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ABSTRACT Due to the development of short-range radar with high-resolution, the radar sensor has a high
potential to be used in real human-computer interaction (HCI) applications. The radar sensor has advantages
over optical cameras in that it is unaffected by illumination and it is able to detect the objects in an occluded
environment. This paper proposes a hand gesture recognition system for a real-time application of HCI using
60 GHz frequency-modulated continuous wave (FMCW) radar, Soli, developed by Google. The overall
system includes signal processing part that generates range-Doppler map (RDM) sequences without clutter
and machine learning part including a long short-term memory (LSTM) encoder to learn the temporal
characteristics of the RDM sequences. A set of data is collected from 10 participants for the experiment. The
proposed hand gesture recognition system successfully distinguishes 10 gestures with a high classification
accuracy of 99.10%. It also recognizes the gestures of a new participant with an accuracy of 98.48%.

INDEX TERMS FMCW radar, gesture recognitio, LSTM encoder, machine learning, real-time interaction.

I. INTRODUCTION
In the past, radar had been widely used for long-range detec-
tion and surveillance of objects. However, since the last
decade, there have been some studies on object detection
using a short-range radar with high resolution such as ultra-
wideband (UWB) radar [1], [2]. Unlike optical cameras,
a radar sensor is not affected by illumination and has the
ability to detect the objects even in an occluded condition.
Therefore, radar can be used in a wide variety of applications,
both in the outdoor and indoor environments. Furthermore,
it can operate at lower power compared to optical cameras
and does not need to be exposed to the outside of the device
it is attached to because of the radar signal’s transmissivity.
Due to the property of human-computer interaction (HCI),
being able to see through the blocking material, HCI devices
can be designed more neatly. Furthermore, due to the recent
advances in machine learning, there have been studies on
obtaining meaningful knowledge or context from the raw
radar signal.

Radars, however, are still regarded as suitable only for
detecting the moving objects at a long range [3], [4], and
there is little research on recognizing non-rigid objects such
as human hands at a short range. Furthermore, very little
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research on applications such as gesture recognition has been
conducted. Even though the radar is a useful sensor to apply
machine learning techniques to, research in radar based on
machine learning has not been done much. Recently, a short-
range radar with high-resolution and low-power, which is
called Soli, was developed for tracking and recognizing fine
hand gestures [5], [6]. In the Soli project, the various fea-
tures that can be obtained from radar signals were defined
and feature-based gesture recognition was performed using
the random forest classifier. Besides, convolutional neural
network (CNN) was employed to classify the driver’s hand
gesture based on an optical camera, depth camera, and radar
sensor [7]. The CNN was used to fuse data from the three
sensors and resulted in improved accuracy under the vary-
ing lighting conditions. The CNN was also used for gesture
recognition using micro-Doppler signatures and classifica-
tion accuracy was 85.6% for 10 gestures [8]. Furthermore,
there are some application studies using a short-range radar.
Research on feature-based gesture recognition using 24GHz
frequency-modulated continuous wave (FMCW) radar was
conducted with classification accuracy of 88.57% for 7 ges-
tures, and feature analysis was also performed [9]. RadarCat
was developed for material and object recognition [10].
However, the described studies are less robust to the
range/speed of the motions and shape of hands that vary from
person to person. Also they are designed to classify a small
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FIGURE 1. The overview of the proposed gesture recognition system.

number of gestures. Since they have an accuracy of about
90%, they are insufficient for practical applications.

This paper proposes a real-time gesture recognition system
based on a short-range radar, which is shown in Fig. 1. The
proposed system mainly consists of signal processing part
and gesture recognition part. In the signal processing, we first
employ the 2D fast Fourier transform (FFT) to generate
range-Doppler map (RDM) where the distance and radial
velocity of the reflected objects are expressed as two dimen-
sions. Then, the clutters caused by reflection from the objects
excluding the hand is extracted using background subtraction
method. The hand gesture is detected by constant false alarm
rate (CFAR), and the RDM sequences in the detected region
is used as inputs to the hand gesture recognition part.

One important thing to consider when recognizing human
gesture is real-time operation because it requires heavy com-
putation during radar signal processing. For the purpose of
real-time recognition, the sampling frequency of the Soli
radar is set slightly lower, and several signal processing
parameters such as the size of FFT are also set to a proper
value so that they are capable of real-time processing. Such a
lower hardware specification can decrease range and Doppler
resolutions, but it is sufficient to recognize gestures by
applying machine learning technique such as long short-term
memory (LSTM).

After signal processing, we extract motion profiles from
the RDM sequences for low computational complexity. The
motion profiles represent the reflected energy distribution
over distance and velocity. The proposed LSTM encoder
receives the motion profile sequences and performs ges-
ture recognition. The LSTM encoder is able to successfully
extract the global temporal features of the data and recognize
the hand gestures with high accuracy. Furthermore, practical
experiments are conducted on various conditions, and a com-
parative analysis is performed.

