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ABSTRACT Exploiting massive multiple-input-multiple-output (MIMO) gains come at the expense of
obtaining accurate channel estimates at the base station. However, conventional channel estimation tech-
niques do not scale well with increasing number of antennas and incur an unacceptably large training
overhead in many applications. This calls for training designs and channel estimation techniques that
efficiently exploit the physical properties of the massive MIMO channel as captured by sophisticated
system/channel models. In this paper, we present designs that exploit the sparsity of the angle and delay
domain representation of the massive MIMO channel as well as the low-rank property of the channel
covariance, while also providing the connection between the sparse angle-delay representation and low-rank
covariance property. Numerous multiuser scenarios are investigated including uplink, downlink, and single-
and multi-cell communications, with the designs aiming at minimizing the channel estimation error or max-
imizing achievable rates with reduced training overhead. Theoretical analysis and numerical performance
results indicate significant reduction of training overhead over conventional techniques while achieving
similar performance. The presented methods demonstrate the importance of exploiting fundamental channel
properties and reveal important insights on the interplay/tradeoff between training overhead and performance
that can serve as guidelines for the design of future massive MIMO communication systems.

INDEX TERMS Channel sparsity, correlated fading, channel estimation, training design, compressive
sensing, pilot contamination, performance bounds, massive MIMO.

I. INTRODUCTION
A. BACKGROUND
Massive multiple-input-multiple-output (MIMO) technology
is a cornerstone of future communication systems and is
crucial for meeting 5G requirements [1]. By coherent pro-
cessing of the signals over a large number of cheap antenna
elements at the base station (BS), massive MIMO systems
focus the radiated energy on intended targets and discriminate
received signals using transmit precoding and receive com-
bining, respectively. High spatial multiplexing capabilities
can be obtained with simple and cost efficient transceiver
design, which make massive MIMO systems very appealing.

The associate editor coordinating the review of this manuscript and
approving it for publication was Kai Yang.

Nevertheless, massive MIMO gains depend heavily on accu-
rate channel estimation, which is not a straightforward task.
At first sight, the number of parameters to estimate scales
with the number of transmit and receive antennas, which
may be very large in massive MIMO systems. For this rea-
son, classical estimation methods such as least squares (LS)
estimation may not be appropriate, especially when only
a limited number of observations can be obtained due to
channel aging. To overcome this limitation, some informa-
tion/structure about the channel has to be used to regularize
the problem.

One way to regularize the channel estimation problem is
to use a parametric channel model, which exploits the fact
that a signal arrives at the receiver via a limited number of
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distinct (resolvable) paths [2]. Therefore, posing the channel
estimation problem as that of identifying the channel paths
properties (gain, delay, angle) immediately implies improve-
ment of the channel estimation procedure over conventional
approaches as the number of unknowns to be estimated (sig-
nificantly) decreases. Another way is to exploit the prior
distribution about the channel, yielding Bayesian estimation
[3], [4]. If the channel covariance matrix is rank deficient,
the number of parameters that need to be estimated effectively
decreases, as shown in [3].1

In both cases, exploiting the underlying channel struc-
tural properties results in a reduced number of parameters
to estimate. This directly translates to a reduced overhead of
any training based scheme. This is clearly beneficial for any
communication system and any envisioned use case or sce-
nario (e.g. enhancedmobile broadband [5], ultra-reliable low-
latency communications [6], wireless sensor networks [7],
[8], etc.) as it results in larger effective throughputs and
lower latencies required to decode the desired signals, and is
inherently robust to channel aging. Unfortunately, analytical
insights on the necessary or even sufficient overheads for
reliable channel estimation remain missing for a number of
important multiuser scenarios. This holds for compressive
sensing (CS) approaches exploiting the parametric channel
model as well as Bayesian estimation approaches.

Exploiting the channel structural properties can be further
leveraged to enable massive connectivity, which is an impor-
tant 5G requirement. This can be understood in the context of
training overhead reduction as well. By developing effective
clustering techniques which separate users based on prior
information, training sequences can be reused among clus-
ters with minimum uplink (UL) pilot contamination. Thus,
high connection densities can be achieved with low training
overheads.

B. CONTRIBUTIONS AND PAPER ORGANIZATION
This paper presents several solutions that exploit the chan-
nel structural properties for training overhead reduction in
numerous massive MIMO scenarios [9]–[14]. These works
are part of the outcomes of the Horizon 2020 ONE5G
project [15]. The solutions address different use cases and
apply different sets of tools that exploit different levels
of prior knowledge at the BS. The results are illustrated
numerically for various channel models and BS configura-
tions. Besides presenting detailed discussions of the afore-
mentioned works, the paper complements these works as
well. For instance, a new problem formulation is provided in
Sec. III, while new comparisons are provided in Section V.
Note that previous papers (see, e.g., [16]) have presented
a high level overview of low-overhead channel estimation
schemes without discussing training overhead scaling nor
training sequence reuse aspects. The latter are the focus of this
work.

1Sec. V-C addresses the full rank case and shows how covariance infor-
mation may still be used towards training overhead reduction.

Section II introduces the general channel estimation prob-
lem formulation, the parametric channel model used in CS
approaches, and the covariance matrix structure for chan-
nels obeying the parametric model. The potential for train-
ing overhead reduction by exploiting the parametric channel
model, possibly combined with covariance matrix informa-
tion, is highlighted for the simple single-link case. This moti-
vates the investigation of sophisticated channel estimation
and training designs for the multiuser cases considered in this
paper.

Section III presents a study aimed at finding the optimal
number of virtual, or dominant, paths that are sufficient to
accurately represent the channel. The study and numerical
investigations show that realistic channels can indeed be
accurately presented with a small number of virtual paths (at
least in high frequency bands), evenwhen simulators consider
path numbers in the order of hundreds. It thus serves as a
motivation for the subsequent sections, which address differ-
ent aspects of training design exploiting the found result.

For the parametric channel model, we analytically study
the scaling of training overhead (pilot subcarriers) for reli-
able channel estimation in the UL wideband scenario in
Section IV. The study is critically facilitated by the concept
of hierarchical sparsity, introduced therein. By partitioning
users such that users within the same group utilize the same
pilot subcarriers, the sufficient scaling rule highlights that
the training overhead scales logarithmically with the number
of subcarriers but it is independent of the number of active
users per group. This is an effect that appears only in massive
MIMO scenarios (i.e., the overhead would scale proportion-
ally to these parameters in the SISO case). Essentially, with
massive MIMO, the bulk of the training overhead is shifted
to the spatial domain (by considering a large number of
observed antennas).

The paper then considers multiuser training designs
exploiting low-rank covariance information for narrowband
channels in the following sections. We present a sufficient
scaling rule of the downlink (DL) training overhead for reli-
able DL channel estimation in Section V. For practical chan-
nels with correlated entries, the found sufficient overhead
depends on the ranks of the users’ covariance matrices and
the overlap between their range spaces, and may be much
smaller than the number of BS antennas. We then go beyond
the channel estimation sum mean-square-error (MSE) metric
and consider training designs operating on the achievable
sum rate metric, which is a more important metric in many
wireless systems’ applications.

Finally, to mitigate (intra-cell) pilot contamination effects
in massive connectivity setups, we present a novel spatial
domain grouping scheme that allows for a high training
sequence reuse in Sec. VI. We base our approach on the spa-
tial basis provided by the unitary discrete Fourier transform
(DFT) matrix, and perform user grouping based on the users’
covariance information. We then tackle the multi-cell case
and present an inter-cell pilot decontamination solution using
graph theory. Despite using different tools and addressing

VOLUME 7, 2019 32435



S. Bazzi et al.: Exploiting the Massive MIMO Channel Structural Properties

different use cases, Secs. IV, V, and VI share the conclusion
that the training overheads can bemademuch smaller than the
number of transmit antennas (sum of users’ antennas in the
UL, number of BS antennas in the DL) if channel structural
information is properly exploited.

We wrap up and point out to interesting research directions
in Section VII. We finally point out that since the paper
addresses different scenarios with different levels of prior
knowledge, the relevant works related to each scenario are
included in the corresponding section.

C. NOTATION
Vectors (matrices) will be denoted by small (upper) case bold
letters. Any vector xwill always be treated as a single-column
matrix. (·)T, (·)H and (·)∗ denote transpose, Hermitian, and
complex conjugate, respectively. The matrix consisting of the
first K columns of X will be denoted as X1:K and [X]l,m is
the (l,m)th entry of X . We also define for convenience the
vector

f K (x) , [1, ej2πx/K , . . . , ej2π (K−1)x/K ]T, (1)

and the K × K DFT matrix

FK , [f ∗K (0), f
∗
K (1), . . . , f

∗
K (K − 1)].

The set {1, 2, . . . ,K } is denoted as [K ] and |A| denotes the
cardinality of the setA. IK denotes theK×K identity matrix.
D(x) is the diagonal matrix with main diagonal x. The vector
resulting by stacking the columns of X is denoted by vec(X).
CN1·N2···N` denotes the space of complex-valued, multilevel
block vectors consisting of N1 blocks, each containing N2
blocks, . . ., each containingN`−1 blocks ofN` elements (for a
total of N1N2 · · ·N` elements). A vector x is called s-sparse if
|supp(x)| = s. ‖x‖ and ‖X‖F are the Euclidean and Frobenius
norms of vector x and matrix X , respectively. The eigenvalue
decomposition of a positive semi-definite matrix X ∈ CN×N

will be denoted as X = UXD(λX,1, λX,2, . . . , λX,N )UH
X ,

with the eigenvalues ordered in decreasing order, i.e., λX,1 ≥
λX,2 ≥ . . . ≥ λX,N ≥ 0, and the eigenvector matrix being
unitary (UH

XUX = UXUH
X = IN ). The rank and range space

of X are denoted as rank(X) and ran(X), respectively.

