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ABSTRACT In this paper, we propose a unified approach for compression and authentication of smart
meter reading in advanced metering infrastructure (AMI). In general, smart meters are urged to send
sampled reading signals at a high rate for high-quality services. Meanwhile, power reading signals have
to be authenticated to prevent impersonation attacks, which can cause serious economic loss. However,
the security in smart grids faces more challenges than conventional human-type communications because of
limited hardware resources of a smart meter (e.g., small memory). Motivated by these problems, we study
simultaneous compression and authentication for power reading signals in multicarrier systems based on
the notion of compressive sensing (CS). The CS-based compression and authentication method are applied
to empirically modeled signals with a shared secret key, a measurement matrix in CS between a data
concentrator unit (DCU) and a legitimate smart meter. In particular, for authentication, the residual error
of a received signal at the DCU is used as a test statistic for hypothesis testing, which determines whether
the signal is a legitimate signal or an intrusion signal in the proposed approach. Through the analysis and
simulation results, we demonstrate that the CS-based compression approach can be applied to smart meter
reading with good energy efficiency. In addition, it is shown that the proposed scheme can obtain a low
authentication error probability under reasonable conditions. For example, when the number of subcarriers
is 64, the DCU can distinguish legitimate and intrusion smart meters with a probability of 1 − PE , where
PE ≤ 10−4.

INDEX TERMS Authentication, compression, compressive sensing, advanced metering infrastructure.

I. INTRODUCTION
In general, a traditional power grid is an electric system that
carries power from electric power generators to a large num-
ber of consumers. In a power grid, consumers might be unin-
formed and non-participative with the power system. While
there are some drawbacks (e.g., poor visibility, slow response
time, lack of situational awareness) caused by the closed
nature of the power system [1] in a power grid, the demand
for electricity has gradually increased. To satisfy the demand
and address these challenges, smart grid which is an evolved
power grid that integrates advanced computing and commu-
nication technologies into power grid has emerged [1].

The associate editor coordinating the review of this manuscript and
approving it for publication was Bin Zhou.

Advanced metering infrastructure (AMI) plays a crucial
role in smart grid by enabling bidirectional communications
of precisemeasurements and fast reports between energy con-
sumers and producers [2], [3]. But, there might be challenges
for AMI due to the smart meters with limited resources (e.g.,
small memory, limited bandwidth). For example, it might be
difficult for smart meters to support fast sampled power sig-
nals, i.e.,∼1 kHz in real-time, necessary for power disaggre-
gation, due to the undesired high energy consumption and the
broad bandwidth requirement [4]. In addition, assuming that
there exist malicious devices which perform impersonation
attacks, it is vulnerable to the attacks due to the nature of
wireless broadcast [5]. It may cause serious economic loss
and instability of the power system by manipulating power
signals. For example, a utility of Puerto Rican suffered huge
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economic losses which are about $400 million by malicious
manipulations of smart meter readings [6].

To obtain detailed energy usage patterns in the appli-
ance level, a large amount of power information which
enable power disaggregation are necessary. Power dis-
aggregation techniques attempt to identify the individual
power contributions of the appliances in the whole power
consumption [7]–[11]. However, for those techniques, if the
aggregated power signals are sampled at a low rate, it is
hard to exactly disaggregate the power signals of individual
appliances. While high sampling rates of the power signals
make an accurate power analysis for appliances by capturing
more characteristics of power signals in AMI, they induce
a burden of increasing computational complexity and trans-
mission power for the power meter which has limitations of
hardware resources.

To address the high sampling problem, data compres-
sion techniques have been extensively studied for many
applications [12]–[19]. There are a few lossless compression
techniques for power data [12]–[15]. In [12], it is shown that
a two-dimensional representation based compression outper-
forms a one-dimensional representation based compression
for compression of power quality event data in terms energy
compaction efficiency. In addition, in [15], a new lossless
compression method for smart meter readings is proposed
usingGaussian approximation, based on a dynamic-nonlinear
learning technique. In lossy compression, various power
signal compression methods have been studied. A wavelet
based data compression approach is presented in [17], where
a wavelet transform based multiresolution analysis which
enables power signal compression and denoising is investi-
gated. In [18], a new compression method for power signals
using singular value decomposition (SVD) is presented. This
method is superior to wavelet based compression techniques
in terms of the reconstruction performance, while it has high
complexity for data compression which may impose a heavy
burden on a smart meter. In [19], using the notion of com-
pressive sensing (CS), the power signals of a smart meter
are compressed to reduce the computational complexity of
a smart meter in AMI.

CS has attracted considerable attention in electrical
engineering, applied mathematics, statistics and computer
science [20]. Recently, CS has been applied to the infor-
mation security field in [21]–[36]. In particular, two aspects
have been studied: the theoretical aspect and the applica-
tion aspect [37]. In the theoretical aspect, CS based encryp-
tion, which uses a measurement matrix as a secret key, has
been theoretically analyzed in [21]–[27]. In [21], CS based
encryption was found to achieve computational secrecy,
while it cannot provide perfect secrecy in terms of informa-
tion security because of the linear property of measurements.
To achieve perfect secrecy, some unfeasible assumptions used
in [24] have to be made. In addition, CS based encryption
is analyzed in terms of robustness and security in [22]. Par-
ticularly, as shown in [25], CS cannot guarantee the security
of cryptographic standards, but may provide a useful built-in

data obfuscation layer. In the application aspect, CS has been
applied to various applications (e.g., image, biometric data)
for security [28]–[36]. Particularly, image encryption meth-
ods using the notion of CS have been studied to enable simul-
taneous image compression and encryption in [28]–[31].
Furthermore, an image authentication scheme based on CS is
considered in [36]. In [36], a CS based authentication mech-
anism that uses a tag signal for image authentication is pre-
sented, but the study does not provide any theoretical basis.
In particular, a threshold for hypothesis testing and theoretical
performance analysis is not given in [36].

