. In this way, owing to those shallow
layers, each update of their weight will be more accurate,
which makes the network easier to converge.

Moreover, when two types of networks are used for a
classification test of multi-resolution lung nodule candi-
dates respectively, results obtained are shown in Table 3.
It’s worth noting that MRC_6loss has obtained a higher score
on all the metrics. And especially on recall, it gets a score
of 0.9726 which is far higher than that of MRC_trunk. It indi-
cates that when all branches and corresponding classifiers are
retained, multi-resolution CNN canmake the training process
easier to converge and the classification performance being
better.

TABLE 3. Comparison of different network configurations and training
schemes on their scores over the classification metrics.

2) Prediction schemes comparison
As mentioned before, there are six classifiers in the

MRC_6loss which give six predicted confidences corre-
spondingly. So, we can adopt two prediction schemes for
comparison, that is: (1) Just like what described in [24],
we regard the average value of all these six predicted con-
fidences from all the branches and fusion layer as the final
prediction and name this prediction scheme as MRC_6loss_
avg6. (2) Only take the average value of predicted confi-
dences from the fusion layer and the deepest branch as the
final predicted result, as described in section III. This predic-
tion scheme is named as MRC_6loss_avg2.

Fig.9 shows the class confidences comparison between the
MRC_6loss_avg6 scheme and the MRC_6loss_avg2 scheme
under ten random test samples. It can be seen that in the
MRC_6loss_avg2 scheme a real nodule in ground truth
is predicted to be true nodule with a confidence above
95% whereas a non-nodule is predicted to be a true one
with a confidence below 2%. The obvious confidence gap
between various classes just shows that different categories
are easily distinguishable in the MRC_6loss_avg2 scheme
than that in MRC_6loss_avg6, as mentioned above, the
MRC_6loss_avg6 scheme has a more ambiguous confidence
gap for the confidence coefficient is about 62% and 30%
respectively.

FIGURE 9. Prediction confidences comparison on different prediction
schemes.

FIGURE 10. The classification performance of the multi-resolution CNN
under different input scales and resolutions.

C. CLASSIFICATION PERFORMANCE UNDER INPUTS
IN DIFFERENT SCALES AND RESOLUTIONS
We train the multi-resolution CNN with samples in size
of 36*36. However, as described in [24], this kind of structure
of the network which was transferred by the use of knowledge
transfer is insensitive to input scales.

As we know, the image with big size contains more seman-
tic information about the environment around the target,
whereas the smaller one is more focused on the target itself
and contains less semantic information. Therefore, for most
general networks, the sizes of the input images will also affect
the results of classification. To prove the multi-resolution
CNN without this obvious disadvantage, we use the same
way as described in section III to produce test samples with
two different sizes of 26∗ 26 and 48∗48 respectively, and
employ the interpolation method to resize these samples into
the same size of 36∗36. Thus these test samples become
test images with different resolutions but in the same size.
Then we put these images with different resolutions together
for experiments and compare these with test images in the
same size from the original test set. The test results of these
comparative experiments are shown in Fig.10 and Fig.11.
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FIGURE 11. The ROC curve of multi-resolution CNN under different input
scales and resolutions.

TABLE 4. Classification performance compared with the current similar
approaches.

As can be seen from these figures, although the multi-
resolution CNN is trained with those images in size of 36∗ 36,
which causes the classification accuracy of the images whose
original size is 36∗ 36 slightly higher than that of the other
images. But overall, all of these three experiments have
an accuracy of over 92.81%. Their ROC curve also shows
that the classification performance is generally good. This
indicates that the multi-resolution CNN is not sensitive to
the scales of inputs. What’s more, since these test images
have different resolutions, the experiments also prove that the
multi-resolution CNN is robust to the classification of multi-
resolution images.