II. GENERAL CHANNEL ESTIMATION MODELS
We consider in this paper the standard massive MIMO
setting where BSs in the network are equipped with M
antennas each and users have single antennas [5]. Trans-
missions are performed via orthogonal-frequency-division-
multiplexing (OFDM) with N subcarriers and a cyclic prefix
length of Ncp samples that is greater than the maximum delay
spread experienced by any user.

In all the scenarios that will be considered in the following,
we focus on training-based channel estimation schemes. The
observed signal at the receiver side for an arbitrary BS-user
link (either DL or UL) can always be written as the standard
linear model

y = Avec(H)+ n (2)

where y ∈ CT with T a number proportional to the training
overhead, H ∈ CM×N is the spatial-frequency response of
the unknown channel that is assumed time-invariant within
the transmission interval, n ∈ CT represents additive noise,
and A ∈ CT×MN is the sensing/training matrix that is known
at the receiver and whose structure depends on the specific
transmission scenario (UL or DL) and transmitted training
symbols.

Without any prior information about the channel and noise,
i.e., with H and n treated as arbitrary, an estimate Ĥ of the
channel can be obtained by an LS approach [17], i.e.,

vec(Ĥ) = arg min
x∈CMN

‖y− Ax‖2. (3)

The LS estimate is unbiased, and under the common assump-
tion of the noise vector consisting of independent and iden-
tically distributed (i.i.d.) elements, it is additionally the best
linear estimate [17]. However, an LS estimate can only be
obtained when A has a left inverse, which requires T ≥ MN
[17]. It follows that LS estimation requires a training over-
head that scales proportional to the channel ambient dimen-
sion MN . With M in the order of 100 or more in a massive
MIMO setting, this overhead quickly becomes unacceptable
even under narrowband signaling (N = 1), especially for
scenarios requiring frequent training (high mobility) and/or
a massive number of users.

A. CHANNEL ESTIMATION BASED ON THE PARAMETRIC
MODEL
The key to training overhead reduction is the observation that
H is not an arbitrary matrix, but that its elements exhibit cor-
relation as has been experimentally confirmed [18]. Inspired
by the far-field waveform propagation physics, the most com-
mon as well as simplest model that (approximately) captures
these correlation properties expressesH as a sum of rank one
matrices with a clearly defined structure, namely [19]–[21]

H =
P∑
p=1

cpeM (θp, φp)f HN (τp). (4)

In this model, P, cp ∈ C, θp ∈ [−π, π], φp ∈ [−π, π], and
τp ∈ [0,Ncp − 1] are parameters representing the number
of propagation paths and the gain, azimuth angle, elevation
angle, and normalized delay (with respect to the system sam-
pling period) of the p-th propagation path, respectively.2 Each
path angle tuple represents the direction of departure or direc-
tion of arrival of the path, for the DL and UL transmis-
sion cases, respectively. The elements of the steering vector
eM (θ, φ) ∈ CM capture the known antenna array geometry
and are given by [22]

[eM (θ, φ)]m = e−j
2π
λ
aTmu(θ,φ), m = 1, . . . ,M , (5)

where u(θ, φ) ∈ R3 denotes the unit vector with azimuth
and elevation angles θ , φ, respectively, am ∈ R3 denotes the

2It is assumed that θp 6= θp′ and/or φp 6= φp′ , for all p 6= p′, otherwise
there would exist paths that could be equivalently merged into a single path.
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FIGURE 1. System representation considering two paths of complex gains
c1 and c2 and three transmit antennas. For the first path, the direction of
departure u(θ1, φ1) is shown, as well as the path length difference that
determines the phase shift in the steering vector (5) for the first transmit
antenna located at a1 (in blue). Path lengths causing delays τ1 and τ2 are
also shown (in red and green).

position of the m-th BS antenna element with respect to the
centroid of the array, and λ > 0 is the carrier wavelength.
Fig. 1 illustrates this model for the case P = 2.
Note that the channel model of (4) is the obvious extension

to the MIMO setting of the single antenna model considered
in standard textbooks, describing the channel as a sum of
propagation paths [23]. Although the model applies to any
carrier frequency used today by practical communication sys-
tems, the number of significant paths decreases, in principle,
with increasing frequency (e.g. the millimeter wave band
frequencies [24]). Of course, propagationwith few significant
paths is also possible with smaller carrier frequencies (e.g.,
microwave band) under certain use cases, as verified by a
multitude of legacy works on channel estimation exploiting
this fact (see, e.g., [25]–[28]).

The model of (4) implies a well defined structure for
the channel realization that should be exploited by the
channel estimator, even if no other a priori (e.g., statisti-
cal) information is available. Consideration of this model
effectively transforms the channel matrix estimation prob-
lem to the problem of estimating the 4P path parameters
{(cp, θp, φp, τp)}Pp=1. As will be shown in Sec. III, a (very)
small value of P can be considered by the channel estimator at
least for sufficiently high carrier frequencies, i.e., the channel
is sparse, rendering the number of unknowns to be estimated
much smaller than the channel ambient dimension.

Of particular importance due to its implementation sim-
plicity as well as analytical tractability is the case of a uniform
linear array (ULA)where the antenna elements are distributed
along a line in R3 with equal spacing. Assuming, w.l.o.g.,
that this line belongs to the horizontal plane, the ULA cannot
resolve elevation angles, i.e., is independent of φ, and can
only discriminate among azimuth angles in θ ∈ [−π/2, π/2].
With an element spacing of λ/2, its steering vector is given
by [22]

eM (θ ) = fM (M sin θ/2) (6)

for θ ∈ [−π/2, π/2], up to a unit-modulus constant, which
is of no importance for our purposes as it can be subsumed
by the complex channel path gains.

B. BAYESIAN CHANNEL ESTIMATION
When the probability density function that describes H is
known, a Bayesian channel estimation framework can be
employed, typically with the objective of minimizing the
Bayesian estimation MSE

MSE , E
(
‖H − Ĥ‖2F

)
(7)

where the expectation is taken over the joint distribution
of Ĥ and H . It is well known that the optimal estimate is
the conditional channel mean given the received signal [17].
In case a complete statistical description of the channel is
not available or the calculation of the optimal estimate is
computationally complex, the linear minimum mean square
error (LMMSE) estimator is commonly employed due to its
efficient implementation and utilization of statistical informa-
tion that is limited to the mean and covariance of the channel.

Clearly, LMMSE estimators can be used for any training
matrix choice. When the channel covariance matrix is low-
rank, the channel exhibits important structural properties that
could be exploited within the context of training matrix opti-
mization and overhead reduction. Considering for simplicity
andw.l.o.g. narrowband transmission (N = 1) andwriting the
channel as a column vector h ∈ CM , the channel covariance
matrix equals

C , E
(
(h− E(h))(h− E(h))H

)
(8)

= UC D(λC,1, λC,2, . . . , λC,M )UH
C . (9)

The gain offered by the knowledge of the covariance matrix
can be seen by application of the Karhunen-Loève (KL)
expansion which expresses the channel as [29]

h = E(h)+ U1:rank(C)
C hKL (10)

where hKL ∈ Crank(C) is the vector of rank(C) KL coefficients
that are uncorrelated zero-mean random variables of variance
equal to the non-zero eigenvalues of C. This representation
effectively transforms the channel estimation problem to that
of estimating rank(C) variables, which, when rank(C) �
M (highly correlated channel entries), provides significant
training overhead reductions when C is known at the BS.
Since the columns ofU1:rank(C)

C provide a known basis for the
channel representation, sending training symbols along the
columns of U1:rank(C)

C —i.e., a training overhead of rank(C)
slots—is sufficient to estimate hKL, and thus h.3

C. COVARIANCE MATRIX OF CHANNELS OBEYING THE
PARAMETRIC MODEL
The above discussion was so far general in the sense that it
holds for arbitrary channel models. Let us now consider a

3The same training solution is obtained in [30], by explicitly minimizing
the channel estimation MSE when LMMSE estimators are used.
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channel based on the parametric model (4) and look at its
covariance matrix. Under the common assumption that the
path gains are uncorrelated zero mean variables, the covari-
ance matrix equals

C =
P∑
p=1

E(|cp|2)E
(
eM (θp, φp)eHM (θp, φp)

)
. (11)

In time-invariant scenarios (resp. limited mobility condi-
tions), the path angles become (resp. can be approximated as)
fixed and the covariance matrix reduces to

C =
P∑
p=1

E(|cp|2) eM (θp, φp)eHM (θp, φp). (12)

In the sparse channel case (P < M ), the knowledge of C
implies the knowledge of 1) the path angles, and 2) the path
gains’ variances.4 Clearly, the knowledge of the angles and
gains’ variances implies the knowledge of C in all cases
(sparse or non-sparse channels).

From (12), we observe that C is of rank P. Assuming a
sparse channel [smallP in (4)], the covariancematrix captures
this fundamental sparsity, manifested as a low-rank property.
Here, Bayesian estimation reduces to estimating the P com-
plex path gains {cp}Pp=1 [cf. (4)]. The latter exhibit a one-to-
one mapping to the P complex entries of hKL [cf. (10)].

Whether the parametric model or Bayesian model is used
for estimation, we observe that the number of parameters to
estimate and resulting overhead is O(P), which is indepen-
dent of the channel ambient dimension. Since Bayesian esti-
mation incorporates prior information (knowledge of angle
values and paths’ statistics) into the model, it results in a
lower number of parameters to be estimated than that of non-
Bayesian estimation (e.g., one based solely on the parametric
model). Note that a reduced number of parameters can be
exploited in two ways:

1) A reduced training overhead, compared to the over-
heads of other (non-Bayesian) methods, or

2) An estimation performance that is superior to other
non-Bayesian methods, for a fixed training overhead.

In this paper, we mainly consider the Bayesian estimation
potential for training overhead reduction.

III. SPARSE REPRESENTATION OF THE MASSIVE
MIMO CHANNEL
Many CS works are based on the assumption that the wire-
less channel is sparse (small P). In the previous section,
we have presented conditions under which this translates
into a covariance matrix of low-rank, also given by P. The
latter assumption is the starting point of many other works as
well. Nonetheless, it is worth questioning whether the sparse
assumption really holds in practice.