In smart grid, authentication techniques have been studied
mostly in network and application layers [38]–[40]. How-
ever, these techniques may not be suitable for some smart
meters with limited resources such as low computational
capability and limited bandwidth due to high complexity.
To address this issue, physical layer authentication methods
based on the dynamic physical characteristics (e.g., chan-
nel, analog front-end (AFE)) have been considered. Channel
based physical layer authentication [41] uses the time-variant
channel state information (CSI). In addition, the phases
of multicarrier channels are used for secure physical-layer
challenge-response authentication with a shared secret key
in multicarrier systems [42]. In [43], channel coding is
employed to mitigate the difference between the two esti-
mated channels, which are used for physical-layer challenge-
response authentication. The hardware imperfection of AFE
which causes input and output (I/O) imbalance, phase offset
error, carrier frequency offset error can be used for physical
layer authentication [44]. However, if the characteristics of
AFE and channel for an intrusion node are close to those
of a legitimate transmitter, the authentication techniques may
result in relatively poor authentication performance. In [45],
a tag signal is concurrently transmitted for a stealth authenti-
cation with a message signal.

In this paper, we propose a unified approach of compres-
sion and authentication for smart meter readings based on
the notion of CS in a multicarrier system. The power reading
signal of a smart meter is considered as an aggregated signal
of power signals of home appliances. Based on the models
for power signals of home appliances in [46], empirical mod-
eling of the aggregated signal is considered for the smart
meter reading. To this end, we collect power consumption
data for home appliances to empirically model using the
smart plugs (PM-B310-W2) in the laboratory. Unlike [32]
where a CS based compression is applied to power signals
of home appliances, a CS based compression is applied to
the aggregated power reading signal based on the empirical
modeling. Furthermore, we consider an efficient authentica-
tion scheme in conjunction with CS based compression to
reduce a burden of the signal processing of the smart meter
for compression and authentication in the proposed scheme.
In particular, by using a measurement matrix as a secret key
for the authentication, we show that the power reading signal
can be authenticated in physical layer. It means that a data
concentrator unit (DCU) which collects the power data from
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the smart meter can discard an intrusion signal in physical
layer directly without upper layer processing, which can
effectively reduce the burden of network due to unnecessary
traffics caused by malicious intrusion meters. Through the
theoretical analysis and numerical simulations, we can show
that the CS based compression for smart meter readings has a
better performance than wavelet based compression in terms
of energy efficiency. In addition, the proposed scheme can
obtain a low authentication error probability under various
conditions (e.g., the number of subcarriers, signal to noise
ratio (SNR)).

Themain contributions of this paper are summarized as fol-
lows. First, a unified approach for compression and authenti-
cation is proposed under a transmission framework for smart
meter reading in AMI. Any unified approach for compression
and authentication of power reading signals has not been
studied in the literature yet, while a similar work can be found
in [32], where the compression is combined with encryption.
Compared with the approach in [32], the proposed approach
focuses more on authentication to prevent impersonation
attacks. Secondly, for the authentication performance analy-
sis, we derive a guaranteed authentication error probability
for the proposed scheme. In this paper, the authentication
error probability is the probability that the DCU makes an
incorrect decision of hypothesis testing for the authentication.
Here, a power of a residual error for a received signal at the
DCU is used for hypothesis testing. Note that this paper is an
extension of its conference version in [19] with new material,
including the discussion on CS based authentication, which
is our main contribution (in Section IV).

The remainder of this paper is organized as follows.
In Section II, we explainmotivation of ourworks in this paper.
Section III presents a CS based compression scheme based
on an empirical modeling of a power reading signal at a smart
meter in AMI.We propose a unified approach of compression
and authentication for smart meter reading in Section IV. The
simulation results to evaluate the performance of the pro-
posed scheme are presented in Section V. Finally, concluding
remarks are given in Section VI.
Notation: Upper-case and lower-case boldface letters are

used for matrices and vectors, respectively.AH andAT denote
the Hermitian and transpose of A, respectively. For a matrix
X (a vector x), [X]m ([x]m) and [X]m,n represent the m-th row
(element, resp.) and them-th row and the n-th column element
of X, respectively. The p-norm of a vector a is denoted by
‖a‖p (If p = 2, the norm is denoted by ‖a‖ without the
subscript). CN (a,R) represents the distribution of circularly
symmetric complex Gaussian (CSCG) random vectors with
mean vector a and covariance matrix R.

II. MOTIVATION
A key element in AMI is smart meters which continuously
record power consumptions of users and send power reading
signals to a DCU to permit accurate power estimation and
control of an administrator. According to forecast in Frost &
Sullivan, it is predicted that 126 million smart meters will be

installed annually until 2024 [47]. As the number of smart
meters rapidly increases, simple and low-cost smart metering
systems for large scale distributed monitoring become an
important issue [48]. In the system, a large number of smart
meters deployed in AMI collect real time power reading
information from home appliances. In this paper, we consider
a large scale smart metering system which supports power
disaggregation with smart meters of low-cost.

In general, low-cost smart meters have limited hardware
resources (e.g., small memory, low computational capac-
ity). However, the conventional cryptographic mechanisms
for smart grid require high complexity and large signaling
overhead which puts too much burden on the constrained
smart meter resources. For example, if a smart meter uses
MSP430F471 microcontroller with 16 MHz central process-
ing unit (CPU) and 8 kB random access memory and 120 kB
flash memory, conventional authentication schemes such as
RSA and elliptic curve digital signature algorithm (ECDSA)
would not be recommended for the smart meter due to
required resources for computation [38]. In addition, low
energy consumption is one of the primary requirements to a
smart meter since its energy cost for the utility under main
power becomes non-negligible by the massive deployment of
the meters running all days, and it needs to run for prolonged
periods under battery power for reporting the main power
loss or other emergency events [49]. Furthermore, the energy
cost and battery limit can be more critical for the multi-utility
smart meter which measures water, gas as well as electricity
by the extra energy consumption with cryptographic mecha-
nisms. Therefore, a lightweight authentication scheme is pre-
ferred for smart meter due to the lowered energy consumption
in AMI by reducing the computational complexity. Motivated
by the problem, we propose a unified approach for com-
pression and authentication in physical layer. The procedures
for compression can be used for authentication based on the
notion of CS. The details are provided in Section IV.

