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ABSTRACT Aimed to interpolate the geomagnetic data from under-sampled or missing traces, this
paper presented an approach based on recurrent neural network (RNN) techniques to avoid the time &
labor-intensive nature of the traditional manual and linear interpolation approaches. In this paper, a deep
learning algorithm, long short-term memory (LSTM) was employed to build the precisely model for sparse
geomagnetic data interpolation. First, a continuous regression hyperplane was specified to recognize the
probably intrinsic relationships between sparse and integral traces by inputting the training data. Afterward,
the trained model was tested with 20% of the trained geomagnetic data and other new untrained data for
validation. Finally, extensive experiments were conducted for 2D and 3D field data. The results demonstrated
that our RNN-based approach was more superior than a classic linear method and a state-of-the-art method,
support vector machine (SVM)), as the interpolation precision was approximately improved by 10%.

INDEX TERMS Interpolation, geomagnetic data, deep neural network, long short-term memory, modeling

I. INTRODUCTION

The observations of the Earth’s magnetic field are
implemented continuously spans from a few seconds to
decades [1]. However, the integrity of geomagnetic data
could not be ensured all the time, especially when equipment
failures happen during the acquisitions [2]. In this case,
the missing traces or under-sampled data could influence the
interpretation result of the geomagnetic data [3], and thus the
research on the interpolation and reconstruction for the sparse
geomagnetic data is necessitated.

Nowadays, numerous methods for sparse geomagnetic
data interpolation were proposed. In terms of simulations,
two data assimilation based techniques to forecast the geo-
magnetic data periods was investigated in literatures [4], [5],
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whose results were inspiring. However, these methods had
not been adopted in practical scenarios and thus, their
effectiveness needs to be further identified. There are a few
methods available to real applications, such as the global
magnetic field models built in [6] and [7], and the base-
line forecasting models for observation and evaluation of
the unknown geomagnetic field periods [8]. Further, there
are some other commonly used algorithms being investi-
gated such as multi-model fusion [9] and spherical harmonic
model [10]. Nonetheless, some drawbacks still exist includ-
ing that certain assumptions dependence, a limited amount of
regression parameters should be comprised in the geomag-
netic data observations, the number of the under-sampled data
should be less than the obtained data, etc. Aimed to overcome
these disadvantages, a new intelligent interpolation method
based on support vector machine (SVM) was designed [11].
The results were encouraging, however, it also has drawbacks
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in reflecting temporal dependence because of the time and
spatial characteristics have not been considered for the inter-
polation of sparse geomagnetic data.

In this paper, we introduce a new recurrent neural net-
work (RNN) based approach for interpolating geomagnetic
data with missing traces due to under-sampling. The proposed
RNN-based approach mainly consists of the following three
steps: 1) build dataset including the potential relation between
input features with missing traces and output ground truth
with completed traces. Furthermore, the dataset is split into
three clusters including training, testing, and validation data;
2) train probabilistic regression models to fit a potential
hyperplane with a continuous regression property from the
training data; 3) use the trained model to interpolate the
missing geomagnetic traces for validation and testing data.
The performance of the proposed RNN-based method only
determined by the characteristics of the input training data
with intrinsic features, which can overcome the aforemen-
tioned drawbacks including the sparsity of missing traces,
the assumptions of regression parameters, etc. Consequently,
it can not only break through the unsolved problems but
also show superior adaptability for different 2D and 3D
datasets, which can reduce costs significantly in engineering
applications. Furthermore, our method can reduce the manual
workload dramatically, for instance, the users do not have to
select the window size parameters. It could accelerate engi-
neers to obtain the integral information of Earth’s magnetic
field for near-surface exploration, magnetic target detection,
etc. Numerical experiments implemented on various field
geomagnetic data demonstrate the competitive and applicable
performance of our method.

Il. METHODOLOGY

The main procedure for sparse geomagnetic data interpola-
tion and reconstruction including three modules: 1) Database
building module, which is used to transform the collected 3D
or 2D time series geomagnetic data to a 1D space vector;
2) RNN regression module, which is utilized for generating
long and short memory cells to build a feed-forward neural
network; 3) Interpolation module, which is obtained by con-
stantly optimizing the trained model until it is accuracy in
most instances.

A. CONVERTING 3D OR 2D GEOMAGNETIC DATA TO 1D
SEQUENCES
For using RNN-based regression model for sparse geomag-
netic data interpolation, a regulation to form the collected
data into a database consists of the feature x and the ground
truth y), which should be suitable for feeding into the training
model is necessary. Technically, for a 2D dataset, i.e., the
input variables x = (By, B2, ..., B;) in which the values are
the strengths of magnetic field, and ¢ stands for the collected
data in chronological order. Hence, the x could be directly
transformed into a 1D vector as [By, Ba, ..., B:]7.