We aim at answering this question in this section, by con-
sidering the estimation of the channel of one arbitrary user
in the DL. In order to simplify the discussion, narrowband

4These can be obtained via a Vandermonde decomposition of C [31].

transmissions are considered, resulting in the channel being
represented by a column vector h ∈ CM obtained as the right
hand side of (4) with N = 1.

A. SYSTEM MODEL
For channel estimation purposes, the BS reserves T slots for
transmission of training (pilot) symbols. The corresponding
training matrix is denoted S , [s1, . . . , sT ] ∈ CM×T , where
s∗t ∈ CM is the training sequence transmitted in training
slot t . The training sequences are considered to be mutually
orthogonal and of equal norm, i.e., sHi sj = Ptδij, i, j ∈
{1, 2, . . . ,T }, where Pt > 0 is the transmit power. Note that
the orthogonality requirement restricts the number of training
slots as T ≤ M , which is a reasonable constraint towards low
training overhead designs (small T ).
The received training signal at the user equals

y = SHh+ n (13)

where n is a noise vector with i.i.d. complex Gaussian ele-
ments of zero mean and variance σ 2. For convenience we will
define the training signal-to-noise (SNR) as

SNR ,
Pt
σ 2 . (14)

Based on y, the task of the user is to obtain an estimate
of h. When there is no prior/structural information about h,
the channel is treated as deterministic and an LS channel
estimation approach appears natural. However, we do have
structural information about the channel, as described in
Sec. II-A. It is therefore reasonable to consider an estimation
procedure that provides channel estimates with the same
structure as that suggested by the fundamental physical model
of (4) [32]–[34].

As the actual number of propagation paths P is not known,
the estimator a priori assumes a number of P̃ paths for the
channel model, effectively treating the observation in (13) as

y = SHh̃+ ñ, (15)

where

h̃ ,
P̃∑
p=1

c̃peM
(
θ̃p, φ̃p

)
(16)

is the vector to be estimated, with {(c̃p, θ̃p, φ̃p)}P̃p=1 represent-
ing the path parameters of the model and ñ , n+ SH(h− h̃)
represents the effective noise. Denoting

ˆ̃h ,
P̃∑
p=1

ˆ̃cpeM
(
ˆ̃
θp,
ˆ̃
φp

)
(17)

the channel estimate where {( ˆ̃cp,
ˆ̃
θp,
ˆ̃
φp)}P̃p=1 are the estimated

path parameters of the assumed model, note that the channel
estimation error ˆ̃h− h is the result of
1) the error in estimating the 3P̃ model parameters, and
2) the error due to model mismatch (i.e., h̃ 6= h).
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In the following, these two error types are characterized
towards obtaining insights on the channel estimation perfor-
mance as well as the selection of P̃.

B. PARAMETER ESTIMATION ERROR
In order to isolate the parameter estimation error, we assume
that the model mismatch error is negligible compared to the
noise, i.e., ñ ≈ n, effectively implying that h̃ ≈ h. Under this
assumption, it can be shown that the MSE of any unbiased
estimate of h̃ is lower bounded as [9]

E‖h̃− ˆ̃h‖2 ≥ 2P̃/SNR. (18)

This bound is achievable by a training sequence design satis-
fying the condition [9]

ran(S∗) ⊇ span

 P̃⋃
p=1

{
eM ,p,

∂eM ,p
∂θp

,
∂eM ,p
∂φp

} (19)

where eM ,p is used here to denote eM (θp, φp). This condition
can be interpreted as specifying a subspace of beamforming
directions in CM that the training sequences should span.
Note that this condition can be satisfied without any knowl-
edge about this space by using training sequences that span
the whole CM , i.e., S =

√
PtQ, where Q ∈ CM×M is an

arbitrary unitary matrix. This approach requires T = M train-
ing slots. When channel information is available such that the
space is known, the optimality condition can be satisfied with
T ≤ 3P̃ slots, potentially achieving great overhead reduction
with no performance degradation.5

An important feature of the MSE bound is that it is propor-
tional to P̃, which captures the well-known fact that increas-
ing the number of parameters to estimate results in worst per-
formance [17]. This observation motivates the consideration
of a small P̃ by the estimator. However, an arbitrarily small
P̃ will cause a large model mismatch error. Thus, an essential
issue that is investigated next is how small can P̃ be selected
while the model selection mismatch is still negligible.

C. MODEL MISMATCH ERROR
As a measure of the model mismatch error we consider the
norm ||h− h̃||.6 Unfortunately, exact characterization of this
metric is not available, since identification of the value of h̃
that minimizes the model mismatch error for an arbitrary h
is an NP-hard problem [35]. However, a closed-form upper
bound can be obtained by considering a, possibly suboptimal,
h̃ obtained under the principle of path merging as follows:
1) Partition the set of P true path parameter tuples
{(cp, θp, φp)}Pp=1 into P̃ ≤ P subsets {Rp}

P̃
p=1, where

each subset Rp contains at least one tuple.

5Training overhead reduction will be demonstrated in Secs. V and
VI under a more general framework exploiting channel covariance matrix
information.

6The model mismatch error is characterized under the assumption of per-
fect knowledge of h and is treated independently of the parameter estimation
problem.

2) For each subset Rp, p = 1, 2, . . . , P̃, assign a virtual
path with an angle tuple (θ̃p, φ̃p) and set the correspond-
ing path gain equal to

c̃p = argmin
γ∈C
‖γ eM (θ̃p, φ̃p)−

∑
(c,θ,φ)∈Rp

c eM (θ, φ)‖2

The mismatch error of this approach has been characterized
in [10], resulting in the bound

∥∥h− h̃∥∥ ≤ κ P̃∑
p=1

∑
(c,θ,φ)∈Rp

|c|
∥∥∥u(θ̃p, φ̃p)− u(θ, φ)∥∥∥ (20)

where κ , 2π
λ

√∑M
m=1

∥∥am∥∥2.
The form of the bound reveals that the model mismatch

error depends critically on how the path angles of the true
channel are distributed as well as how these are merged for
the construction of h̃. In particular, the error can be made zero
when the paths of each subset Rp are collinear, i.e., have
identical angles, and the corresponding virtual path angles
are set to the same values. This is trivially the case when
P̃ = P (with each subset consisting of only one path). With
P̃ < P, a mismatch error is unavoidable, however, this error
can be small when the paths can be partitioned into groups
containing approximately collinear paths.

Clearly, increasing P̃ towards P reduces the bound towards
zero as there is increased flexibility in identifying and merg-
ing approximately collinear paths. In particular, it was shown
in [10] that for a channel realization with angle tuples dis-
tributed uniformly over the sphere [−π, π]2, which repre-
sents the worst case for the path-merging scheme, the mis-
match error scales as O(1/P̃) as P̃ increases. Recalling that
the parameter estimation error is increasing with P̃, it follows
that there exists a value of P̃ that provides the optimal trade-
off between the model mismatch and parameter estimation
errors. This value is evaluated numerically in the following
section.

D. NUMERICAL RESULTS
In this section, we numerically identify the optimal P̃ for a
simulated scenario where the channel h is generated using
the NYUSIM realistic channel simulator [19] assuming a
millimeter-wave carrier frequency (28 GHz) and a distance of
30 meters between the BS and the user. The BS is equipped
with a square uniform planar array (UPA) of M = 64 λ/2
separated elements. For each channel realization, the number
of propagation paths P is between fifty and a hundred and
the channel norm is normalized to 1. For channel estimation,
the BS employs the training matrix S = PtIM and the
user applies the standard orthogonal matching pursuit (OMP)
algorithm [36], which provides estimates of the form (17) for
a given number P̃ of virtual paths.

Figure 2 shows the MSE E(‖h− ĥ‖2), averaged over many
realizations of h, as a function of the number of virtual paths P̃
considered by the estimator. As a (non-achievable) lower per-
formance bound, we also plot the MSE of an OMP-generated
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FIGURE 2. Normalized MSE performance of parametric channel
estimation via OMP as a function of the considered number of virtual
paths P̃ .

estimate when h is observed directly and without noise. Note
that in this artificial case the estimation error is only due
to the model mismatch. It can be seen that performance is
strongly dependent on P̃, verifying the analysis. For small
values of P̃, the MSE is dominated by the model mismatch
and almost coincides with the lower bound. For large values
of P̃, it is the variance term that dominates, with the MSE
increasing proportionally to P̃ and 1/SNR as suggested by
(18). A particularly interesting observation is that the optimal
(or close to optimal) value of P̃ is no larger than 7 for all
cases of SNR, even though P can reach up to 100. In addition,
the MSE achieved with the optimal P̃ is lower than the MSE
achieved by the standard LS estimator, which equalsM/SNR.
This clearly suggests that the wireless channel can be safely
treated (and modeled) in algorithm development as sparse,
i.e., consisting of only a few propagation paths. On the one
hand, this can be used towards improving the MSE compared
to the LS approach as shown here. On the other hand, it is
shown in the next sections how this sparse representation can
be exploited towards reducing the training overhead in several
multiuser scenarios.

IV. TRAINING SEQUENCE DESIGN AND SCALING LAWS
FOR UPLINK WIDEBAND CHANNEL ESTIMATION
In this section, we consider the problem of multiuser chan-
nel estimation in the massive MIMO UL wideband scenario
(N � 1). As shown in the previous section, the wireless
channel can be treated as sparse for estimation purposes,
which suggests incorporation of approaches and techniques
from themature field of CS [37]. Indeed, by reformulating the
channel estimation problem in a format compatible to the one
considered in CS, a few recent publications have proposed
CS-inspired algorithms for UL massive MIMO wideband
channel estimation [34], [38], [39]. In these works, it is
numerically demonstrated that this approach provides excel-
lent performance with low training overhead. Nonetheless,

an analytical characterization of the latter remains missing
due to the Kronecker structure of the resulting sensing matrix
[cf. (23)]. Building on the sparse channel model from the
previous section and introducing the concept of hierarchical
sparsity, we present a sufficient asymptotic scaling of the
training overhead for reliable channel estimation in the fol-
lowing.