III. CS BASED COMPRESSION IN AMI
As illustrated in Fig. 1, a smart meter captures aggregated
power consumption signals of home appliances, and trans-
mits the aggregated signal to the DCU [46]. In addition,
as mentioned earlier, the power reading signal has to be com-
pressed with a high sampling for an accurate power analysis
in AMI. In this section, we study the application of CS to the
compression of power reading signals at smart meters after
an empirical modeling.

A. EMPIRICAL MODELING OF POWER READING
SIGNALS IN AMI
A power reading signal transmitted from a smart meter is
empirically modeled by analysis of power profiles of indi-
vidual home appliances. Home appliances have different
power consumption profiles due to their unique electric loads.
In addition, the average hours and intervals of the use of
home appliances are also quite different in accordance with
the purpose of the devices. Thus, it is an intractable problem
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FIGURE 1. Advanced metering infrastructure.

to model the power signal for all different appliances, and
an empirical analysis based modeling scheme as in [46] is
employed in this study. In addition, proper parameter values
and probability distributions for the modeling are determined
through empirical analysis of the collected data in this paper.
Power waveforms of individual home appliances are captured
by a set of smart plugs (PM-B310-W2) simultaneously, and
collected through the wireless connections. These waveforms
are jointly analyzed for the empirical modeling [19].

Four different models are used for modeling associated
with power signals of the home appliances, which are on-off,
on-off decay, stable min-max, and random models [46].
We determine parameter values and probability distributions
in the models by analyzing the collected power data. The
details on the models can be found in [19].

The power reading signal of a smart meter, p(t), can be
regarded as an aggregation of power consumptions of active
home appliances at time t and expressed as

p(t) =
∑
i

εi(t)p(i)(t), (1)

where εi(t) ∈ {0, 1} is the activation of the i-th home
appliance and p(i)(t) is the power consumption for the i-th
home appliance. For simplicity, we assume that the i-th home
appliance is used from t (i)init to t (i)end . In addition, an activa-
tion time of the i-th home appliance, t (i)active(= t (i)end − t (i)init )
is assumed to be decided by the statistical analysis of the
collected power data in this paper.

In Fig. 2 [19], we show the empirical modeling of power
signals and measured power signals from smart plugs. The
measurement errors due to imperfect hardware are also shown
in the captured data. Based on the modeling for power signals
of home appliances as described in (1), we can easily obtain
the modeling information for smart meter signals.

B. CS BASED POWER READING SIGNAL
COMPRESSION IN AMI
To apply the notion of CS to the compression of power
reading signals, their sparsity is necessary. In [32], power
reading signals of home appliances can be transformed to
sparse signals with a proper representation matrix by using

FIGURE 2. Comparison between empirical collected power signal and
modeling power signal for home appliances and a smart meter [19].

empirical power consumptions. But, it considers a compres-
sion of power consumptions of home appliances, not a power
reading signal of a smart meter. In addition, it only relies
on the collected data, not modeled data. On the other hand,
in this paper, we design a representation matrix to obtain high
sparsity for a power reading signal based on the modeling.
In this section, we omit the time index, t for convenience, and
represent a power reading signal of a smart meter as follows:

p = 9s, (2)

where9 ∈ RN×N is a representation matrix. Here, s ∈ RN×1

is Q-sparse. There exists a trade-off between sparsity and the
accuracy of the approximation. Ultimately, it is related to
a trade-off between a compression ratio and reconstruction
error. In this paper, Q is the minimum q subject to the energy
of s(q) contains more than κ(%) of energy of s (i.e., ‖s(q)‖2 ≥
κ‖s‖2), where κ is a certain threshold. Here, κ is determined
according to a target compression ratio.

There are general representation matrices which make a
signal transformed to a sparse signal. For example, discrete
cosine transform (DCT) and discrete Fourier transform (DFT)
matrices [50] can efficiently compress a periodic signal.
In addition, adjacent difference transform (ADT) matrix is
suitable for a signal with duty-cycled property [32]. Wavelet
transform [51] matrix generally is used for other applications
(e.g., image compression). In [32], it is shown that Haar
wavelet transform (HWT) is a best default basis without prior
knowledge of the signal structure for a power signal of a home
appliance. In this paper, to compare the performances of the
representation matrices for a power reading signal of a smart
meter, the sparsity of the compressed power reading signal is
calculated by using modeled data.

We collect L samples by a simple projection with measure-
ment vectors {φl}1≤l≤L as xl = φTl p (note that the samples
are transmitted through L subcarriers.). Thus, the compressed
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power vector is given by

x = 89s, (3)

where 8 = [φT1 ; φ
T
2 ; · · · ; φ

T
L] is the measurement matrix.

