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ABSTRACT In this paper, we propose, investigate, and demonstrate a reconfigurable low-voltage and
low-power millimeter-wave mixer in a 65-nm CMOS, which can be switched as either a subharmonic
mixer (SHM) or a fundamental mixer (FM) for the dual-band applications. Based on a modified Gilbert
mixer topology, the proposed CMOSmixer can operate at a low supply voltage and low local oscillator (LO)
pumping power while providing good performance in both SHM and FM modes. To the best of our
knowledge, this is the first reported Gilbert SHM based on the stacked switching quads in a low-voltage
CMOS technology. Under 1-V supply voltage and −3-dBm LO pumping power, the measured conversion
gain (CG) of the proposed CMOS mixer is−4.8± 1.5 dB from 34 to 56 GHz and−0.1± 1.5 dB from 17 to
43 GHz in the SHM and FMmodes, respectively. The measured double-sideband (DSB) noise figure (NF) is
18.5–20 dB from 37 to 49 GHz and 12.4–14 dB from 17 to 35 GHz in the SHM and FMmodes, respectively.
The measured input third-order intercept point (IIP3) is 2.9 and 3.4 dBm, respectively, for the SHM and FM
modes at the LO frequency of 22 GHz. In addition, the total dc power consumption of the proposed mixer
including output buffers is 7 mW in both the operation modes.

INDEX TERMS CMOS, dual-band mixer, fundamental mixer (FM), Gilbert mixer, low-power, low-voltage,
millimeter-wave (mmW), reconfigurable, subharmonic mixer (SHM).

I. INTRODUCTION
Research and development of multi-band and multi- stan-
dardwireless communication systems have gained significant
interest in recent years [1]–[3]. Traditional design strate-
gies have adopted separate single-band radio-frequency (RF)
front-ends, which can physically be arranged in parallel for
multi-band operations [1]. The drawback in this case is that
the number of RF blocks involved in the system development
is multiplied by the number of frequency bands of inter-
est, hence the development cost, physical size and power
consumption of the system are all increased. Alternative
approach is to design a multi-band transceiver system that
reuses common RF blocks as much as possible among the
multiple frequency bands [2]. This approach is also appeal-
ing for millimeter-wave (mmW) transceivers on silicon to
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increase the versatility, save the chip area, and reduce the
power consumption.

A multi-band mixer is one of the key components in a
multi-band transceiver. A switched dual-band mixer was pro-
posed in [4], where a switched inductor matching network
was used to select the frequency band of interest. By using
a dual-band L-C matching network, the mixer proposed
in [5] can operate in two desired frequency bands simultane-
ously. The concept of composite right/left-handed transmis-
sion lines was also used to implement a dual-band mixer [6].
All these mixers, however, require multiple local oscillators
(LOs) for multi-band operations. By selecting either the fun-
damental or 2nd order harmonic output of the oscillator as the
LO through a set of complementary switches, a dual-band
self-oscillating mixer was proposed in [7]. Similarly, band
selection was achieved by either mixing the input signal with
the fundamental or 3rd order harmonic component of the LO
in [8]. A reconfigurable passive subharmonic mixer (SHM)
with a multi-stage injection locked ring oscillator as LO was
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FIGURE 1. Schematic of the proposed reconfigurable dual-band CMOS mixer based on a modified Gilbert mixer topology.
(a) Complete circuit. (b) Proposed mixer in SHM mode (without IF buffers). (c) Proposed mixer in FM mode (without IF buffers).

proposed in [9] for dual-band applications. The multi-stage
injection locked ring oscillator was used to generate multiple
LO phases. By selecting appropriate LO phases, themixer can
be reconfigured between the fundamental and subharmonic
operation modes.

In this paper, a reconfigurable low-voltage and low-power
mmW dual-band mixer in 65-nm CMOS is proposed, stud-
ied and demonstrated. The proposed CMOS mixer can be
switched as either a SHM or a fundamental mixer (FM) for
dual-band applications. By using a modified Gilbert mixer
topology [10] and an active load [11], the proposed CMOS
mixer can operate at 1 V supply voltage and −3 dBm LO
pumping power while maintaining a good performance in
both SHM and FM modes. The 1V supply voltage and
−3 dBm LO power make it suitable for low-voltage and
low-power applications. To the best of our knowledge, this
is the first proposed Gilbert SHM based on stacked switch-
ing quads [12] in CMOS technology. The rest of this paper

is organized as follows. The analysis and design of the
proposed mixer in SHM and FM modes are presented in
Section II (A) and (B), respectively. Section III provides
the measured results and comparisons. Finally, Section IV
summarizes this paper.