A. SYSTEM MODEL
A BS equipped with a ULA is considered, that arbitrarily
partitions its served users to groups of K users, with K an
integer parameter to be designed in the following. For UL
channel estimation purposes, each user group is assigned an
exclusive set of training subcarriers and all users within a
group transmit their training symbols on these subcarriers and
on the same OFDM symbol. Considering an arbitrary user
group in the following, let T ⊆ [N ] denote the set of its
T , |T | dedicated training subcarriers. We also assume that
only Ka ≤ K users are active.
Let PT ∈ {0, 1}T×N denote the frequency-domain sam-

pling matrix obtained by extracting the T rows of IN cor-
responding to T . The M × T space-frequency observation
matrix based on which the BS will estimate the user channels
is

Y =
√
Pt

K∑
k=1

HkPT
T D(sk )+ N, (21)

where sk ∈ CT is the training sequence of user k consist-
ing of unit modulus elements, Hk ∈ CM×N is its channel
transfer matrix whose structure follows the model of (4) for
the active users, whereas it is a zero matrix for the inactive
users, and N ∈ CM×T is the noise matrix of i.i.d. com-
plex Gaussian elements of zero mean and variance σ 2. It is
also assumed that each user channel has the same number
P of propagation paths that is independent of M and N .
The BS knows P and that only Ka users are active, but not
exactly which of them (the identity of the active users will be
implicitly obtained from the channel estimates). The channels
are considered sparse, i.e., P is significantly smaller than
N or M . (As discussed in the previous section, in scenarios
where P is large, sparse virtual channels can be considered
in place of the actual channels with a small degradation of
performance.)

B. CHANNEL ESTIMATION FORMULATION AS A
COMPRESSIVE SENSING PROBLEM
Operation with an asymptotically large number of antennas
M and number of subcarriers N , keeping the subcarrier spac-
ing constant, is considered. Note that this implies a propor-
tional increase of the cyclic prefix length Ncp, where it is
assumed for simplicity thatN/Ncp is always an integer. In this
regime, the following assumptions are employed.

1) The (normalized) delay τ of an arbitrary channel path
of an arbitrary (active) user takes Ncp discrete values
from the set {0, . . . ,Ncp − 1} whereas its (azimuth)
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angle θ is such that sin(θ ) takesM discrete values from
the set {−1,−1+ 1

M ,−1+
2
M . . . ,− 1

M }.
2) No two channel paths belonging to either the same

user or different users have the same azimuth angle
value.

Although the first assumption is not exact for finite M ,N ,
it can be treated as an approximation that is accurate in the
asymptotic regime as the considered discrete sets provide a
finely grained sampled version of the continuous delay and
angle domains. The second assumption simply reflects the
intuition that the angle of arrivals of any two paths, even of
the same user, are not expected to be exactly the same.

The benefit of these assumptions is that they allow to
express the channel matrix Hk of an arbitrary active user k
as

Hk = FH
MXk

(
F
1:Ncp
N

)T
which follows directly from (4) and (5). Xk ∈ CM×Ncp is the
delay-angular representation of the channel of user k whose
(m, n)-th element is non-zero and equal [Xk ]m,n = jcp,k ,
where cp,k is the gain of the p-th path, if and only if this path
has a delay equal to (n− 1) ∈ {0, . . . ,Ncp − 1} and an angle
whose sine is equal to −1+ (m− 1)/M ,m ∈ [M ].
As Xk has either P� MNcp non-zero (active user) or only

zero (inactive user) elements, it is a sparse matrix. This nat-
urally suggests application of compressive sensing methods
for algorithm design and performance analysis. In particular,
by considering a vectorized version of the observed signal,
the system model equation (21) can be equivalently and more
conveniently written as

y , (1/
√
TMPt )vec(YT) (22)

= (1/
√
TM )(FH

M ⊗ Aτ )x+ n, (23)

where x , vec
(
[X1, . . . ,XK ]T

)
contains the unknown

delay-angle representations of all user channels and is
a sparse vector with KaP non-zero elements, n ,
(1/
√
TMPt )vec(NT), and

Aτ ,
[
D(s1)PT F

1:Ncp
N , . . . ,D(sK )PT F

1:Ncp
N

]
. (24)

The motivation for this problem formulation is a well-
known result in CS theory [37], which, when applied to
this setting, states that, a necessary requirement for perfect
recovery of x from y in the absence of noise is [37, Th. 11.6]

TM = O
(
KaP log(KNcpM )

)
, for KNcpM →∞. (25)

Equation (25) suggests that, in the massive MIMO setting,
the necessary training overhead T remarkably scales asO(1)
as N , M increase, i.e., it is independent of the number of
users and channel paths. Intuitively, the burden of channel
estimation is shifted to the spatial dimension.

However, achievability of the theoretical bound of (25)
depends crucially on the sensing matrix (1/

√
TM )(FH

M ⊗Aτ )
that appears in (23). One commonly employed sufficient con-
dition is that the sensing matrix should satisfy the, so called,

FIGURE 3. A toy example of a realization of X with M = 5, Ncp = 4, for a
case with K = 3 users out of which only Ka = 2 (first and third) users are
active. The channel of each active user has P = 2 paths. Zero elements in
X are represented by dots (·), whereas the KaP , not necessarily equal,
non-zero elements are represented by the symbol ×. By assumption
(which holds in practice for asymptotically large M), no two paths have
the same angle, therefore X has exactly KaP non-zero rows for all
channel realizations.

restricted isometry property (RIP) [37], which would indeed
be the case (with high probability) if its elements were, e.g.,
independent and Gaussian distributed. Unfortunately, there is
limited flexibility in designing such a sensingmatrix since, by
default, it has a Kronecker product structure and the design of
the user signatures can only affect the constituent matrix Aτ
under the specific block structure of (24). Due to exactly this
issue, a rigorous characterization of the sufficient overhead
requirements for massive MIMO is missing in [40].

C. EXPLOITING THE CHANNEL HIERARCHICAL SPARSITY
The key to a rigorous characterization of the overhead
requirements as well as an algorithm design that achieves
them (in a noisy setting) is the observation that for an active
user k , under assumption 2, (a) the P non-zero elements ofXk
belong strictly to P different rows of Xk and (b) for any other
active user k ′ 6= k , the set of non-zero rows of Xk and Xk ′ do
not overlap. This results in matrix [X1, . . . ,Xk ] having, for
every realization of the user channels, exactly KaP non-zero
rows, each with only a single non-zero element. An example
is shown in Fig. 3. This, in turn, implies that the unknown
vector x appearing in (23) is not simply sparse but its sparsity
pattern has a well defined structure. In particular, first note
that x ∈ CM ·K ·Ncp ,7 i.e., x is a 3-level block (compound)
vector: it consists of M blocks (level 1) corresponding to the
range of channel angle values, each of which consists of K
blocks (level 2) corresponding to the K users, each of which
consists of Ncp elements (level 3) corresponding to the range
of delay values. It is easy to see that only KaP level-1 blocks
are non-zero, each non-zero level-1 block contains only 1
level-2 non-zero block, and each non-zero level-2 block has
only 1 non-zero level-3 element.

We say that x is (KaP, 1, 1)-hierarchically-sparse in
CM ·K ·Ncp (or simply (KaP, 1, 1)-hi-sparse). Note that the
notion of hierarchical sparsity is a restriction of the standard
notion of sparsity: A hierarchically sparse vector is sparse
but the reverse does not necessarily hold. An example of an
(2, 1, 1)-hi-sparse vector in C5·2·3 is shown in Fig. 4 (bottom
vector).

Clearly, the hierarchical sparsity of x is a property that
should be exploited in algorithm design and analysis as it
provides significant restrictions on its support, compared
to the standard notion of sparsity. Towards this end, the

7Recall the notation of multi-level block vectors described in Sec. I-C.

VOLUME 7, 2019 32441



S. Bazzi et al.: Exploiting the Massive MIMO Channel Structural Properties

FIGURE 4. A 3-level block vector x̃ ∈ C5·2·3 and its best (2,1,1)-hi-sparse
approximation L(2,1,1)(x̃). Note that L(2,1,1)(x̃) is different from the best
least-squares approximation of x̃ by a vector with 2 non-zero elements.

low-complexity, iterative hard thresholding (IHT) algorithm
[37] is modified as shown in Algorithm 1, referred to as
hierarchical IHT (HiIHT).

Algorithm 1 HiIHT Channel Estimation

Require: y, A , (1/
√
TM )(FH

M ⊗ Aτ ), K , P.
1: i = 0, x̂(0) = 0 ∈ CM ·K ·Ncp

2: repeat
3: i = i+ 1,
4: x̂(i) = L(KaP,1,1)

(
x̂(i−1) + AH

(
y− Ax̂(i−1)

))
5: until stopping criterion is met at i = i∗

6: return (KaP, 1, 1)-hi-sparse x̂(
i∗)

Within iteration i of HiIHT, two steps are performed.
First, a standard gradient descent step towards decreasing the
quadratic error ‖y − Ax̂(i−1)‖2 of the previous iteration esti-
mate is computed. However, since the result will in general
be non-sparse, operator L(KaP,1,1)(·) is subsequently applied,
which computes the least-squares projection of an arbitrary
vector onto the space of (KaP, 1, 1)-hi-sparse vectors. A toy
example of the action ofL(KaP,1,1)(·) for the caseM = 5,K =
Ka = 2,Ncp = 3,P = 1, is presented in Fig. 4. As discussed
in [11], the projection operation can be performed very effi-
ciently with negligible computational cost compared to the
operations required by gradient descent computation.