A design of the measurement matrix plays an important role
in CS to obtain a good reconstruction performance. The
coherence is one of measures to evaluate whether or not a
measurement matrix is good [52]. That is, as the coherence
between a measurement matrix and a representation matrix
is small, it is expected to reconstruct the original signal
well in CS. As shown in [52], if 9 is the Fourier basis and
8 is the canonical or spike basis, e.g., φl,k = δ(k − l),
the coherence between 8 and 9 is given by µ(8,9) = 1,
whereµ(8,9) ∈ [1,

√
N ]. It means that if the representation

matrix is a DCT matrix, the measurement matrix using spike
basis becomes a best measurement matrix in terms of the
coherence. However, for the other representation matrices,
a Gaussian measurement matrix (e.g., φl,k ∼ CN (0, 1

L )) or
a Bernoulli measurement matrix (e.g., φl,k ∈ {− 1

√
L
, 1
√
L
})

may have a better reconstruction performance, compared to a
spike measurement matrix. Meanwhile, for the CS recovery,
we use orthogonal matching pursuit (OMP) algorithm [53]
which is a low complexity greedy algorithm. In most CS
recovery algorithms, the sufficient number of measurements
is an important parameter for the successful recovery. At a
high SNR, the required number of measurements, L, for the
successful recovery is bounded as follows: L ≥ CQ ln

(N
δ

)
,

where C is a constant and δ ∈ (0, 0.36) [53]. Then, OMP can
reconstruct the signal with probability exceeding 1− δ.

It is important to evaluate the compression technique with
a proper performance metric. In this paper, sparsity, the per-
centage root mean square difference (PRD) and energy con-
sumption are considered for the performance metrics. Spar-
sity, which influences CS recovery performance, is given by
ζ =

N−Q
N . The recovery problem in CS is underdetermined

because there are fewer measurements than unknowns in CS.
However, the problem in CS can be solved by using the
sparsity. Here, s belongs to the set obtained by the union of
all the

(N
Q

)
=

N !
Q!(N−Q)! Q-dimensional subspaces in RN×1.

The sparsity information (i.e., large number of null entries)
is powerful a-priori information that can be exploited in the
solution of an underdetermined linear system. Then, we can
consider a simple example with L = 2 and N = 3 as follows:

x1 =
1
√
2
s1 +

1
√
3
s2 +

1
√
6
s3,

x2 =
1
√
3
s1 +

1
2
s2 +

√
5
√
12
s3.

Thus, if Q = 2, a Q-sparse vector can belong to only one
of the three coordinate planes. On the other hand, if Q = 1,
the sparse vector can belong to only one of the three axes.
Then, if Q is small (i.e., higher sparsity), the search space
can be reduced. The strongly reduced search space is the
key that allows the retrieval of sparse vectors using a small
number of measurements. The PRD that quantifies the recon-
struction quality is defined as PRD = ‖s−ŝ‖2

‖s‖2
× 100, where

ŝ is the reconstructed signal. The energy consumption is
a very important metric to increase energy efficiency of a
smart meter. To evaluate the energy efficiency, an energy
model [16] for compression and transmission is considered,
as follows: Etotal = Ecomp + Etx , where Ecomp and Etx are
amounts of energy for compression and transmission, respec-
tively. As shown in [54], Ecomp = BflopEflop, where Bflop and
Eflop are the number of flops for compression and the amount
of energy for processing 1 flop, respectively. In addition,
Etx = BbitEbit , where Bbit and Ebit are the number of bits for
transmission and the amount of energy spent in transmitting
1 bit, respectively. Assuming a simple energy consumption
model for transmission in [55], an energy consumption for
1 bit transmission is given by Ebit = Etelec + εampd

2, where
Etelec is the amount of energy for transmitter circuitry and εamp
is the amount of energy for a transmit amplifier and d is the
communication distance, respectively.

As mentioned earlier, the compressed power reading signal
should be authenticated to prevent an intrusion meter (IM)
forging power consumptions in AMI. To this end, we also use
the notion of CS which is used for the power reading signal
compression in this section. In Section IV, we will investigate
details on the CS based authentication which are our main
contributions in this paper.

IV. CS BASED AUTHENTICATION IN AMI
In this section, we consider CS based physical layer authenti-
cation for a power metering system consisting of a DCU and
multiple smart meters in the presence of malicious intrusion
smart meters which are called intrusion meters. For simplic-
ity, we only consider one legitimatemeter (LM) and one IM in
this paper. Then, the CS based authentication which enables
simultaneous compression and authentication is considered
as illustrated in Fig. 3.

FIGURE 3. System model of the CS based authentication in AMI.

A. AUTHENTICATION SCENARIO
We present a physical layer authentication scheme that
enables simultaneous compression and authentication based
on the notion of CS in AMI. In the CS based authentication,
a measurement matrix is used as a secret key. In general, lin-
ear feedback shift registers (LFSRs) which are typically used
for a low-complexity implementation of a pseudo-random
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generator can be employed to generate the measurement
matrix for security. In this case, an initial vector in the LFSRs
becomes a secret key to generate the measurement matrix.
We consider the following scenario for the physical layer
authentication:
• The DCU performs an initial authentication by using
conventional cryptography based authentication.

• The DCU generates a measurement matrix as a secret
key by using LFSRs.

• By using a physical layer security scheme [56] based on
CSI between the DCU and the LM, the DCU securely
transmits an initial vector of LFSRs to generatemeasure-
ment matrix.

• Based on the shared measurement matrix, the DCU
determines whether or not a received signal is from the
LM by using the CS based authentication.

As mentioned earlier, we consider a physical layer security
scheme in [56] to share a measurement matrix between a
DCU and an LM. As [56], subcarriers are interleaved accord-
ing the sorted order of their channel gains in time division
duplex (TDD) mode. Then, based on the channel reciprocity,
the LM can derive the interleaving pattern initiated by the
DCU, while the interleaving pattern is unknown to the IM.
Then, the DCU can securely send an initial vector which is
used to generate the measurement matrix to the LM. Based on
the scenario, the CS based authentication between the DCU
and the LM is considered in the presence of the IM.