II. ANALYSIS AND DESIGN OF THE PROPOSED
RECONFIGURABLE DUAL-BAND MIXER
As the feature size of the CMOS transistor continues to
shrink, a proportional downscaling in the supply voltage
is mandatory to maintain gate-oxide reliability. Therefore,
low-voltage CMOS mixers are highly required, which have
to force many compromises between conversion gain (CG),
LO power, linearity, noise figure (NF), port-to-port isolation,
power consumption, and supply voltage.

Fig. 1(a) shows the schematic of the proposed CMOS
mixer based on a modified Gilbert mixer topology, where
the tail current source and the RF transconductance stage in
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a conversional Gilbert mixer are replaced by a Marchand-
balun-based RF stage to reduce the supply voltage [10].
In addition, an active load that is composed of two PMOS
transistors (M9 and M10) and two common-mode feedback
resistors (R1 and R2) is employed to provide a high load
impedance [11].

The core of the mixer is composed of two stacked switch-
ing quads (M1-M8) and a common-gate differential pair
(M11-M12). The bottom switching quad is composed of tran-
sistors M1-M4, whose gates are biased near the threshold
voltage Vth. The top switching quad is composed of transis-
torsM5-M8, whose gates are biased at VA. The common-gate
differential pair is composed of transistors M11-M12, whose
gates are biased at VB. As shown in Fig. 1(a), VA and VB
represent the dc voltage at node A and node B, respectively,
whose values can be selected by the control voltage VC as

VA =

{
VG2, if VC = 1
0, if VC = 0

(1)

and

VB = VC. (2)

where VG2 is the turn-on voltage of the top switching quad
that is approximately equal to the sum of Vth and the drain
voltage of the bottom switching quad VDb, while VC is the
complementary value of VC.

High impedance compensation lines are employed
between the RF Marchand balun and the bottom switch-
ing quad, as shown in Fig. 1, to compensate the parasitic
capacitances of the transistors M1-M4 [10]. A passive four-
way quadrature divider, which is composed of a 90ř coupler
and two Marchand baluns, is utilized to generate quadra-
ture LO signals. The bottom and top switching quads are
driven by the in-phase LO signal (LOI) and quadrature LO
signal (LOQ), respectively. By adding four bypass capacitors
(C1-C4) as shown in Fig. 1(a), the two LO Marchand baluns
in the four-way quadrature divider could provide dc bias volt-
ages (VG1 and VA) for the stacked switching quads without
affecting the LO characteristics. Compared with a commonly
used lumped poly-phase filter [12], [13], the passive four-way
quadrature divider has a much lower insertion loss in the
mmW range at the cost of a larger chip size. In addition,
the transimpedance amplifier (TIA), which is composed of an
NMOS transistorMbn, a PMOS transistorMbp and a feedback
resistor RF (500 �), is utilized as an intermediate-frequency
(IF) output buffer [11].

As will be discussed below, the proposed mixer can be
reconfigured for operation between the subharmonic and
fundamental modes simply by changing its bias, as shown
in Fig. 1(b) and 1(c), where the IF buffers are removed for
simplicity.

A. PROPOSED MIXER IN SUBHARMONIC MODE
A SHM allows for the use of an LO operating at a frequency
that is only a fraction of the LO frequency of a FM [12].

This is very attractive in mmW frequency range, where an
LO source with low phase noise and high output power
is not always available [14]. The most widely used SHM
topologies include the anti-parallel diode pair (APDP) based
SHMs [15]–[17], the FET resistive SHMs [18]–[20], and
the transconductance SHMs [14], [21]–[23]. Three distinct
Gilbert SHMs [24], including the stacked-LO SHM [12],
[25]–[27], the top-leveled-LO SHM [28]–[31] and the
bottom-leveled-LO SHM [24], [32], have also been pro-
posed. Among these structures, the Gilbert stacked-LO SHM
achieves the highest CG and port-to-port isolation, while
requiring the lowest LO pumping power [24]. However, this
topology usually needs a high supply voltage, such as 3.3 V
in [12] and [25] and 4 V in [26], due to the stacked structure.
Thus, it is not suitable for low-voltage applications, especially
in CMOS technologies. To date, all the published Gilbert
stacked-LO SHMs are based on bipolar technologies. On the
other hand, the top-leveled-LO SHM, the bottom-leveled-LO
SHM, as well as the double balanced passive SHM [33], [34],
can operate with a lower supply voltage in CMOS technolo-
gies. However, they usually require much higher LO pumping
power with lower CG and worse port-to-port isolation.