D. TRAINING DESIGN AND OVERHEAD SCALING
The HiIHT algorithm was presented for an arbitrary selec-
tion of T and {sk}k∈[K ]. Towards (optimal) system design,
a rigorous characterization of the HiIHT performance was
obtained in [11], identifying the, so-called, Hierarchical RIP
(HiRIP) constant of the sensing matrix as a key parameter
for achieving reliable channel estimation. TheHiRIP constant
can be considered as another one of the many constants
characterizing a matrix (such as, e.g., the condition number).
In particular, it provides an indication of the effect a matrix
has when applied to hierarchically sparse multilevel vectors
and is a specialization of the well-known RIP constant in CS
theory [37].

With δ denoting the HiRIP constant of A and with
M ,N ,Ncp � P, the sequence of estimates {x̂(i)} generated
by the HiIHT algorithm satisfies [11]

‖x− x̂(i)‖ ≤
(√

3δ
)i
‖x‖ +

2.18

1−
√
3δ
‖n‖, i ≥ 0, (26)

as long as

δ < 1/
√
3. (27)

It follows that any training design resulting in a sensing
matrix whose HiRIP constant satisfies (27) is sufficient for
HiIHT to achieve reliable channel estimation, in the sense of
perfect recovery in the noiseless (‖n‖ = 0) case and bounded
error in the noisy (‖n‖ > 0) case. One such design was shown
in [11] to be that with
• K = N/Ncp users per group,
• the T training subcarriers of a group selected randomly
and uniformly out of the N total subcarriers, and

• frequency shifted user training sequences of the form

sk = PT D
(
f HN ((k − 1)Ncp)

)
s, k ∈ [K ] (28)

where s ∈ CN is an arbitrary vector of unit-modulus
elements.

Even though the design is not obtained as the solution of
an optimization problem and, therefore, cannot be claimed
to be optimal, it has the benefit of a very efficient HiIHT
implementation. It is easy to see that Aτ = FN under
this design, which allows for computation of the gradient
step in HiIHT by means of a two-dimensional FFT with a
complexity order O(MN log(MN )) per iteration. This allows
for application with (very) large N and/or M and one such
case will be demonstrated in the next section. In addition,
this design allows to obtain rigorous sufficient conditions for
the training overhead required for reliable massive MIMO
channel estimation. In particular, it can be shown that for
asymptotically large M , N , a training overhead

T ≥ min
{
C log4(N ),N

}
, (29)

where C is a constant, is sufficient [11].
It is noted that the overhead scaling of (29) is only

sufficient and, therefore, may be larger that the neces-
sary and sufficient one (which is unknown). Even so, this
result indicates that reliable channel estimation is possi-
ble with a training overhead that is independent of both
Ka and P, similar to what was suggested by the theoret-
ical bound of (25), which is particularly appealing as it
implies a robust training design without the need for train-
ing reconfiguration with changing Ka and/or P. Essentially,
this result verifies the intuition that the massive number
of antennas and corresponding observations can compen-
sate for a small training overhead that would be inade-
quate in a conventional (e.g., single antenna) setting. This
indicates the significant advantage of employing massive
MIMO in terms of reducing the training overhead for channel
estimation.

E. NUMERICAL RESULTS
In order to demonstrate the analytical insights presented in
the previous subsection, the mean square error (MSE) perfor-
mance of HiIHT, defined as

∑K
k=1 E(‖Hk − Ĥk‖

2)/MN is
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numerically evaluated. The channel transfer matrix estimate
of user k is obtained as Ĥk , FH

M X̂k (F
1:Ncp
N )T based on

the HiIHT estimate X̂k of the corresponding delay-angular
channel representation. A setting with N = 1024 subcarriers,
M = 256 antennas, Ncp = 256 cyclic prefix samples and
P = 3 propagation paths per user channel was consid-
ered (results are similar for any other parameters such that
M ,N ,Ncp � P). The delay/angle values of each active user
channel were randomly and uniformly generated satisfying
the assumptions described in subsection IV-B, whereas the
gains were generated as independent complex Gaussian ran-
dom variables of zero mean and variance 1/P (all active
users experience the same SNR). The SNR is set equal
to 10 dB.

Figure 5 shows the MSE performance with varying T for
the case of K = N/Ncp = 4 and variable number of
randomly selected active users Ka. It can be seen, that, in all
cases, performance is excellent with a training overhead in the
order of only about 1% the number of subcarriers. This value
should be compared with the overhead of about D/N% =
25% required in conventional single antenna OFDM channel
estimation without exploiting channel sparsity [41]. Note that
estimation performance degrades as Ka increases, which is
expected as there are more parameters to be estimated [17].
However, this degradation is graceful and, most importantly,
the minimum training overhead required for reliable estima-
tion is the same for all Ka, in line with the analytical insights
of the previous subsection.

In addition, the performance with the same system param-
eters as before but with K = Ka = 1 is also shown for both
HiIHT as wel as IHT (that latter does not take into account
the hierarchically sparse property of the channel). It can
be seen that HiIHT performance improves in the sense that
the minimum number of training sequences to achieve good
performance is reduced. This is because a reduced number of
parameters are estimated and there is no ambiguity in which
user is active. IHT is seen to require significant larger min-
imum training overhead than HiIHT, signifying the impor-
tance of exploiting the channel structure for its estimation.
Note that for sufficiently large T , IHT and HiIHT perform
the same as the number of observations is so large that the
prior structural information employed by HiIHT becomes
insignificant.

V. TRAINING SEQUENCE DESIGN AND SCALING LAWS
FOR DOWNLINK NARROWBAND CHANNEL ESTIMATION
In the following, we begin our treatment of Bayesian
methods, i.e. methods exploiting user covariance informa-
tion at the BS (and possibly at the user). We note that
the analysis, although applicable to the channel model of
(4) and corresponding covariance matrix structure of (12),
is actually more general and applies to arbitrary channel
models.

Recall that the potential of reduced training overhead in
the Bayesian setup was observed in the single-user case in

FIGURE 5. Multiuser channel MSE of HiHTP estimator as a function of
training overhead (N = 1024 subcarriers, M = 256 antennas, Ncp = 256
cyclic prefix samples, P = 3 propagation paths per user channel,
SNR = 10dB). Ka (≤ K ) refers to the number of active users.

Sec. II-B when the low-rank channel covariance matrix is
known at the BS. Even though training overhead reduction,
compared to a naive LS estimation, is expected in a multiuser
scenario by an approach where the BS sequentially trans-
mits per-user optimized training sequences, one expects that
optimization of the training sequences jointly over the user
covariance matrices (e.g., exploiting any possible overlaps
between user covariance range spaces) would provide greater
gains.

This principle is investigated and formalized in this section
under a Bayesian channel estimation framework for a narrow-
band DL system (cf. Section III) servingK ≤ M users and all
the channel covariance matrices Ck , k = 1, . . . ,K , available
at the BS (e.g., by means of a feedback mechanism or exploit-
ing statistical reciprocity of UL and DL channels), whereas
each user knows the covariance matrix of its own channel
alone. Two different approaches for the training design are
considered: MSE-aware and rate-aware. The treatment is this
section is especially relevant for frequency-division-duplex
(FDD) systems. In case there are errors in estimating the
covariance matrices, then the presented analysis [e.g. (33)]
does not exactly hold. Nonetheless, as covariance matrices
are in general constant over multiple coherence intervals, they
can be estimated very accurately even under the presence
of inter-cell interference (see, e.g., [42], [43]). Any small
residual errors would not affect the validity of the performed
analysis.

A. MSE-AWARE TRAINING DESIGN
With covariance matrix information at the users, LMMSE
channel estimation is possible. For the k-th user, its estimated
channel equals

ĥk = W kyk (30)
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where yk ∈ CT is the observed signal at user k as given in
(13) and

W k , CkS
(
SHCkS+ σ 2IT

)−1
(31)

is the LMMSE estimator of user k . The corresponding MSE
equals

MSEk = tr(Cε,k ), (32)

where Cε,k , E
(
(hk − ĥk )(hk − ĥk )H

)
is the covariance

matrix of the channel estimation error given by [17]

Cε,k = Ck − CkS
(
SHCkS+ σ 2IM

)−1
SHCk . (33)

Towards jointly optimizing the training matrix S over
all users, a reasonable objective function is the sum MSE∑K

k=1MSEk . As this is a well-defined function of S, the train-
ing matrix can be optimized for any pre-selected training
overhead T . Unfortunately, the optimal S cannot be found
in closed form, rendering a numerical approach necessary.
Although sophisticated iterative algorithms that show good
performance have been proposed for that purpose [44], [45],
they provide insights on neither the structure of the optimal S
and its explicit dependency on {Ck}

K
k=1, nor on the minimum

training duration that achieves a vanishing channel estimation
sum MSE as the training SNR Pt/σ 2

→∞.8

Towards obtaining such analytical insights, it is easy to see
from (32) and (33) that the training matrix that minimizes
MSEk of an arbitrary user k is of the form

S =
√
Pt (U1:T

Ck )Q (34)

for any given T , where Q ∈ CT×T is an arbitrary unitary
matrix (see also [30]). Substituting (34) into (31) results in

W k = SD

 λCk ,1

λCk ,1 +
σ 2

Pt

, . . . ,
λCk ,T

λCk ,T +
σ 2

Pt


→ S as Pt/σ 2

→∞. (35)

It follows that when S is optimized to minimize MSEk in the
single-user case, the LMMSE estimator of user k reduces to
S in the large SNR regime. This motivates a heuristic design
for the multiuser case where all users, instead of the LMMSE
estimator (31), simply use W k = S, k = 1, 2, . . . ,K , and
S is to be optimized by the BS. Even though this approach
is suboptimal, it simplifies the design of S and provides
insights on the minimum sought training overhead as shown
next.