The rest of this paper is organized as follows: the radar sys-
tem for gesture recognition, signal processing, and post signal
processing are briefly described in Section II. Section III
proposes the gesture recognition algorithm based on LSTM
encoder. The details of experimental settings are described
in Section IV. The experimental results are discussed in
Section V, and concluding remarks follow in Section VI.

II. RADAR SYSTEM FOR GESTURE RECOGNITION
A. SYSTEM OVERVIEW
An FMCW radar module used in gesture recognition is Soli
module, developed by Google, which is only available to the

developers [5], [11]. This radar module operates at 60 GHz
frequency and has a cm-scale range resolution; in addition,
it receives the signal through 4 patch antennas. The radar
signals are transformed to a range-Doppler map (RDM)
through signal processing procedure, and the resulting RDM
sequences are fed into the machine learning algorithm as
an input. Due to the combination of signal processing and
machine learning algorithm for gesture recognition, the radar
parameters governing the range and Doppler resolutions
should be determined in consideration of several aspects. The
resolutions of range andDoppler,1r and1v, are respectively
represented as follows:

1r =
c
2B
= 2.50 cm, (1)

1v =
c
2fc
·
1
lT
= 122.07 cm/s. (2)

where c is the speed of light, and fc is the center frequency
of the radar which is set to 60 GHz. B and T are the
bandwidth and the sweep period of the radar and are set to
6 GHz and 128 µs, respectively. l is the number of the chirps,
set to 16.

Since 2D FFT with zero-padding is employed to obtain
finer range and Doppler accuracy, more frequency bins are
generated after the 2D FFT. Furthermore, we have a research
goal in the gesture recognition using machine learning tech-
niques, not in the accurate range and velocity measurements.
Therefore, the radar system is not required to have too high
range and Doppler resolution. Considering all these reasons,
the range and Doppler bins, 1rf and 1vf , are respectively
determined as follows:

1rf =
c
2B
·

fs
N/T

= 0.313 cm, (3)

1vf =
c
2fc
·
1
LT
= 7.629 cm/s. (4)

where fs is the sampling frequency, set to 500 kHz. N × L
is the size of the frequency bins for 2D FFT, which is set to
29 × 28 (512 × 256).

B. SIGNAL PROCESSING
Fig. 2 shows a waveform of the FMCW radar in the fre-
quency domain. In the FMCW radar, the transmitted signal
is frequency modulated by a periodic sawtooth wave func-
tion. There exist time delay τ and Doppler shift fd between
the received signal and the transmitted signal. The distance
between the object and the radar causes the time delay, and
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FIGURE 2. FMCW wavefrom in frequency domain. The beat and Doppler
frequency are coupled, and the beat frequency is caused by time delay τ .

the movement of the object receding or approaching the radar
causes the Doppler shift [6]. In sawtooth wave modulation,
the Doppler shift and beat frequency are coupled, as shown
in Fig. 2. Accordingly, the Doppler shift and beat frequency
are decoupled by 2D FFT as follows:

S(p, q, t) =
L∑
l=1

(
N∑
n=1

s(n, l, t)e−j2πpn/N
)
e−j2πql/L

RD(r, v, t) =

∣∣∣∣S( r
1rf

,
v
1vf

, t)

∣∣∣∣ (5)

where S(p, q, t) is an output matrix at frame t in the fre-
quency domain after 2D FFT, and RD(r, v, t) represents
range-Doppler map (RDM) converted from S(p, q, t). The
raw signal is first transformed into the form of a matrix
s(n, l,T ) where each row of the matrix contains the beat
signal of a single chirp. Next, the signal is transformed to the
frequency domain, in which each axis respectively represents
the range and Doppler, by applying a 2D discrete Fourier
transform.

C. CLUTTER EXTRACTION
Before detecting gestures, clutters caused by reflection from
other objects except the hand are extracted from raw RDMs.
Assuming that all objects except the hand are almost static,
the background subtraction method can be applied to extract
the clutters. By generating an adaptive background model
based on the Gaussian mixture model (GMM), the clus-
ters that might change over time are effectively extracted
[12], [13]. After then, the clutters are removed by calculating
the difference between the current frame and the background
model that contains the clutter of the radar signal. Fig. 3
shows the result of the clutter extraction.

D. GESTURE DETECTION
In radar signal processing, a constant false alarm rate (CFAR)
algorithm is primarily used to detect objects. In this paper,
the CFAR algorithm using signal difference between moving
average and raw signal is proposed. We employ an exponen-
tial moving average (EMA), also known as an exponentially
weighted moving average (EWMA) to calculate the moving

FIGURE 3. The clutter extraction is performed on all four receivers. The
figures show the RDMs before and after the clutter extraction at the same
frame. (a) RDMs before the clutter extraction. (b) RDMs after the clutter
extraction.

average, as follow:

Mt = (1− α)Mt−1 + αxt , (6)

where α ∈ [0, 1] represents a constant smoothing factor, and
xt represents the sum of all pixel values on the RDM of all
four channels, which is defined as

xt =
∑
i

‖RDi(r, v, t − 1)‖, (7)

where RDi is the RDM matrix for i-th channel. The gesture
detection occurs if the current raw signal exceeds the thresh-
old, which is defined as

|xt −Mt | > θ · (Mt +Moffset), (8)

where θ is a detection threshold, and Moffset is an offset
parameter. Fig. 4 shows the result of the gesture detection,
especially in a sliding window over time. The cyan and
red lines represent Mt and xt , respectively. If the detection
condition defined in (8) is satisfied, the detected intervals are
displayed as the gold boxes. The RDM data contained in the
detected interval is used as an input to the gesture recognition
algorithm, and the remaining data is discarded.