The procedure for building the database for a 3D dataset
is different from that of 2D because all the locations of the
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FIGURE 1. The procedure of reshaping 3D time series data into 1D time
series data.
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FIGURE 2. The procedure of converting 1D time series data into a data
matrix. The feature x stands for the value (refer to B;) of magnetic field at
a given time (f) and ground truth y is the value (refer to By, ;) of
magnetic field at the next time (f + 1).

3D data sources are described by two spatial dimensions. The
procedure of establishing the database for 3D geomagnetic
data is shown in Fig. 1. In this case, first, the 3D sequential
data is reshaped into 2D array data and thus, the preprocessed
data could be seen as an image that each strength value of
the magnetic field from each position is expressed by the
corresponding pixels with time attributes. N,, x N, represents
the size of the image, while N, and N,, are the number of
pixels along the column and row axis, respectively. Ny stands
for the number of 3D geomagnetic images for training. After
the reshaping process, the original time series geomagnetic
data, which is transformed into a number array that is con-
verted into a dataset-matrix following the database building
steps of 2D. Hence, each sample of reshaped data stands
for an combination of pixels from original data along the
timeline and thus, the number of samples could be obtained
through multiplying the height by the width of the image. As a
consequence, we can get Ny, x Nj x Ny (100 x 100 x 20)
pairwise samples as the feeding dataset to train.

Through the aforementioned preprocessing, the original
2D or 3D time series geomagnetic data is converted into a
dataset-matrix as shown in Fig. 2. (f — 1) x 2 represents the
size along the timeline, while (+ — 1) and 2 are the number
of variables along the row and column axis, respectively.
In this case, each sample of the pairwise data is a 1D vector,
which is a suitable data form for feeding into the RNN-based
interpolation model.

B. RNN-BASED INTERPOLATION MODELING
RNN is developed to deal with sequential dependence and
consists of an effective neural network structure. It is also
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FIGURE 3. The pipeline of proposed RNN-based sparse geomagnetic data interpolation framework.

the extension of feed-forward neural networks, which add a
feedback connection [12]. This kind of feedback connection
can feed the outputs of the model back into itself, and it has
the memorization ability [13].

In this study, the geomagnetic data interpolation model
represents a deep RNN framework illustrated in Fig. 3, cap-
turing the spatial and temporal features in sequence. Further,
the sliding window technique is applied to divide the pre-
processed training data to individual clips. Each clip has a
fixed length of time series 1D data, in which the segment S;
is created as follows:

Si = [Bi, Biy1, - .. Bis—1] ey

where s is the size of the window and i = 1,2, ..., n with
n segments through the period of geomagnetic observation.
The segment S; is the input to the model, creating a 3D data
architecture containing geomagnetic, spatial and temporal
information. We first extract the spatial features, and thus feed
the sequence of the extracted spatial features into the RNN to
extract temporal features. One fully connected layer receives
the output of the last time step of the RNN layers, and feeds
the softmax layer for final intention prediction.

The ith input segment is defined as Eq. 1 where there are
S data sequences denoted as By = [Bk, Bi+1, - -+ Bk+s—1J,
wherek =t,t+1,...,t+s— 1. The sequences are input to
a 2D-RNN individually, and each resolves to a spatial feature
represent f:

Jx = RNN2p(By) @)

The final spatial feature representation f; is a feature vector.
Through the 2D-RNN spatial feature extraction step, the input
segments are transformed to sequences of spatial feature as:
S; = Fj, where F; = [f;, fi+1, - . - » fi+s—1]. Hence, the spatial
feature representation sequence F; is input to a RNN to
computes the temporal features.
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Further, we use Long Short-Term Memory (LSTM) units to
establish two iterative RNN layers. The LSTM is a modified
RNN cell addressing the gradient vanishing and exploding
problem [14]. The number of each layer’s LSTM units is S,
and the output time sequence from the previous RNN layer
is input to the present RNN layer. At the first RNN layer,
the hidden state of the LSTM unit at current time 7 is indicated
as hy, while the h,_; stands for the hidden state at previous
time (r — 1). Hence, the information from /4;_; is conveyed
to hy, which could determine the final output performance.
In this case, the hidden state is regarded as the output of the
LSTM unit, and the hidden state sequence of the first RNN
layer [A;, By+1, - - ., hys—1] 1s the input sequence of the sec-
ond RNN layer. Thus, the temporal feature representation
I :1s_1 of the segment S; can be written as:

h/t—i-s—l = RNletm(Fi) (3)

On the right of the fully connected layer is the final softmax
layer yielding the final probability predictions of geomag-
netic data missing traces as:

P; = Softmax(l y+-1) “)

The main steps using RNN-based interpolation model are
given in Alg. 1, where the number of LSTM blocks in each
of the hidden layers is 10, and the input visible layer is set
as 1. The predictions from the output RNN layer is conducted
according to the look back who is set as 10. In addition,
the number of overall times for the training vectors is 100
(refer to epochs).