Defining Csum ,
∑K

k=1 Ck , the sum MSE with W k = S
reads [12]
K∑
k=1

E
(
‖hk − Syk‖

2
)
= tr(Csum)− tr

(
SHCsumS

)
+ KT

σ 2

Pt

≥

M∑
i=T+1

λCsum,i + KT
σ 2

Pt
, (36)

8This problem is not of interest in the uncorrelated channel entries case,
as the corresponding minimum training duration is given by M .

where the lower bound (36) is achieved with

S =
√
Pt (U1:T

Csum
)Q (37)

where Q ∈ CT×T is an arbitrary unitary matrix.9

The achieved lower bound (36) gives interesting insights
on the sought T in the asymptotically high SNR operation.
As Pt/σ 2

→ ∞, the second term vanishes and it is readily
seen that setting T = rank(Csum) drives the first term and
thus (36) to 0. Denoting rank(Ck ) = rk , it holds that

max(r1, . . . , rK ) ≤ rank(Csum) ≤ min

{∑
k

rk ,M

}
. (38)

Note that the lower bound corresponds to the case where the
covariance range spaces of users with the smaller covariance
ranks completely lie in the covariance range space of the user
with the largest covariance rank. In practical systems, this
may happen when all users are located in a relatively small
area and experience similar large-scale fading conditions. The
upper bound holds by the rank subadditivity property and
corresponds to the case where the covariance range spaces are
orthogonal, or do overlap but cover the complete CM space.
This suggests potentially much smaller training overhead
than M for smaller K , smaller covariance ranks, and larger
overlap of covariance range spaces.

Since the LMMSE estimator is the optimal linear estimator
for any training matrix, it follows that using (37) with T =
rank(Csum) in combination with LMMSE estimators also
drives the channel estimation sum MSE to zero asymptoti-
cally. In fact, rank(Csum) is an upper bound of the minimum
training duration when LMMSE filters are used. In addition,
numerical evaluation of the actual sum MSE with LMMSE
estimators and the (suboptimal) training design of (37) shows
practically the same performance with the sumMSE achieved
by the design obtained by direct numerical minimization of
the sum LMMSE w.r.t S [12].

B. RATE-AWARE TRAINING DESIGN
The (sum) MSE metric considered in the previous subsection
for the design of S is a robust and reasonable measure to
evaluate the channel estimation accuracy. However, in many
wireless communications’ applications, the achievable data
rate is the main metric of interest. Therefore, it is natural to
consider training designs that directly operate on the data rate.
Towards this end, consider the received signal at an arbitrary
user k during the data transmission phase

yk,data = hTk zkdk +
K∑

l=1,l 6=k

hTk zldl + nk (39)

where dk ∈ C and zk ∈ CM are the data symbol and
precoder for transmission to user k and nk a zero mean com-

9The resulting sum MSE depends linearly on T in the finite SNR regime,
which is uncommon. This is due to the suboptimal design and is discussed
in detail in [12]. Since the main goal here is to characterize the minimum
training duration in the asymptotic SNR regime, this issue plays no role in
subsequent derivations.
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plex Gaussian noise of variance σ 2. The precoders are power
normalized such that

∑K
k=1 ‖zk‖

2
= Pt , i.e. same transmit

power in both data transmission and training phases. We also
make the assumption that the channels follow a Gaussian
distribution in this subsection.

The first term in (39) is the intended signal towards user
k while the second term represents inter-user interference.
As expected, its properties depend on the employed precod-
ing vectors, which are selected based on the channel state
information (CSI) available at the BS. For an FDD system,
the CSI is obtained by means a of training phase where the
users estimate the channels, followed by a feedback phase
where the users inform the BS of their channel estimates.
Since both steps are prone to errors, they result in imperfect
CSI at the BS and consequently reduced transmitted rates due
to the precoder mismatch with the actual channels.

In order to focus on the effect of channel estimation errors,
we assume perfect feedback, i.e., the BS knows {ĥk}Kk=1.
It can then be shown [13] that the the rate loss 1Rk expe-
rienced by user k compared to the ideal CSI case can be
expressed as the sum of two terms: a dominant term due to
inter-user interference (1intRk ), and a minor term due to the
beamforming loss (1beamfRk ). When zero-forcing (ZF) pre-
coders are employed, the average rate loss (over all possible
channel realizations) due to inter-user interference is upper
bounded by [13]

E (1intRk) < log2
(
1+ Pt λCε,k ,1/σ

2
)
bits/sec/Hz (40)

where λCε,k ,1 is the largest eigenvalue of the channel estima-
tion error covariance matrix [cf. (33)]. In order to avoid a rate
saturation effect for user k due to inter-user interference at
high SNR, the bound of (40) reveals that it is sufficient to
scale λCε,k ,1 inversely proportional to the SNR Pt/σ 2, i.e., it
is sufficient for the condition

λCε,k ,1 ≤ c σ
2/Pt (41)

to hold, where c = O(1) is a constant. Under this condition,
it is further shown in [13] that the average beamforming loss
E(1beamfRk ) converges to zero as Pt/σ 2

→∞. This results
in the average rate loss for user k upper bounded as

E(1Rk ) < log2(1+ c)bits/sec/Hz (42)

for asymptotically large SNR, given that (41) holds. Nonethe-
less, it is numerically observed that the bound holds for low
SNR values as well.

By joint consideration of all K user rates, the training
design problem can be posed as the identification of the (pos-
sibly non-unique)S ∈ CM×T with theminimum T that results
in (41) holding for all k . Though this problem is challenging
and has no closed-form solutions in general, an intuitive
suboptimal solution can be obtained. Similar to the previous
section, the starting point is again the consideration of an
arbitrary user k and the observation that the optimal training
matrix that achieves (41) is equal to S =

√
PtU

1:Tk
Ck

, for some

sufficiently large Tk .10 Then, noting that (41) is also satisfied
by an augmented matrix [U1:Tk

Ck
,S′] for any arbitrary S′ with

M rows,11 a training design that satisfies (41) for all k is

S =
√
Pt
[
U1:T1
C1

,U1:T2
C2

, . . . ,U1:TK
CK

]
. (43)

This simple design procedure, essentially exploiting the per-
user channel correlation structure, requires a training over-
head T =

∑K
k=1 Tk , which can be much smaller than M for

small K and/or {Tk}Kk=1 and/or low SNR values.
Going one step further it was observed in [13] that further

training overhead gains can be achieved by also exploiting the
cross user correlation structure. In particular, it was shown
that if some S satisfies condition (41), then so does any
other S′ satisfying ran(S) ⊆ ran(S′). It follows that if the
range spaces of the constituent matrices of the design in (43)
partially overlap, further reduction of the training overhead
can be achieved by considering a training matrix that satisfies

ran(S) = ran
([
U1:T1
C1

, . . . ,U1:TK
CK

])
, (44)

ultimately resulting in a training overhead equal to the dimen-
sion of this range space, and that can be potentially be much
smaller than

∑
k Tk . Note that Tk increases with increasing

SNR; therefore, T has to be an increasing function of SNR as
well, if (42) were to hold for all SNR values.

Since Tk ≤ rank(Ck ), the main take away is that it is
possible to further reduce the training overhead (compared
to the design of Sec. V-A) if the inter-user interference power
resulting from not training some carefully chosen covariance
eigenvectors (namely, eigenvectors Tk + 1, . . . , rank(Ck ))
is comparable to or smaller than the noise power. This is
illustrated numerically in Sec. V-D.

C. REMARKS ON THE FULL RANK COVARIANCE MATRIX
CASE
For completeness, we address the case of full rank covariance
matrices. Here, the feasibility of the proposed schemes highly
depends on the eigenvalue spread. If the latter is large and
many eigenvalues are (very) small, then a numerical rank rnum
ofCsum can be defined as shown in the next section. The value
of rnum can be (much) smaller thanM . Training along the rnum
eigenvectors of Csum provides a satisfactory performance
in the finite SNR regime. Initial measurement campaigns
corroborate the large eigenvalue spread property [46], [47].
In case rnum is close to M and/or the eigenvalue spread is
not large, then the scheme of Sec. V-A may not provide large
overhead reductions. Nonetheless, the rate-aware scheme of
Sec. V-B can still be used to reduce the training overhead for
practical SNR values. One such example is discussed in detail
in [13, Sec. VI-F].

10Up to a unitary matrix ambiguity which can w.l.o.g. be set to the identity
matrix.

11This follows intuitively as introducing more training slots can only
improve channel estimation performance with standard LMMSE estimators.
A formal proof is provided in [13].
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D. NUMERICAL RESULTS
We consider a BS with a UPA of M = 128 elements dis-
tributed in 8 rows and 16 columns andmounted at an elevation
of h = 50 m. The antenna element spacing is set to λ/2 in
both horizontal and vertical directions. The BS serves K = 8
users present in a 120◦ sector with mean angles of arrivals
{−52.5◦,−37.5◦, . . . , 52.5◦} in the azimuth direction. User
k is 150+ 25mod(k − 1, 4) meters away from the BS and a
path loss exponent of 2 is considered. We use the Laplacian
angular spectrum (LAS) correlation model [48] with hori-
zontal and vertical standard deviations of 12 and 6 degrees,
respectively. The resulting covariance matrices have many
small eigenvalues but no eigenvalues which exactly equal 0;
thus, a numerical rank has to be defined similarly to [12].
Here, we define the numerical rank as the smallest number
of eigenvalues that contribute at least 99.99% of the channel
power (covariance trace). The resulting numerical covariance
ranks are given by 32, 35, 37, 39, 40, 42, and 45.

In Fig. 6, we plot the sum rate of all users obtained by
the MSE-based training solution of Sec. V-A for the derived
fixed training overhead T = rank(Csum) = 51 slots for
various SNR values, where the rank is obtained numerically
as described above. Further, we plot the sum rate of the
rate-based training solution of Sec. V-B with c = 1, i.e.
a training solution resulting in an average rate loss smaller
than 1 bit/sec/Hz for each user. LMMSE estimators are
employed by users in both cases. In addition, the perfect
CSI sum rate and the sum rate lower bound (obtained as
the perfect CSI sum rate minus K log2(1 + c)) are plotted.
Fig. 7 plots the corresponding training overheads of both
proposed designs. When looking at the results of the MSE
aware design of Sec. V-A, one can see that exploiting the
low-rank covariance structure and the intersection between
the covariance range spaces allows obtaining accurate chan-
nel estimates that closely follow the perfect CSI sum rates
with a much smaller training overhead (51) than the num-
ber of BS antennas (128). Note that a per-user optimized
sequence solution does not provide any training overhead
reductions here, since

∑
k rank(Ck ) > M . This stresses the

importance of exploiting intersections of covariance range
spaces.