To operate an active SHM at low supply voltage and low
LO pumping power while providing a good CG and high
port-to-port isolation, a modified Gilbert stacked-LO SHM
is proposed for the first time, as shown in Fig. 1(b), where
VA = VG2 and VB = 0 V. Which means that the transistors
M5-M8 in the top switching quad are biased near the turn-on
voltage, while the common-gate devices M11-M12 are in off-
state. During the positive excursions of LOQ,M5 andM8 are
turned on, while M6 and M7 are turned off. On the contrary,
during the negative excursions of LOQ,M5 andM8 are turned
off, while M6 and M7 are turned on. In other words, the top
switching quad is switched by LOQ. Meanwhile, the bottom
switching quad is switched by LOI. The two stages of switch-
ing with 90ř phase offset provide an effective doubling of
the LO frequency [12]. Therefore, a subharmonic mixing is
obtained. According to the simulation, the CG of the SHM
is robust to phase errors in the quadrature LO signals [34],
which eases the design of the LO quadrature divider.

Compared with the conventional Gilbert stacked-LO
SHM [12], [25]–[27], the balun coupling in the proposed
SHM reduces two stacking stages and mitigates the voltage
headroom problem. The operation of the proposed SHM is
provided in the following. Assuming the LO waveform is a
square wave with 50% duty cycle and the switching tran-
sistors are operating as ideal switches, the mixing function
and the output voltage of the SHM can be expressed as
follows [26], [34]:

mh(t) =
4
π

∞∑
n=0

1
2n+ 1

sin[2(2n+ 1)ωLOt] (3)

vout = Avvin(t)mh(t) (4)

where ωLO is the angular frequency of the LO signal, vin(t)
is the input voltage of the mixer, and Av is the nonmixing
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(‘‘amplifier-mode’’) voltage gain, which is exhibited when
the mixer core is configured as a simple ‘‘cascode common-
gate’’ state by applying large dc bias voltages at the gates of
the stacked switching quads [35]. Herein,Av can be expressed
as

Av = gmRL (5)

where gm is the transconductance of the transistors
M1-M4, and RL is the load impedance of the mixer.
Assuming

vin(t) = vRF (t) = VRF cos(ωRF t) (6)

where VRF and ωRF represent the voltage amplitude and the
angular frequency of the RF input signal, respectively.

Substituting (3) and (6) into (4), we can obtain

vout (t)

= AvVRF cos(ωRF t)
4
π

∞∑
n=0

1
2n+ 1

sin[2(2n+ 1)ωLOt]

=
2
π
AvVRF

∞∑
n=0

1
2n+ 1

sin[ωRF t − 2(2n+ 1)ωLOt]

+
2
π
AvVRF

∞∑
n=0

1
2n+ 1

sin[ωRF t + 2(2n+ 1)ωLOt]. (7)

As can be observed, a number of different frequency com-
ponents (ωRF ± (4n+ 2)ωLO) are obtained, but only the first
term in (7) with n = 0 is the desired IF product with a fre-
quency of ωRF−2ωLO, whose amplitude can be expressed as

vIF (t) =
2
π
AvVRF sin[(ωRF − 2ωLO)t]. (8)

Therefore, the voltage conversion gain (VCG) and the
power CG of the SHM can respectively be derived as

VCGh =
VIF
VRF
=

2
π
Av =

2
π
gmRL (9)

and

CGh =
PIF
PRF
= (VCGh)2

RS
RL
=

4
π2 g

2
mRLRS (10)

where VIF and PIF represent the voltage amplitude and power
of the IF signal, respectively, PRF is the input power of the
RF signal, and RS is the source impedance.
It should be noted that, for a passive SHM [34], Av = 1,

and the VCG is

VCGph =
2
π
. (11)

Therefore, the CG of the proposed SHM is higher than that
of the passive SHM as long as gmRL > 1.