C. MISSING TRACES RECONSTRUCTION

Once all the processes mentioned before have been imple-
mented successfully, the output softmax that regarded as
an associative function f(x) of the RNN-based interpolation
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Algorithm 1 Interpolation Based on LSTM

Result: Sparse geomagnetic data interpolation.

Input : Sparse geomagnetic data x and corresponding
ground truth y.

Output: Reconstructed geomagnetic data.

1 Training:
2 A dataset consists of x and y is established, in which x
and y denote the magnetic field strength at time (¢) and
time (¢ 4 1), respectively;
A LSTM based neural network is built as:
model = Sequential()
model.add (LSTM (10, input_shape = (1, 10)))
model fit(x, y, epochs = 100)
Fit all pairs of (x;, x;4+1) to the network, which is trained
for a epochs of 100.

N A B AW

8 Testing:

9 Input the sparse geomagnetic data x to the established
LSTM based neural network to interpolate and
reconstruct the missing traces y';

model could be yielded. In real scenarios, the interpolation
and reconstruction procedures are as follow:

o Step 1: Given a sparse geomagnetic data x* who is
never trained before. To some extent, the magnetic field
strength x; at time (¢) is not available while x;" ; is
known, where i = (1, 2, ...) is no more than ¢;

o Step 2: Input x;"_; to the derived function of the trained
LSTM model, and we can obtain x* =f(x"));

t—i+1
o Step 3: Input the yielded value x; ; , to further get

* _ * .
iy = F Oy )3

o Step 4: Repeat step 2) and 3) until x;" is calculated by
X =1 ).

+

Ill. EXPERIMENTAL RESULTS AND ANALYSIS

A. PERFORMANCE EVALUATION METRICS

The proposed RNN-based approach for the interpolation and
reconstruction of under-sampled geomagnetic data mainly
including the following steps: 1) Building dataset; 2) Train-
ing LSTM neural network; 3) Interpolating and reconstruc-
tion the sparse geomagnetic data; 4) Validating the model
with new untrained dataset. For all the experimental results,
the root mean square error (RMSE) and R2 [15] were
employed to evaluate the performance using different algo-
rithms. Their expressions can be written as follow [16]:

1 n
RMSE = | - i — 90>
ni;(y )
Zn:@i—fi)z ®)
R—1_=
Zl(yi—ﬁ)z
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FIGURE 4. 2D Field geomagnetic data for the test. (a) Original 2D field
geomagnetic data. (b) Decimated 2D data with 30% regular missing
traces.

where y; stands for the real magnetic field, y; stands for
the interpolated magnetic field and y; stands for the value
by averaging all the interpolations. RMSE is an absolute
measure of fitting while R? is a relative measure of fitting.
The lower the RMSE, the better the performance. For R2,
it changes in the range of 0 ~ 1, and the higher the R,
the more superior the model.

B. 2D FIELD GEOMAGNETIC DATA INTERPOLATION

To identify the superiority of the proposed RNN-based algo-
rithm, we used a commercial magnetometer to record the
geomagnetic field strength in the field for 24 hours. Fig. 4(a)
shows a subset of the collected 2D integral field geomagnetic
data. In this case, we compared our new method with a
commonly used method, linear interpolation, and a state-of-
the-art method, SVM, in a case of 30% regular missing traces
as shown in Fig. 4(b).

Fig. 5 shows the interpolation results of the 2D geomag-
netic data from Fig. 4(b). Through comparing the recon-
structed accuracy using classic linear, SVM and LSTM
methods, it can be demonstrated that our new RNN-based
approach had a slightly superiority over the commonly used
linear and SVM methods. The interpolated data followed
approximately the same trend as the recorded geomagnetic
field in all cases.