D. CLASSIFICATION PERFORMANCE COMPARED WITH
THE STATE-OF-THE-ART APPROACH
In this section, we compare our approach with the multi-scale
CNN approach [11], the multi-crop CNN approach [12], and
the multiview CNN approach [13]. The results are shown
in Table 4. Although it is difficult to make a fair comparison
because of the differences in sample size, it can be seen that
our multi-resolution CNN still shows strong competitiveness
on all the metrics. Among these current methods, our method
is the only one to achieve its scores more than 90% in accu-
racy and sensitivity. And its AUC value is also the highest
among four methods. Although the specificity metric of our
method is slightly lower than that of the multi-view approach,
it is significantly higher than that of the other methods.
This shows that compared with the existing similar methods,
our method has dramatically improved the performance of
classification tasks related to pulmonary nodules.

Moreover, we also compared our method with the method
using the same data set, such as the method mentioned

FIGURE 12. The FROC curve obtained on LUNA16 data set. The solid line
is the mean sensitivity, and the dash lines are the upper bound and lower
bound of sensitivity.

in [40] and [10]. Since the LUNA16 competition also specif-
ically provided 754,975 nodule candidates for ‘‘the false
positive reduction track’’, by adopting the sampling method
similar to that in [40], we produced 0.82million samples from
these candidates to retrain our model and then use the trained
model to classify these candidates. The experimental results
are shown in Fig.12 and Table 5.

In Fig.12, the 95% confidence interval of the FROC curve
is computed using bootstrapping with 1,000 bootstraps [29].
And in Table 5, the mean sensitivities (out of parentheses)
and upper sensitivities (in parentheses) are given at each
FPs/scan respectively. It can be seen that although 3D CNN
gets better score in CPM, for it is better than 2D CNN in
capturing the context information between slices, our model
has more advantages when FPs/scan is lower. In fact, our
method gained the best score at 1/8 FPs/scan among all the
single CNN method. It proves that our method can achieve
a good performance even with extremely low false positive
rates.

However, since some methods combine multiple CNN for
classification prediction, such as the Iitem03 method and the
Faster R-CNNs method [40], compared with those, ours gets
a higher score on CPM than the Iitem03 method and a higher
sensitivity at 8 FPs/scan than the Faster R-CNNs method. But
in general, the Faster R-CNNs approach performs slightly
better than ours due to the idea of multi-CNNs combination
strategy used in that method.

But on the other hand, as a single-CNNmodel, our model is
more convenient to train and use than that of the multi-CNNs
model. Moreover, our model can also be used as a base single
model to provide reference for the multi-CNNs combination
strategy.

V. DISCUSSION
A. THE ADVANTAGES OF THE PROPOSED METHOD
We used the knowledge transfer method to transfer and
reconstruct a multi-resolution convolutional neural network
to complete the classification task of lung nodule candidate.
The network can map the image of lung nodule candidate
into characteristics of different resolutions and scales while
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TABLE 5. The experiment results compared with the method using the same luna16 data set. The figures in or out of parentheses represent the
upper sensitivities and mean sensitivities respectively.

encountering the difficulty in characteristics description of
pulmonary nodule for its radiological heterogeneity and vari-
abilities in sizes and shapes, thus greatly reducing the false
positive of classification task and improving the scores on
classification metrics.

B. TRAIN FROM SCRATCH OR PRE_TRAIN?
Our knowledge transfer method is somewhat similar to the
idea of transfer learning. But for most transfer learning,
the network structures tend to be unaltered. And just for this
reason, it is often convenient for the transferred network to
preload the weight of the target model before training, which
amounts to pre-train the network. However, in contrast to that
usual treatment, to make the model structure more suitable
for the target task, we have made some improvements on
the model structure. This treatment makes it difficult for
preloading the existent weight to the transferred network,
so the proposedmethod does not pre-train the network like the
general transfer learning indeed. In spite of this, the experi-
mental results shown in Fig.8 above have proved that with-
out pre-training, multi-resolution CNN can still converge
rapidly while being randomly weighted. The reason might be
attributed to our sufficient samples and reasonable selection
of training program.