To obtain a high CG, a large RL and a high gm are required.
However, a larger RL will cause a larger dc voltage drop on
the IF load and therefore aggravates the voltage headroom
problem. The active load, however, can provide a very high
impedance in the differential-mode for high CG but a moder-
ate impedance in the common-mode for low dc voltage drop.

By using the active load, a high CG can be obtained with a
smaller dc voltage drop.

A higher gm can also result in a higher CG. Normally,
larger devices have a higher gm. However, the larger the
transistor size is, the larger the parasitic capacitances (e.g. the
drain-bulk capacitance CDB, and the source-bulk capacitance
CSB) will be, which will provide high capacitive coupling
paths to the lossy substrate, especially at mmW frequency
range [34]. In addition, larger devices require higher LO
pumping power and higher dc power [11]. Therefore, trade-
offs between CG, dc power, and LO pumping power have
to be concerned during device size selection. In this design,
a total gate width of 20 µm with a ten-finger transistor is
selected to obtain sufficient CG with low LO power and low
dc power.

FIGURE 2. Simulated transconductance gm of the NMOS transistor with
gate width of 20 µm versus VGS and VDS .

Fig. 2 shows the simulated gm of the selected NMOS
transistor versus its gate-source voltage VGS and drain-source
voltage VDS. For a given VGS, gm decreases as VDS decreases.
This explains why high supply voltage is normally required
in the Gilbert mixer design [11], [24], [25]. It is interesting
to note that, for a given VDS, gm is a convex upward function
versusVGS . SinceVGS is determined by the voltage amplitude
of the LO signal (VLO) in this design, the CG of the SHMwill
also be a convex upward function versus VLO. Furthermore,
if VLO is large enough, the transistors will be pushed into the
deep triode region, as shown in Fig. 2, and the operation of the
proposed SHM will be similar to the passive SHM proposed
in [34].

Fig. 3 simulates the normalized CGs of the proposed SHM,
a passive SHMwith optimized VGS biasing [34] and a passive
SHM without VGS biasing, versus LO power. As can be
observed, the passive SHM without VGS biasing requires
the highest LO power (e.g. 12 dBm) for a reasonable CG.
By adding an optimized VGS biasing, the CG of the passive
SHM can be improved at low LO power region. The proposed
SHM can further improve the CG with a lower LO power.
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FIGURE 3. Simulated CGs of different SHMs versus LO power. The peak
CG is normalized to 0 dB.

For example, to achieve a −4 dB of normalized CG, the pas-
sive SHM with optimized VGS biasing requires 4 dBm of
LO pumping power while the proposed SHM only requires
−6 dBm of LO power at the expense of 2 mW of dc power
consumption. This is very attractive in the mmW frequency
range, where the LO power is a valuable resource.

It should be mentioned that, the off-state transistors
M11-M12 and the IF buffers are removed in the above simu-
lation for fair comparison. The off-state transistorsM11-M12,
however, may degrade the performance of the proposed SHM
due to the parasitic loading. By adding the off-state transistors
M11-M12, the simulated CG of the proposed SHM degrades
about 1 dB, as shown in Fig. 3. Additionally, the simulatedNF
also degrades about 1 dB. Fortunately, the RF bandwidth and
the input third order intercept point (IIP3) are hardly affected
according to the simulation.

B. PROPOSED MIXER IN FUNDAMENTAL MODE
The proposed CMOS mixer can also be reconfigured as a
FM by setting VC = 0 V. Therefore, VB = 1 V and VA =
0V,whichmeans that the gates of the transistorsM5-M8 in the
top switching quad are biased at 0 V, while the common-gate
devices M11-M12 are activated, as shown in Fig. 1(c). If the
voltage amplitude of LOQ (VLOQ) is smaller than VDb + Vth,
as shown in Fig. 4(a), the transistors M5-M8 will be in off-
state during both the positive and negative excursions of
LOQ. In this case, the power of LOQ is wasted. Since only
the bottom switching quad is switched by LOI, a mixing only
happens in the bottom switching quad.

The operation of the proposed FM is provided in the fol-
lowing. Assuming the LO waveform is a square wave with
50% duty cycle and ideal switching, the mixing function of
the FM can be expressed as

mf (t) =
4
π

∞∑
n=0

1
2n+ 1

sin[(2n+ 1)ωLOt]. (12)

FIGURE 4. Voltages on the gates of M5-M8 in the FM mode. (a) VLOQ <

VDb + Vth. (b) VLOQ > VDb + Vth.