B. CS BASED PHYSICAL LAYER AUTHENTICATION
We consider a multicarrier system for transmissions from
an LM to a DCU with L subcarriers. Throughout the paper,
the LM sends a block of signals denoted by xB ∈ CL×1 over L
subcarriers, where xB contains amessage of smart meter read-
ing. We also consider the case that an IM transmits a forged
signal block, denoted by xE ∈ CL×1, over L subcarriers with
the aim at impersonating the LM. Then, the received signal at
the DCU is given by

y =

{
HxB + n, if the LM transmits,
GxE + n, if the IM transmits,

(4)

where n ∼ CN (0, σ 2I) is the background noise term. Here,
H = diag(H0, . . . ,HL−1) and G = diag(G0, . . . ,GL−1)
are the diagonal channel matrices from the LM and IM
to the DCU, respectively, where Hl and Gl are the l-th
frequency-domain channel coefficients of the LM and IM,
respectively, which are assumed to be CSCG random vari-
ables, i.e., Hl ∼ CN (0, σ 2

h ) and Gl ∼ CN (0, σ 2
g ).

As mentioned in Section III, power reading signals can be
transformed into sparse signals with a proper representation
matrix (e.g., HWT). It means that power reading signals can
be compressed using the notion of CS. Meanwhile, for the
authentication, we can design an authentication matrix, 8B
which has to be shared between the LM and the DCU as
a secret key for the authentication. As mentioned earlier,
we consider that the DCU transmits an initial vector used

to generate the measurement matrix to the LM based on a
physical layer security scheme [56]. Then, the authentication
matrix is unknown to the IM, while the representation matrix,
9, is known. Let xB = 8B9sB and xE = 8E9sE , where
sB and sE are the sparse signals at the LM and IM, respec-
tively, and8B and8E are the authentication matrices for the
LM and the IM, respectively. From (4), the received signal at
the DCU can be represented as follows:

y =

{
H8B9sB + n, if the LM transmits,
G8E9sE + n, if the IM transmits.

(5)

Here,8B used as a secret key is known to the DCU, while8E
is unknown to the DCU. Meanwhile, the DCU should know
the channels to detect the transmitted signals. To this end,
the smart meters transmit pilot signals before the power read-
ing signals. Throughout the paper, we assume that the chan-
nels for the LM and IM are perfectly estimated, respectively.
For the LM, the IM which performs impersonation attacks
also transmits a pilot signal to estimation channels between
the DCU and the IM. Then, as shown in [57], the channel
estimation errors which can be influenced by noises can
sufficiently be reduced by using channel estimation tech-
niques based on denoising strategies. So, the channels can be
estimated with negligibly small error. For convenience, let D
be the estimated channel at the DCU, i.e., D = H or G if the
LM or IM transmits, respectively.

The measurement matrix which is unknown to the IM
can be estimated by the IM’s known plaintext attacks [58]
due to the linear property of CS. So, as [58], if an artificial
noise is used, it makes the attacks difficult. To minimize
the performance degradation at the DCU, the artificial noise
is selectively transmitted in the frequency domain based
on known CSI. It becomes difficult for the IM to perform
attack with a fraction of the received signals due to artificial
noise [58]. Then, it ensures a guarantee of secrecy in terms
of a probability of successful attack under certain conditions.
For example, if SNR = 8dB, L = 64, a successful attack
probability, denoted by PSA, can be as low as PSA ≈ 10−12.
In this paper, the method using artificial noise is not studied
due to the page limitation.

C. HYPOTHESIS TESTING
For the authentication, we consider two hypotheses: H1 is
the hypothesis that the received signal is transmitted by the
LM with 8B andH0 is the other hypothesis that the received
signal is transmitted by the IMwith8E . In this subsection, for
tractable analysis, we assume [8B]l,n, [8E ]l,n ∼ CN (0, 1

L ).
Note that if multiple LFSRs can be used, each element of
a measurement matrix approximately becomes a Gaussian
random variable [59]. Since 8E is randomly generated for
the impersonation attack by the IM without any information
of 8B, the binary hypothesis problem can be formulated as
follows:

H0 : 8 = 8E

H1 : 8 = 8B, (6)
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where 8 is an authentication matrix used in a smart meter,
i.e., 8 = 8B or 8E if the LM or IM transmits, respectively.

Let U = (Y ,8), where Y is a random vector of a received
signal and 8 is a random matrix of the authentication matrix
used as a secret key. At the DCU, u = (y,8B). Then, in the
case of H1, the realization (i.e., outcome of measurements),
u is generated by the joint probability p(Y ,8), where Y
depends on8. On the other hand, in the case ofH0, u is gen-
erated by the distribution p(Y )p(8) because the realization of
the received signal, y is generated with8E which is perfectly
independent of 8B. Then, according to [60], the optimal
binary hypothesis testing can be formulated as follows:

3 = log
PU |H1 (u)
PU |H0 (u)

= log
p(y|8 = 8B)∑

8E
p(y|8 = 8E )p(8 = 8E )

. (7)

Unfortunately, since the DCU does not know 8E , a differ-
ent test statistic has to be used. With CS recovery at the DCU
to find the sparse vector s that minimizes ‖y − D8B9s‖2,
the following test statistic can be used:

α = ‖y− 2̂ŝ‖2,
= ‖D(89s−8B9 ŝ)+ n‖2, (8)

where 2̂ ∈ CL×Q represents the submatrix of D8B9

obtained by the Q column vectors corresponding to the sup-
port of the recovered sparse signal by a CS algorithm (e.g.,
the OMP algorithm) and ŝ = (2̂

H
2̂)−12̂

H
y. Note that in

the case of H1, α becomes small, where 8 = 8B, while
α becomes relatively large in the case of H0, where 8 =
8E due to a difference of 89s − 8B9 ŝ in (8). Then, α is
compared to a threshold, η for the final decision.
For convenience, let αB = α|(8 = 8B) and αE = α|(8 =

8E ). Then, the resulting hypotheses are

H0 : α = αE
H1 : α = αB. (9)

Thus, it is important to derive the conditional distributions of
α, denoted by f (αB) and f (αE ) for the LM and IM, respec-
tively, which are used to analyze the security performance of
the proposed scheme in terms of detection and false alarm
probabilities. However, since 8E is unknown to the DCU,
E8E [f (αE )] is alternatively used as the distribution of αE .