C. THE ANTI-OVERFITTING MEASURES
It is often necessary for network training to solve the prob-
lem of overfitting. As far as I know, the network structure
of the multi-resolution CNN with more parameters is more
complicated than what others applied in similar applications,
which makes measures to prevent overfitting. There are two
kinds of anti-overfitting measures commonly used. One is
through the network structure changing, like using a simpler
network structure or adding a dropout layer into the network.
The other is to expand the number of samples, such as,
using sample enhancement strategies to diversify the sample.
As for the first approach, it might hurt the network’s clas-
sification performance by simplifying the network structure,
plus the method of adding the dropout layer has been proved
to be less effective for medical applications in [12]. That’s
why we make an attempt to expand the number of samples.
As described in section III, we obtain the expanded samples
by translating the nodule candidate blocks along the x, y and
z axis respectively in the sample preparation phase.

D. DIFFERENCES AND IMPROVEMENTS COMPARED
WITH SIMILAR METHODS
The method presented in this paper is similar to that proposed
by Shen et al. [11], [12] and Liu and Kang [13] in form, but it

TABLE 6. The number of layers for four different network models.

FIGURE 13. Current improvement patterns of CNN for the classification of
multi-resolution lung nodules. (a) The multi-scale CNN [11]. (b) The
multi-view CNN [13]. (c) The multi-crop CNN [12]. (d) Our method.

has a great improvement in performance in comparison with
their methods. There are two main reasons:

1) The 2D network structures used in themethods proposed
by Shen et al. and Liu et al. are relatively simple and have
fewer layers. But for classification tasks, the deeper features
aremore conducive to the classification of targets [33]. There-
fore, the depth of the network model should reach a certain
degree to achieve more accurate expression of the targets,
which is also one of the reasons the naming of deep learning.
In this sense, just like what are shown in Table 6, our model
is made up of 16 layers and is deeper than the previous three
kinds of 2D network models. This might make our network
model more effective.

2) The methods proposed by Shen et al. and Liu et al. focus
only on integrating the characteristics extracted from one
layer of the network, but our method integrates the features
of different resolutions extracted from different layers of the
network. Fig.13 shows the differences in their optimization
patterns, where the subfigures (a) and (c) show the two meth-
ods proposed by Shen et al., whose fusion features are from
the output layer and the shallowest hidden layer respectively.
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The subfigure (b) shows the method proposed by Liu et al.,
whose fusion features are from the output layer. The
subfigure (d) is our proposed method, which combines the
characteristics of different levels frommultiple layers. As our
method focuses on the multiple analysis of multi-resolution
features, it is more effective to solve the problem of multi-
resolution lung nodule candidates classification.

FIGURE 14. Some of the misidentified nodule candidates without being
fully highlighted.

E. LIMITATIONS AND FUTURE WORKS
Although the characteristics of lung nodules can be analyzed
in multiple resolutions by our proposed method, thus some of
the less obvious nodules caused by radiological heterogeneity
can be successfully identified as well. There are still some
limitations that need to be addressed in this study. First,
a complete lung nodule is often distributed on multiple slices.
However, our 2D CNN method is limited in capturing the
contextual information between slices, thus a 3D CNNmodel
may be considered in our future work. Second, our model is
trained on LUNA16 data set. But some types of nodules are
not fully represented or not fully highlighted in the data set,
which may lead to the false identification of nodules. Some
of these misidentified nodule candidates are shown in Fig.14.
We believe that a larger data set for sample preparation and
effective sample preprocessing before training will help iden-
tify these candidates, which will also be part of our future
research work.

VI. CONCLUSION
We transfer and improve a multi-resolution CNN to solve
the challenging problems posed by radiological heterogeneity
and variable sizes and shapes of nodules in the classification
of lung nodule candidates using the method of knowledge
transfer. We demonstrate the importance and effectiveness
of bringing in multi-resolution feature information extracted
from this network in the case of the classification task
of lung nodule candidate. The experimental results on the
LUNA16 data set show that the proposed method achieves
a competitive score on the evaluation index of the classifi-
cation performance. The network we have transferred is a
network model that has been proved effective on edge extrac-
tion tasks, therefore in principle our approach is universal.
As a classification method for lung nodule candidate, our
method can effectively improve the accuracy of lung nodule
screening combined with the effective initial rough detection
method.
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