Similarly, the output IF voltage and the CG of the FM can
respectively be obtained as

vIF (t) =
2
π
AvVRF sin[(ωRF − ωLO)t] (13)

and

CGf =
PIF
PRF
=

4
π2 g

2
mRLRS . (14)

Comparing (10) and (14), it is noteworthy that the CG of
the SHM is the same as that of the FM under ideal conditions.
In practice, however, the CG of the SHM will be lower than
that of the FM, due to a non-ideal square-wave switching and
a higher parasitic capacitive coupling to the substrate at high
frequencies [34].

Fig. 5 simulates the normalized CGs of the proposed FM,
a passive ring mixer with an optimized VGS biasing and a
passive ring mixer without VGS biasing, versus LO power.

FIGURE 5. Simulated CGs of different FMs versus LO power. The peak CG
is normalized to 0 dB.
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Although half of the LO power is wasted by LOQ, the sim-
ulated CG of the proposed FM is still higher than that of the
passive ring mixer with an optimized VGS biasing at low LO
power region. The simulated CG of the proposed FM equals
to that of the passive ring mixer when the LO power is higher
than 13 dBm, because the transistors in the proposed FM have
been pushed into the deep triode region.

Similarly, the off-state transistorsM5-M8 and the IF buffers
are removed in the above simulation for fair comparison. The
simulated CG of the proposed FMwithM5-M8 is also plotted
in Fig. 5, which is equal to that of the FM without M5-M8
when the LO power is lower than 4 dBm. However, when
the LO power is higher than 4 dBm, the simulated CG of
the FM with M5-M8 drops much faster than that of the FM
without M5-M8. This is because the transistors M5-M8 will
be activated during the time ton, as shown in Fig. 4(b), when
VLOQ is larger than VDb + Vth. Thus, a part of IF currents at
the drain of the bottom switching quad will be routed through
the top switching quad and upconverted to other frequencies.
Therefore, we should make sure PLO < 4 dBm during the
operation of the fundamental mixing mode.

According to the simulation, the performances of the
proposed FM, including the CG, NF, RF bandwidth
and IIP3, are hardly affected by the off-state transistors
M5-M8 when PLO < 4 dBm. This is because the off-state
transistors M5-M8 are connected to the IF stage, where the
parasitic loading effects can be ignored.

III. MEASURED RESULTS
The proposed reconfigurable low-voltage and low-power
mmW dual-band mixer is designed and fabricated in TSMC
65-nm CMOS technology. A die micrograph is shown
in Fig. 6. The chip is measured via on-wafer probing. Dur-
ing the measurements, RF and LO signals of the mixer are
provided by a vector network analyzer (Agilent N5245A)
and a signal generator (Agilent E8257D), respectively, and
the output spectrum is observed by a spectrum analyzer
(Agilent N9030A). The complete circuit including the TIA
buffers, draws 7 mA of dc current from a 1 V supply in both
SHM and FM modes.

Fig. 7 shows the simulated and measured CG of the mixer
in both SHM and FM modes versus the LO power. In the
measurement, the LO frequency is 24 GHz and the IF fre-
quency is 0.1 GHz. The corresponding RF frequencies are
48.1 GHz and 24.1 GHz for the SHM and FMmodes, respec-
tively. As shown in Fig. 7, the mixer in the SHM mode
achieves a maximum CG of −3.3 dB at the LO power of
2 dBm, while the mixer in the FMmode achieves a maximum
CG of 1.4 dB at the LO power of −3 dBm. When the
LO power further increases, the measured CG of the mixer
in both modes drops faster than that in Fig. 3 and Fig. 5.
This is because a higher LO power reduces the dc voltage
at the input port of the TIA, which drives the TIA into a
low-gain operation [11]. This effect was not considered in
the simulations in Section II, because the TIA buffers are
removed in Fig.1(b) and (c) for fair comparison with the

FIGURE 6. Micrograph of the proposed reconfigurable dual-band CMOS
mixer.

FIGURE 7. Simulated and measured CG versus the LO power for both
SHM and FM modes.

passive mixers. In the following measurements, an LO power
of −3 dBm is used for low LO drive.