1) PROBABILITY DENSITY FUNCTION OF αB
To obtain the distribution of αB, we assume that when the
LM transmits, the support set of a Q-sparse signal, s is per-
fectly recovered by using the OMP algorithm in a high SNR.
As shown in [61], the power of residual error becomes

α = yHy− yH2̂(2̂
H
2̂)−12̂

H
y. (10)

Thus, from (5) and (10), the power of residual error for the
legitimate signal is given by

αB = sHB2
H
BUB2BsB + sHB2

H
BUBn+nHUB2BsB+nHUBn,

(11)

where UB = I − RB and 2B = H8B9. Here, RB =

2̂(2̂
H
2̂)−12̂

H
|H1 and trace{RB} = Q [62]. In the OMP,

a support set of the recovered sparse signal which corresponds
to 2̂ can be determined with the column indices associated
with the Q largest correlation coefficients between y and the
columns of D8B9. For a high SNR, if the LM transmits,
the estimated support set becomes T̂ |H1 = TB, where TB
is the support set of sB. Then, 2̂ŝ|H1 = 2BsB.

Thus, from (11), we can rewrite the power of the residual
error as follows:

αB = nHUBn, (12)

where sHB2
H
Bn = sHB2

H
BRBn, nH2BsB = nHRB2BsB

and sHB2
H
B2BsB = sHB2

H
BRB2BsB. Then, αBιB follows the

Chi-square distribution with 2L degrees of freedom, and the
probability density function of αB is given by

f (αB) =
1

2L0(L)

(
αB

ιB

)L−1
e−

αB
2ιB , (13)

where 0(x) = (x − 1)! and ιB =
(L−Q)σ 2h σ

2

2L . In addition,
the mean and variance of αB are given by µB = (L−Q)σ 2

h σ
2

and σ 2
B =

(L−Q)2σ 4h σ
4

L , respectively.

2) PROBABILITY DENSITY FUNCTION OF αE
Unlike the power of residual error for the legitimate signal,
it is hard to draw the exact probability density function of
αE due to the unknown 8E . From (5) and (10), the power of
residual error for the intrusion signal can be represented as

αE = sHE2
H
EUE2EsE + sHE2

H
EUEn

+nHUE2EsE + nHUEn, (14)

where2E = G8E9 and RE = 2̂(2̂
H
2̂)−12̂

H
|H0.

As T̂ |H1, when the IM transmits, the estimated support set,
denoted by T̂ |H0, can be determined with the column indices
of the Q largest correlation coefficients between y and the
columns of D8B9. However, unlike T̂ |H1, for a high SNR,
T̂ |H0 6= TE , where TE is the support set of sE because 2E
is different with D8B9. In the OMP, among N columns of
D8B9, the Q columns of the largest correlations with y are
selected for the estimated support set. Let νq denote the mean
of the q-th largest correlation coefficient amongN correlation
coefficients between y and the columns of D8B9. Here,
ν1 ≥ ν2 ≥ · · · ≥ νN . Let L = {ν1, ν2, · · · , νQ} denote the
set of correlation coefficients corresponding to the columns
of T̂ |H0. Thus, if the elements of L are sufficiently large,
the resulting αE becomes small. Then, if we assume that all
of the columns ofD8B9 have ν1 correlation coefficients with
y (i.e., the all elements of L are assumed to be ν1), a lower
bound on αE , which is denoted by αE , can be obtained. Then,
for the case of αE , E8E

[
2̂ŝ|H0

]
can be represented as

E8E

[
2̂ŝ|H0

]
= ν1ε(2EsE + n)+

√
1− ν21EŝE , (15)
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where ε =

√
Q
L

Q
L +σ

2 , ŝE = (EHE)−1EHy, ν1 ∈ [0, 1] and

[E]l,n ∼ CN
(
0, 1

L

)
is independent of 2E . Then, from (8)

and (15), the lower bound on the power of residual error for
the intrusion signal, αE , is given by

αE = (1− ν1ε)(sHE2
H
E2EsE + sHE2

H
En+ nH2EsE + nHn)

−

√
1− ν21 (s

H
E2

H
ERE2EsE + sHE2

H
EREn

+nHRE2EsE + nHREn), (16)

where RE = E(EHE)−1EH. From (16), E[sHE2
H
E2EsE ] =

Qσ 2
g and E[sHE2

H
ERE2EsE ] =

Q2

L σ
2
g because 2EsE is

independent of EŝE . In addition, E[nHREn] = Qσ 2 due to
trace{RE } = Q. Themeans of the other terms in (16) are zero.
Then, the mean and variance of αE , respectively, are given by

µ
E
= (1− ν1ε)Qσ 2

g −

√
1− ν21

Q2

L
σ 2
g

+ ((1− ν1ε)L −
√
1− ν21Q)σ

2 (17)

and

σ 2
E ≈

(
1− ν1ε −

√
1− ν21

Q
L

)2 3Q2σ 4
g

L

+

((
(1− ν1ε)L −

√
1− ν21Q

)
σ 2
)2

L

+

(
√
2(1− ν1ε)−

√
2(1− ν21 )

Q
L

)2

Qσ 2
g σ

2, (18)

whereVar[sHE2
H
E2EsE−ν1εsHE2

H
E2EsE−

√
1− ν21s

H
E2

H
ERE

2EsE ] = (1−ν1ε−
√
1− ν21

Q
L )

2 3Q
2σ 4g
L , Var[(1−ν1ε)nHn−√

1− ν21n
HREn] = (((1 − ν1ε)L −

√
1− ν21Q)σ

2)2 1
L and

Var[(1− ν1ε)(sHE2
H
En+ nH2EsE )−

√
1− ν21 (s

H
E2

H
EREn+

nHRE2EsE )] = (
√
2(1 − ν1ε) −

√
2(1− ν21 )

Q
L )

2Qσ 2
g σ

2.