However, even greater overhead reductions can be
achieved by the design of Sec. V-B as depicted in Fig. 7 and
with only negligible performance degradation as the design is
explicitly matched to the achievable rate and operating SNR.
Note that this design has an adaptive training overhead as
previously discussed. Further, even though operation in finite
SNR is considered, the sum rate loss compared to the ideal
CSI case is contained within the asymptotic upper bound of
(42). As a final remark, we note that Fig. 6 highlights the
effect of CSI quality on precoding, and does not explicitly
take the training overhead needed to obtain the CSI into
account when effective spectral efficiencies are calculated.
Therefore, the design of Sec. V-B would be superior to the
one of Sec. V-A in any finite coherence block regime when
this is considered. The next section will show results in

FIGURE 6. Comparison of different proposed training designs exploiting
covariance information for a scenario with K = 8 users, M = 128 BS
antennas. The corresponding training overheads are shown in Fig. 7.

FIGURE 7. Training overheads of the proposed designs.

the finite coherence block regime to further highlight this
aspect.

VI. A SPATIAL BASIS COVERAGE APPROACH FOR UL
TRAINING AND SCHEDULING
The previous section illustrated how the partial intersection
between covariance range spaces can be exploited to reduce
the training overhead in a DL multiuser scenario. In this
section, we continue our treatment of Bayesian methods
and present a scenario where another property of covariance
matrices can be exploited for training overhead reduction,
namely the (approximate) orthogonality between the domi-
nant eigenvectors of carefully selected users.

A. SYSTEM MODEL
Consider a narrowband UL multiuser, multi-cell setting of
Nc > 1 cells. Recall that in the single-cell case, a single
channel use (T = 1) is sufficient for an accurate channel
estimate at the BS, when a single user is considered. How-
ever, when K > 1 users are served by the cell, a naive
LS estimation approach leads to a minimum overhead T =
K and, ultimately, T = NcK when inter-cell interference

32446 VOLUME 7, 2019



S. Bazzi et al.: Exploiting the Massive MIMO Channel Structural Properties

is significant. This overhead may be unacceptable in massive
connectivity scenarios and ultra dense networks. Towards
reducing the overhead in these scenarios, Xie et al. [49] have
proposed a greedy scheduling approach that allocates the
same training sequences to spatially separated users, while
imposing guard intervals between their spatial signatures.
The analysis in [50] confirms the soundness of exploiting
the channel spatial structure to reduce the impact of pilot
contamination. Therein, the authors showed that, using multi-
cell MMSE precoding/combining, massive MIMO capacity
increases without bound as the number of antennas increases
when the same training sequence is allocated to users with
linearly independent covariance matrices. A user assisted
clustering was proposed in [51], where a DL probing phase is
used to obtain the cluster information from the users based
on the instantaneous channels. This scheme thus requires
control information to be sent in the DL and UL directions.
A location-aware pilot allocation algorithm that exploits the
behavior of line-of-sight (LOS) interference among users was
proposed in [52]. Therein, a low-complexity algorithm was
developed to allocate the same pilot sequence to the users
with small LOS interference.

Similar to the treatment in the previous section, we exploit
the channel covariance information in the following towards
improving the channel estimation performance while keeping
the control information at a minimum. In addition, we pro-
pose a novel grouping scheme to achieve higher training
sequence reuse, while discarding the imposed separation in
[49] for the sake of full exploitation of the angular range.

We do not optimize the training sequences as was done in
the previous sections. Instead, we assume that the training
sequence of each user is selected from an arbitrary set of
T ≤ K orthogonal training sequences {st }Tt=1, each of length
T and norm Pt . Considering the single-cell scenario first (no
inter-cell interference), the received signal Y ∈ CM×T at the
BS during the training phase equals

Y =
∑K

k=1 hks
H
χ (k) + N (45)

where χ : {1, . . . ,K } → {1, . . . ,T } is a mapping function
that assigns users to training sequences and N ∈ CM×T is
the noise matrix with i.i.d. complex Gaussian entries as in
the previous sections. A straightforward LS estimation of hk
equals

ĥk =
1
√
Pt
Ysχ (k)

= hk +
∑
l 6=k,

χ (l)=χ (k)

hl +
1
√
Pt
Nsχ (k). (46)

It can be seen that the channel estimate is not only affected
by noise but also by pilot contamination due to multiple users
using the same training sequence when K > T . Clearly, pilot
contamination can be completely eliminated when T = K
and with a simple user-to-sequence assignment χ (k) = k .
However, when a value of T < K can only be afforded,
an assignment rule that minimizes pilot contamination is
necessary. The problem of finding this rule is considered next.

B. EXPLOITING CHANNEL STRUCTURE FOR OPTIMAL
TRAINING ASSIGNMENT
As in the previous section, we exploit the structural properties
of the user channels as captured by their covariance matrices.
In particular, it follows from (10) that the BS, instead of the
estimation of hk , may equivalently consider the estimation of
the KL coefficients hk,KL ∈ Crank(Ck ) that can be obtained
from (46) and (10) as

ĥk,KL = UH
Ck ĥk

= hk,KL + UH
Ck

 ∑
l 6=k,

χ (l)=χ (k)

UC lhl,KL +
1
√
Pt

Nsχ (k)


(47)

where we have assumed zero-mean channels w.l.o.g. Denot-
ing Gt ⊆ {1, 2, . . . ,K } the group (set) of users that are
assigned training sequence t , it directly follows from (47)
that the training interference affecting the channel estimates
for the users in this group is (approximately) zero if the
range space of the matrices {UCk }k∈Gt are (approximately)
mutually orthogonal. This observation strongly motivates
assigning users with approximately orthogonal covariance
eigenspaces the same training sequence.

We apply this approach in the context of a BS equipped
with a ULA. In this context, the eigenvectors of each channel
covariance converge to columns of the DFT matrix FM as
M → ∞ [53]. For finite and large M this provides a good
approximation; thus, it is convenient to consider this DFT
eigenspace structure and approximate the dominant eigen-
vectors of Ck with the following set of vectors, referred to
as spatial signature:

ÛCk ,

{
fM (s) :

Qk,s
E[||hk ||22]

≥ α, s = 0, 1, . . . ,M − 1

}
(48)

where Qk,s , f HM (s)Ck fM (s) quantifies the average energy
of hk that is aligned to fM (s) and α ∈ (0, 1) is a tunable
threshold parameter. The user grouping performed by the
BS will be based on their spatial signatures. The value of α
quantifies the number of DFT beams that will be included in
each user spatial signature. Defining a value for α amounts
to addressing an important trade-off between accuracy and
complexity. On one hand, a small value of α will result
in high dimension spatial signatures that can convey more
information about the channel covariance matrix. However,
any subsequent optimization will be impacted by an increase
in complexity. On the other hand, a high value for α sim-
plifies the representation of the channel spatial structure
by including only a few strongest beams. This results in a
relatively poor representation of the channel spatial domain
structure which may reduce the gains from any subsequent
optimization.

Besides providing good approximations of covariance
eigenvectors for finite and large M , the spatial signature

VOLUME 7, 2019 32447



S. Bazzi et al.: Exploiting the Massive MIMO Channel Structural Properties

proves useful for other reasons. For instance, even though
the BS is able to form a channel covariance estimate on its
own, the spatial signature defines a unified eigenbasis for all
users that tremendously simplifies the problem formulation
as will be seen by examining (53). Additionally, this reduces
complexity since the eigenvalue decomposition required to
obtain the (exact) eigenvectors is avoided.

Treating users with strictly non-overlapping spatial sig-
natures as candidates for being assigned the same training
sequence, a natural criterion for performing the sequence
assignment is to maximize the number of users that can
be supported given the training overhead T . Targeting sum
rate maximization, it is also natural to select users with the
largest received energy at the BS. Introducing the KT group
assignment variables

xk,t =

{
1, if user k is assigned to group Gt ,
0, otherwise,

(49)

for k ∈ {1, . . . ,K }, t ∈ {1, . . . ,T }, the resulting problem
can be formulated as the maximization of the total average
received energy by the users subject to following constraints:

maximize
{xk,t }

T∑
t=1

K∑
k=1

xk,tQk (50)

subject to
K∑
k=1

xk,t ≤ Ut , t = 1, 2 . . . ,T , (51)

T∑
t=1

xk,t ≤ 1, k = 1, 2 . . . ,K , (52)

K∑
k=1

xk,tIk,s≤1, t = 1, . . . ,T , s = 0, . . . ,M − 1

(53)

where Ik,s , I(fM (s) ∈ ÛCk ) and Qk ,
∑M

s=1 Ik,sQk,s is
the total channel energy of user k over its spatial signature.
Here, I is the standard indicator function defined by I(1) = 1
and I(0) = 0. Constraint (51) restricts the total number of
the users per (sequence) group, effectively imposing a reuse
factor Ut for sequence t , while constraint (52) guarantees
that each user can be assigned to at most one group. The
(approximate) mutual orthogonality between users within
each group is guaranteed by the constraints in (53) which
restrict each vector of the DFT basis to be considered at
most once in each sequence group. In other words, users with
overlapping spatial signatures cannot be assigned the same
training sequence. Here, it can be seen how the defined spatial
signatures simplify the problem formulation and solution.
By (53), identification of (approximately) orthogonal covari-
ance channels is simply achieved by checking if a given DFT
column belongs to the spatial signatures of at least two users.
A much more complex constraint would need to be intro-
duced if the exact users’ covariance eigenvectors are used.