Fig. 8 shows the measured CG versus the IF frequency
from 10MHz to 2.5 GHzwith an LO frequency of 24 GHz for
both SHM and FMmodes. The proposed mixer demonstrates
a 3-dB IF bandwidth of 1.7 GHz for both modes.

Fig. 9 shows the simulated and measured CG of the mixer
in both modes versus the RF frequency with a fixed IF
frequency of 0.1 GHz. The measured CG of the mixer is
−4.8 ± 1.5 dB from 34 to 56 GHz and −0.1 ± 1.5 dB from
17 to 43 GHz for the SHM and FM modes, respectively. The
measured RF return loss of themixer is better than 10 dB from
20 to 60 GHz, which agrees well with the simulated result.

The measured LO-to-RF isolation of the mixer for both
modes is better than 43 dB and the measured 2LO-to-RF
isolation of the mixer in the SHM mode is better than 47 dB,
as shown in Fig. 10. In the measurement of the 2LO-to-RF
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TABLE 1. Comparisons of subharmonic mixers in various topologies and technologies.

FIGURE 8. Measured CG versus the IF frequency for both SHM and FM
modes.

isolation, the LO frequency is only swept from 15 to 25 GHz,
therefore the output 2×LO frequency range is only from 30 to
50 GHz, which is limited by the maximum frequency of the
spectrum analyzer (Agilent N9030A).

For double-sideband (DSB) NF measurements, the RF
source is replaced by a noise source (Keysight 346CK01).
Fig. 11 shows the measured DSB NF of the proposed mixer

FIGURE 9. Simulated and measured CG and RF port return loss versus the
RF frequency for both SHM and FM modes.

for both modes after calibration. The lowest DSB NF is
18.5 and 12.4 dB for the SHM and FM modes, respectively.

For large signal measurements, the RF source is replaced
by a vector signal generator (Agilent E8267D), which can
provide a higher output power and two-tone signals up to
44 GHz. Fig. 12 shows the measured CG versus the RF
input power, where the LO frequency is 22 GHz and the IF
frequency is 0.1 GHz. The input 1 dB power compression
point (IP1dB) of the mixer is −7.6 dBm and −6.1 dBm for
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TABLE 2. Comparisons of fundamental mixers in various topologies and technologies.

FIGURE 10. Measured isolations for both SHM and FM modes.

FIGURE 11. Measured DSB NF for both SHM and FM modes.

the SHM and FM modes, respectively. The measured IIP3 of
the proposed mixer in the SHM mode is 2.9 dBm for RF
two-tone of 43.895 GHz and 43.905 GHz, and the measured
IIP3 of the mixer in the FMmode is 3.4 dBm for RF two-tone
of 22.095 GHz and 22.105 GHz, as shown in Fig. 13.

Table 1 compares the proposed mixer in SHM mode with
some other previously published SHMs in various topologies

FIGURE 12. Measured CG versus the RF input power for both SHM and
FM modes.

FIGURE 13. Measured IIP3 for both SHM and FM modes.

and technologies. The proposed CMOS mixer in the SHM
mode achieves good CG, NF and linearity performance under
low supply voltage, low dc power and low LO pumping
power, at the expense of larger chip area due to the passive
baluns and the quadrature coupler.
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Table 2 compares the proposed mixer in FM mode with
some other previously published FMs in various topologies
and technologies [36]–[39]. The proposed CMOS mixer in
the FM mode shows comparable performance with other
modified Gilbert mixers, even though half of the LO power
is wasted.

IV. CONCLUSION
In this paper, a reconfigurable low-voltage and low-power
mmW dual-band CMOS mixer is proposed, studied and
demonstrated. By changing its bias, the mixer can be recon-
figured for operation between subharmonic and fundamen-
tal modes for dual-band applications. Based on a modified
Gilbert mixer topology, the proposed CMOS mixer can oper-
ate at 1 V supply voltage and −3 dBm LO power while
providing CG of −4.8 ± 1.5 dB from 34 to 56 GHz in the
SHM mode and CG of −0.1 ± 1.5 dB from 17 to 43 in the
FMmode. The measured IIP3 of the CMOSmixer is 2.9 dBm
and 3.4 dBm for the SHM and FMmodes, respectively, at LO
frequency of 22 GHz. The total dc power consumption of the
mixer is 7 mW for both states, including the output IF buffers.
This circuit could be attractive in a mmW dual-band portable
system where low-voltage and low-power are required.
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