Here, ν1 is obtained by the Monte-Carlo simulations and σ 2
E

is approximated under the assumption that the covariances of
the terms in (16) are negligibly small. By using the Gaussian
approximation for a large L, the distribution of αE is given by

E8E

[
f (αE )

]
= ϕ

(
αE − µE

σE

)
, (19)

where ϕ(x) = 1
√
2π
e−

1
2 x

2
is a normal distribution.

The difference of the distributions for the LM and IM
makes that the DCU can distinguish whether a received
signal is a legitimate signal or an intrusion signal. As Q
and SNR increase, the distributions are far away. In par-
ticular, from (13) and (17), as SNR → ∞, the mean
of αB approaches zero, while the mean of αE approaches(
(1− ν1ε)Q−

√
1− ν21

Q2

L

)
σ 2
g .

D. AUTHENTICATION ERROR PROBABILITY
To evaluate the proposed authentication scheme, we consider
an authentication error probability which is an incorrect deci-
sion probability at the DCU and given by

PE = %(1− PD)+ (1− %)PF , (20)

where PD and PF are the detection and false alarm proba-
bilities at the DCU, respectively, and % is a weighting factor
(0 ≤ % ≤ 1). Here, PD is a probability that when the LM
transmits, the DCU decides that the signal is a legitimate
signal and PF is a probability that when the IM transmits,
the DCU decides that the signal is a legitimate signal. Thus,
PD and PF are determined by the probability distributions
for αB and αE and an authentication threshold denoted by η.
It means that PD = P(α < η|H1) and PF = P(α < η|H0).
In this paper, for a fixed target detection probability, P◦D, η
is decided using the probability density function of αB. For a
fixed η, the detection probability is given by

PD = F

(
2Lτ

(L − Q)σ 2
h σ

2
, 2L

)
, (21)

where F(x, a) is the cumulative distribution function of the
Chi-square distribution. Then, for a fixed P◦D, the required
threshold becomes

η = argmin
η◦

F

(
2Lη◦

(L − Q)σ 2
h σ

2
, 2L

)
≥ P◦D. (22)

Once η is determined for a given P◦D, the false alarm proba-
bility can be calculated using the distribution of αE . As men-
tioned earlier, it is hard to obtain a closed-form expression
for the distribution of αE . So, we draw an upper bound on
the false alarm probability with the distribution of αE and
η. Then, for a fixed η, an upper bound on the false alarm
probability, denoted by P̄F , is given by

P̄F = 1− Q
(
η − µ

E

σE

)
, (23)

whereQ(x) = 1
√
2π

∫
∞

x e−
u2
2 du. Then, the upper bound on the

authentication error probability can be obtained by applying
(21) and (23) to (20).

V. SIMULATION RESULTS
In this section, we present the simulation results for the
proposed scheme with the empirical model for smart meter
readings. For simulations, we assume σ 2

h = σ 2
g = 1.

In addition, the SNR is defined as ‖89s‖2

‖n‖2 =
Q
Lσ 2

. As we

mentioned earlier, Q = min q subject to ‖s(q)‖2 ≥ κ‖s‖2.
Fig. 4 depicts the sparsity of s denoted by ζ , for the

various thresholds of sparse signal approximation, κ , where
N = 128. For simulations, we generate power signals of
smart meters through the model. In addition, we evaluate the
sparsity of different representation matrices (e.g., ADT, DCT,
DFT, HWT). In this figure, HWT has the highest sparsity,
because the power reading signal of a smart meter is not
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FIGURE 4. Sparsity, denoted by ζ for κ over various representation
matrices, where N = 128.

periodic, and its duty-cycled signals are suitable for DCT,
DFT, and ADT, respectively. In summary, the CS based com-
pression and authentication scheme can be applied to power
reading signals of smart meters with an HWT representation
matrix.

FIGURE 5. PRD of the reconstructed power signal with various
compression ratio, where N = 128.

In Fig. 5, we show the PRD of the reconstructed power
signal with various compression ratios when N = 128.
Here, the compression ratio is given by CR = Borig−Bcomp

Borig
×

100, where Borig and Bcomp are the number of bits for the
original signal and compressed signal, respectively. In sim-
ulations, we compare the PRD of the CS based compres-
sion scheme with the existing compression schemes (the
Daubechies wavelet (DB4) compression and SVD based
compression [18]). To compare the compression performance
of the proposed scheme with those of the existing methods,
Borig and Bcomp in the compression ratio are obtained by cal-
culating the entropies for the original and compressed power
signals, respectively. The existing schemes have lower PRDs
than the CS based compression method. Thus, it is important

FIGURE 6. Energy consumption for compression and transmission over
the compression ratio, where N = 128, Eflop = 371pJ [63], Etelec

= 50nJ,
εamp = 0.1nJ/m2 [55] and d = 1000m.

to find the best representation and measurement matrices in
the CS based compression scheme that make the PRD low
for AMI power signals. Based on the real-time power reading
signal, an adaptive selection of the best representation and
measurement matrices can be considered an optimal selection
in practice. However, it is out of our scope in this paper
(considered future work). Alternatively, in this study, based
on empirically modeled signals, the statistically optimal rep-
resentation matrix and measurement matrix are investigated
to improve the reconstruction performance of the proposed
scheme. From this figure, we can see that if a representation
matrix and a measurement matrix are HWT and Gaussian (or
Bernoulli) matrix, respectively, we can obtain the lowest PRD
in the CS based compression, which is slightly higher than
those of the existing compression schemes.