It can be shown that the above problem is NP-hard, i.e., its
global optimal solution cannot be found by means of a poly-
nomial time solvable algorithm. An approximate, yet efficient

algorithm was proposed in [14] based on an extension of
the generalized maximum coverage algorithm in [54]. The
proposed approach uses two nested greedy phases that are
combined with several instances of a knapsack problem.
The algorithm is guaranteed to provide, at least, a fraction

(1− (T−1T )T )
3
2−

e−2
2

1−e−2
of the optimal solution.

Finally, we mention that the constraint (53) might leave
users from being served, i.e., it might happen that xk,t = 0 ∀t
for a given user k . If fairness is of concern, one could opti-
mize the set of selected K users before running the proposed
algorithm.

C. A GRAPHICAL APPROACH FOR INTER-CELL
INTERFERENCE MANAGEMENT
The previous discussion considered a single-cell system,
i.e., it ignored interference generated from other cells in
the system. With Gt,c denoting the users served by cell
c ∈ {1, . . . ,Nc} that are assigned training sequence t , this
approach implicitly performs a system-wide user grouping
with sequence t assigned to users in the set Gt , ∪Ncc=1Gt,c.
This independent-per-cell sequence assignment can be suf-

ficient in sparse networks with large cells, where the inter-cell
interference power is expected to be much smaller than the
intra-cell interference power. However, inter-cell interference
becomes a significant issue in dense networks. In such a
scenario and with channel covariance information available
for every user-BS link in the system, one expects improved
performance with a joint sequence assignment over the cells.

Towards an improved system-wide sequence assignment,
we leverage the per-cell user grouping described previously
in a cross-cell sequence allocation procedure that operates in
two steps:

1) Each of the Nc cells groups its served users according
to the procedure described above, i.e., ignoring inter-
cell interference. However, no sequences are assigned
to the groups at this stage.

2) The TNc user groups {Gt,c} are partitioned into T super
groups {Gt } of user groups with minimum (ideally,
zero) mutual cross-cell interference.

Towards an efficient user grouping in the second stage of
the algorithm, we employ a graph-based approach. An undi-
rected weighted interference graph with TNc vertices corre-
sponding to the user groups {Gt,c} obtained in the first step
is constructed. The vertices are connected via edges with
weights that quantify the level of mutual cross-cell interfer-
ence between the user groups. A simple example is shown
in Fig. 8.

For two arbitrary vertices Gt,c, Gt ′,c′ , we define the weight
as

wGt,c,Gt′,c′ , min
k∈Gt,c,k ′∈Gt′,c′

{
I(k ′,c′)→(k,c)+I(k,c)→(k ′,c′)

}
(54)

when c 6= c′, where

I(k ′,c′)→(k,c) ,
tr(Û

H
Cck,c

ÛCc
k′,c′

)

‖ÛCck,c‖F‖ÛCc
k′,c′
‖F
, (55)
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FIGURE 8. Example of an interference graph with T = 2 and Nc = 2.

with Cc′
k,c denoting the covariance matrix of the channel

between user k of cell c and the BS of cell c′, and ÛCc
′

k,c
representing the spatial signature of user k of cell c, as viewed
by the BS of cell c′, obtained similarly to (48), with Cc′

k,c in
place of Ck . For the weight corresponding to user groups of
the same cell, we assign a very large weight w∞ so as to
guarantee that they do not receive the same training sequences
by the algorithm to be described in the following.

The weight expression of (54) is inspired by the single
andweighted average linkage, commonly used in hierarchical
clustering [55] and the similarity measure used in [56] and
[57]. Note that I(k ′,c′)→(k,c) can be regarded as a measure
of the interference user k ′ of cell c′ would introduce to the
channel estimate of user k of cell c if both users had the
same training sequence. Intuitively, a small weight wGt,c,Gt′,c′
indicates that users in Gt,c and Gt ′,c′ have channels resulting
in low levels of cross-cell pilot contamination, in case they
are allocated the same training sequence. This suggests that
the same training sequence should be allocated to user groups
linked with small interference weights. A natural approach
to construct super groups with these property is to consider
an MAX-T -CUT problem formulation, with the T user super
groups Gt identified as the ones maximizing∑

1≤r<s<T

∑
Gt,c∈Gr ,
Gt′,c′∈Gs

wGt,c,Gt′,c′ (56)

As this problem is NP-hard, we use the low complexity
greedy approach in [58]. This algorithm provides an efficient
partitioning of the interference graph with at least a fraction
(1 − 1

T )-approximation of the optimal allocation solution.
A note on the complexity of the proposed scheme is now
in order. Indeed, optimizing cross-cell pilot allocation needs
centralized knowledge of the channel spatial information
for all links in the system. The latter may require a non-
negligible signaling overhead between the BSs. In addition,
one should take into consideration the needed computation
time to perform the optimization. Nevertheless, the proposed
approach is based on the second order statistics of the channel
which are characterized by an extended stationarity time. This
means that the network will be able to exchange the needed
information and to perform cross-cell pilot allocation without
reducing its efficiency. In addition, the DFT-based structure
of the spatial signatures results in simplifying the task of

FIGURE 9. Comparison of CDFs of achievable sum spectral efficiency for
T = 6, Ut = 3, and SNRt = 10 dB.

spatial information centralization since DFT codebooks can
be used.

D. NUMERICAL RESULTS AND DISCUSSION
In this section, we provide numerical results demonstrat-
ing the performance of the proposed sequence assignment
scheme in a multi-cell context. We consider a network that
consists of Nc = 4 hexagonal cells, each containing at its
center a BS that is equipped with ULA ofM = 128 antennas
elements with λ/2 spacing. Each cell has a radius 0.5 Km,
from center to vertex, and serves K = 25 randomly located
users. The channel between each user and each serving BS
is independently generated according to the model of (4)
with P = 100 paths with angles uniformly distributed in the
interval

[
θ̄−10◦, θ̄+10◦

]
where θ̄ denotes the azimuth mean

angle of arrival. The path-loss coefficient is set to 3.5 and
the parameter α in (48) is set to 0.05. The latter indicates
that users spatial signature should contain any DFT beam
that spans at least 5% of the channel energy. This value
was selected in order to strike a good compromise between
performance and complexity.

For each channel coherence interval, set here to 128 chan-
nel uses, a training phase is implemented first in order to
obtain a channel estimate for each user by its serving BS.
A data transmission stage then follows, where all users simul-
taneously send their data symbols and each BS detects the
symbols by means of maximum ratio combining, treating the
estimated channel as the actual one. The performance of the
schemes in Secs. VI. B and VI. C, respectively, is compared
to that of a conventional TDD massive MIMO system. In this
baseline system, each BS randomly assigns a set of orthogo-
nal training sequences to its scheduled users to completely
eliminate intra-cell pilot contamination, but the effects of
inter-cell pilot contamination are neglected.

Figure 9 shows the impact of the proposed approach on the
CDF of the achievable sum spectral efficiency of scheduled
users. To provide a fair comparison, all schemes schedule
the same users, set to T × Ut per cell. The only difference
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lies in the adopted UL training approach. While the number
of training sequences for the proposed algorithm was set to
T = 6 and the sequence reuse factor in (51) was set to
Ut = 3, the users in the baseline scheme will be using
randomly assigned orthogonal training sequences of length
T × Ut . We see that the proposed spatial signature based
user grouping without inter-cell interference consideration
enables a considerable improvement in spectral efficiency,
achieving 5% outage rate around 154 bits/sec/Hz instead of
98 bits/sec/Hz provided by the conventional training scheme.
This gain is due to the reduced training overhead T (6 instead
of T × Ut ), which results in the utilization of a larger por-
tion of the coherence interval for data transmission while
simultaneously enabling accurate channel estimation with the
proposed user grouping. When inter-cell interference is also
taken into account, the performance can be further improved,
achieving a 5% outage rate around 164 bits/sec/Hz. However,
this performance is obtained at the cost of global channel
covariance information for all links in the system, which may
be costly.

VII. CONCLUSION
This work shows how channel structural information can
be utilized towards optimizing the channel estimation
MSE or achievable rates with minimum training overheads,
which is of critical importance in a multiuser massive MIMO
setting. Starting from the parametric channel model defined
in Sec. II, we showed in Sec. III how the channel can be effec-
tively considered as sparse in many scenarios of interest (e.g.
high carrier frequencies). Building on this finding and further
introducing the concept of hierarchical sparsity, we studied
sufficient training scaling laws in single-cell UL wideband
systems in Sec. IV. We found that a training overhead that
scales logarithmically with the number of subcarriers but
independently of the number of channel paths and users
is sufficient for reliable channel estimation. This is a huge
benefit offered by the use of multiple antennas in a massive
MIMO setting, which is not available in conventional MIMO.
Using the developed connection between sparse channels and
low-rank channel covariances in Sec. II-C, we have further
exploited the finding of Sec. III towards minimizing the
training overhead in a Bayesian framework with channel
covariance knowledge at the BS in Secs. V and VI. Sec. V
studied the training overhead scaling laws in a single-cell
DL scenario, and showed that a sufficient training overhead
for reliable channel estimation depends on the ranks of the
users’ covariance matrices and the overlap between their
range spaces. For covariancematrices with small ranks and/or
significant overlap, the resulting overhead can be signifi-
cantly smaller than the number of BS antennas, which would
be the overhead required under a naive LS-based channel esti-
mation approach. We additionally showed how the training
overhead can be further reduced when the data rate metric
is directly optimized. Finally, Sec. VI considered a multi-
cell UL scenario and designed a novel spatial user grouping
scheme that mitigates intra-cell as well as inter-cell pilot

contamination while supporting high training sequence reuse
factors. The proposed algorithm exploits the (approximate)
orthogonality between dominant covariance eigenvectors of
carefully selected users and is facilitated by the concept of
spatial signatures, introduced therein.

Future possible lines of work include, for methods exploit-
ing the sparse angle-delay representation, designing algo-
rithms that work efficiently for different number of paths per
user and without the a priori number of paths knowledge at
the BS. Formethods exploiting the low-rank covariance struc-
ture, interesting avenues for future work include considering
non-orthogonal sequences with optimized power levels in the
aim of further reducing the training overhead.
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