To evaluate the interpolation quality of the results in a more
convincing way, the RMSE and R? of different algorithm
were quantified in Table. 1, where the best and worst results
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FIGURE 5. The 2D field geomagnetic data interpolation results of
different methods. (a) Linear for 2D data interpolation. (b) SVM for 2D
data interpolation. (c) LSTM for 2D data interpolation.

were both highlighted in bold font. Among these three meth-
ods, LSTM got the best quality of training, validation and
testing data sets. The R*, RMSE and cross-validation all gave
better results, in which the cross-validation was adopted to
eliminate the overfitting problem.

C. 3D FIELD GEOMAGNETIC DATA INTERPOLATION

Aimed to further demonstrate the interpolative and recon-
structive capacity of our new method, a series of experiments
were implemented on 3D field geomagnetic data sets. In this
case, different scenarios of the recording region were chosen
to guarantee the stochastic and diversity of the data. The width
and length of the measurement region were both 10 m and the
step over distance was 0.1 m, which implies 100 data should
be recorded in each region. Fig. 6(a) shows a 3D integral field
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Method Dataset R2(2D) RMSE(2D) R?(3D) RMSE (3D)

Linear Testing 0.788 0.279 0.778 0.283
Training 0.899 0.188 0.903 0.179
SVM Validation 0.889 0.198 0.895 0.190
Testing 0.878 0.208 0.887 0.201
Training 0.988 0.094 0.972 0.124
LSTM  Validation 0.983 0.108 0.965 0.143
Testing 0.978 0.122 0.958 0.162

(@)

(b)

FIGURE 6. 3D Field geomagnetic data for the test. (a) Original 3D field
geomagnetic data. (b) Decimated 3D data with 50% regular missing
traces.

geomagnetic data. The geomagnetic data have been down-
sampled with a regular 50% missing traces, which is shown
in Fig. 6(b).

Fig. 7 shows the interpolation results and their trace com-
parison obtained using linear, SVM and LSTM methods.
Overall, our proposed RNN-based approach was also supe-
rior than the linear regression method, especially in the
region around coordinate (7, 6). In view of the SVM method,
the interpolations were also not accurate in each correspond-
ing missing trace, such as the region around coordinate
(4, 7) in Fig. 7(b). The reason why these interpolated errors
happened might be because of the different characteristics of
each model. Nevertheless, the interpolated deviations using
the linear method were larger than others, while the interpo-
lations using LSTM were almost the same as the recorded
data as shown in Fig. 6(a).
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FIGURE 7. The 3D field geomagnetic data interpolation results of
different methods. (a) Linear for 3D data interpolation. (b) SVM for 3D
data interpolation. (c) LSTM for 3D data interpolation.

Table. 1 shows the comparison for linear, SVM and the
proposed RNN-based approach in quantitative terms. Again,
LSTM got the best performance with training, validation
and testing data sets, which were consistent with the results
of 2D and 3D examples. Due to the proportional of the under-
sampled data in 3D data was larger, the 3D interpolations
were worse than that of the 2D example overall. However,
it verified better performance significantly through using
LSTM method compared with linear regression and SVM
methods. Furthermore, our method can handle interpolation
problems of practical geomagnetic field data more intelli-
gently without setting complex parameters.
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D. DISCUSSION

This paper adopted deep learning method, which could make
the training process more complex. Hence, how’s the time
cost of the whole algorithm is the critical factor that engi-
neers care about most. We followed the main idea that using
RNN-based approach for interpolating and reconstructing the
sparse geomagnetic data. They were conducted respectively
and compared in terms of time cost and accuracy. Time-wise,
the running time for the LSTM model is about 913.94 +
74.32 s while that of SVM model is about 46.02 £ 1.15 s in
the training procedure. They also differ in terms of accuracy
as shown in Table. 1, and it is up to user to choose which
algorithm to use. When we use any one of the algorithms
in applications, say given a new set of data, we can use the
regression model that was trained using the old data. That
means once the model training has been finished and saved,
the model could be regarded as a ready-to go instrument,
which can be applied directly without training again.

IV. CONCLUSIONS

We proposed an RNN-based method for sparse geomagnetic
data interpolation and reconstruction. A intrinsic relation can
be obtained using sufficient typical training data sets, from
which the missing traces can also be supplemented. Besides,
our new RNN-based approach can overcome unsolved draw-
backs in existing interpolation methods, and it is universally
applicable to varying data sets. Furthermore, the derived
interpolation model can be saved for future application,
to interpolate the sparse geomagnetic data with different
geomorphological structures. To sum up, the experimental
results demonstrated that our new method can achieve an
interpolation precision no less than 90%, which showed an
improvement by about 10% compared to conventional meth-
ods, linear regression, and a state-of-the-art method, SVM.
Thereby making up for the insufficiency of the reconstruction
performance.
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