In Fig. 6, we show the simulation results for energy con-
sumption for compression and transmission over the com-
pression ratio, when N = 128, Eflop = 371pJ [63],
Etelec = 50nJ, εamp = 0.1nJ/m2 [55] and d = 1000m.
In simulations, four compression cases (‘no compression’,
‘CS based compression’, ‘wavelet compression’, ’SVD based
compression [18]’) are considered. The case of ‘no compres-
sion’ has no energy consumption for compression because
it directly transmits power signals without compression.
As shown in this figure, we can find that the case of ‘CS based
compression’ can reduce energy consumption, compared to
those of the other cases. For a low compression ratio (i.e.,
CR < 20%), the case of ‘wavelet compression’ has poorer
energy efficiency than that of ‘no compression’ because of
energy consumption for compression, while the case of ‘CS
based compression’ has a high energy efficiency regardless
of the compression ratio. Thus, it is shown that the proposed
CS based compression scheme is suitable for smart meters
that have limited hardware resources (e.g., low computational
capability) with large energy efficiency.

Fig. 7 depicts the probability density functions of the
power of residual errors for legitimate and intrusion signals,
in which N = 128, L = 64, κ = 0.9985, and SNR = 10dB.
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FIGURE 7. Comparison of the probability density functions between the
LM and the IM, where N = 128, L = 64, κ = 0.9985 and SNR = 10dB.

In simulations, HWT is used for the representation matrix,
9, because it is shown that HWT is the best representation
matrix, as shown in Fig. 4. Thus, as shown in this figure,
the empirical distribution of the legitimate signal closely
agrees with the theoretical distribution of (13), while the
mean of the theoretical distribution of αB is very slightly
lower than that of the empirical distribution, because we
assume that 2BsB = 2̂BŝB in the theoretical analysis.
In addition, the empirical distribution of the intrusion signal
is close to the theoretical distribution of αE , (19). We can
see that the distribution of αB is sufficiently distinguishable
from that of αE . Since the authentication matrix (i.e., key of
the authentication) is unknown to the IM, the power of the
residual error is relatively higher than that of the LM. This
means that the difference between authentication matrices of
the DCU and IM induces a sufficiently large residual error in
the proposed scheme. Therefore, from this figure, we can find
that if we set a proper threshold for the hypothesis testing in
the proposed scheme, the signal from the IM can be detected
with a high probability.

In Fig. 8, we show the impact of SNR and L on the
performance, when N = 128, P◦D = 1 − 10−15, κ =
0.9985, and % = 0.8. In general, the signal from the LM
should be authenticated with a high probability for efficient
power reporting in AMI. So, in simulations, the proposed
scheme is evaluated with a high target detection probability
(P◦D = 1 − 10−15), in terms of false alarm probability. Note
that it is an unfavorable condition because, for a high P◦D,
the false alarm probability becomes high due to the high η,
determined by P◦D. Based on the different statistics of αB
and αE in Fig. 7, the false alarm probability can be seen
in Fig. 8(a) with different SNR and L. As mentioned earlier,
as SNR increases, the false alarm probability dramatically
decreases because a moderate SNR is necessary to guarantee
2BsB = 2̂BŝB in the LM, but it is not in the IM. In addition,
as L increases, the correlation coefficient between measure-
ment matrices of the DCU and IM, ν1, becomes low, which
makes the false alarm probability low. However, an existing
CS based authentication method [36] that uses a tag signal for

FIGURE 8. Authentication performances with various SNRs, where
N = 128, P◦D = 1− 10−15, κ = 0.9985 and % = 0.8; (a) a false alarm
probability; (b) an authentication error probability.

image authentication maintains a relatively high false alarm
probability with Ltag = 32, which denotes the length of a tag
signal due to short packet size. This means that it is not suit-
able for authentication of smart meter readings. Meanwhile,
the proposed scheme has a lower false alarm probability for
a high SNR (i.e., SNR ≥ 6dB) than an existing physical
layer authentication method [42]. In a low SNR, we can-
not obtain good authentication performance in the proposed
scheme because an exact CS recovery cannot be guaranteed.
In addition, while the existing scheme (for a physical layer
challenge-response (PHY-CRAM) in multicarrier systems)
needs to transmit the subsequent transmission of the power
reading signal, the proposed scheme does not need to trans-
mit a power reading signal and an authentication sequence
separately. In Fig. 8(b), the authentication error probabilities
are shown, in which a low authentication error probability
can be obtained for a high SNR and a large L. In summary,
although P◦D is high, the proposed scheme can guarantee
good authentication performance (e.g., PE = 10−4) with a
moderate SNR (e.g., 8dB) and L (e.g., 64).
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VI. CONCLUSION
Lightweight authentication is a major concern for low-cost
smart meters in AMI. In this paper, we proposed a uni-
fied approach for power reading signal compression and
authentication in AMI by using the notion of CS. The pro-
posed scheme, which enables simultaneous compression and
authentication for smart meter readings can reduce the burden
of computational complexity for low-cost smart meters in
AMI. To this end, an aggregated power reading signal of
smart meters is transformed into a sparse signal for CS based
compression. Meanwhile, a power reading signal can be effi-
ciently authenticated without additional signal processing by
using a residual error, which is an output of decompression.
Furthermore, we derived a theoretical threshold for hypoth-
esis testing and theoretical analysis for an authentication
error probability. From the analysis and simulation results,
we showed that the power reading signal can be authenticated
under reasonable conditions (e.g., L = 64 and SNR = 8dB),
with a probability of 1− PE , where PE ≤ 10−4.

VII. CHALLENGES AND FUTURE WORK
There are several avenues in which to explore this research
further. For example, we can consider the optimization of
representation and measurement matrices to improve com-
pression and authentication performance. In particular, it is
necessary to a secure measurement matrix against intelligent
attacks from an IM. In addition, there may be potential to
enhance CS based authentication by using CSI between a
DCU and an LM as not only another signature for authentica-
tion but also an obstacle to known plaintext attacks in which
an IM tries to estimate a measurement matrix.
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