FIGURE 4. Gesture detection is performed based on Mt (cyan line) and
xt (red line) every frame. The gold boxes represent the detected interval
in each of the 700th, 750th, 800th, and 850th frames from the left.

III. HAND GESTURE RECOGNITION
A. MOTION PROFILES
RDM sequences can be directly used as inputs to 3D-CNN
or convolutional LSTM to extract spatial-temporal features
of the hand gestures. These methods, however, require a
large amount of computations, which is not suitable for real
time applications. Therefore, we extract range and Doppler
features, called range profile and Doppler profile, from RDM
instead of using them directly. The range profile, RPit , and
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FIGURE 5. Range profiles and Doppler profiles of the four receivers of a radar sensor.

Doppler profile, DPit , for i-th receiver at frame t are respec-
tively defined as follows:

RPit =
∑
v

RDi(r, v, t), (9)

DPit =
∑
r

RDi(r, v, t), (10)

where i = 1, · · · , 4, and RDi(r, v, t) is an RDM for i-th
receiver at frame t . The range profile and Doppler profile
represent the reflected energy distribution over distance and
radial velocity, respectively. Fig. 5 shows range profiles and
Doppler profiles of the four receivers of a radar sensor.

At each frame t , a motion profile, MPt , is created by con-
catenating the four range profiles and four Doppler profiles,
as follows:

MPt = (RP1
t , · · · ,RP

4
t ,DP

1
t , · · · ,DP

4
t ). (11)

Finally, the obtained motion profile sequence, MP1, · · · ,

MPTk , is used as the input of the machine learning algorithm,
where Tk is the length of the k-th gesture data instance.

FIGURE 6. The proposed LSTM encoder architecture.

B. GESTURE RECOGNITION
We propose a neural network architecture as shown in Fig. 6
to recognize hand gestures in real time using motion profile
sequences. The network consists of an LSTM encoder to
extract the global temporal features of the hand gestures and
a softmax layer to compute the conditional probabilities of
the hand gestures. The details of the proposed network are
described below.

First, we employ an LSTM encoder structure [14] to
efficiently extract temporal features of the motion profile
sequences. The lengths of the motion profile sequences are
different depending on the classes of the gestures and the peo-
ple performing the gestures. Furthermore, the LSTM encoder
can map a motion profile sequence of various length to a
fixed-dimensional vector representation, called an encoded
vector v. Therefore, the LSTM encoder structure is efficient
to extract the global temporal features from the gestures
having various lengths. In addition, the conventional RNN is
a neural network that can effectively model sequential data
[15], [16]. The LSTM is a special structure of the RNN,
which can model the long term dependencies by alleviating
the vanishing gradient problem of the RNN [17].

The LSTM encoder receives the motion profile sequence,
MP1, · · · ,MPTk , as input. The input gate, it , the forget gate,
ft , output gate, ot , memory cell, ct , and hidden state, ht ,
at each time step t can be obtained, respectively as follows:

it = σ (WmiMPt +Whiht−1+Wcict−1 + bi)
ft = σ (WmfMPt +Whf ht−1+Wcf ct−1 + bf )
ct = ft � ct−1+it � tanh(WmcMPt+Whcht−1 + bc)
ot = σ (WmoMPt+Whoht−1 +Wcoct + bo)
ht = ot tahn(ct )

(12)

where σ is the sigmoid function,� is the element-wise prod-
uct, and t = 1, · · · ,Tk . Once the motion profile sequence
is all read, the hidden state becomes the encoded vector,
v = hTk , and the encoded vector summarizes the whole
sequence.

Finally, the encoded vector, v, is connected to the
softmax layer which converts the encoded vector to the
class-conditional probability, s, as follow:

s = S(Wsv+ bs), (13)

where each element, [S(x)]i = exi/
∑

j e
xj , represents the

predicted probability of the i-th class.
In training, cross entropy is employed as a loss function.

A ground truth label, y, is represented as one-hot vector
whose length is the number of classes, C . For a given training
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FIGURE 7. Ten hand gestures: (1) sliding left to right (2) sliding right to
left (3) rotating clockwise (4) rotating counter-clockwise (5) push
(6) double push (7) drawing X (8) drawing reverse-X (9) hold (10) double
hand push.

example, the cross entropy loss between the ground truth
label, y, and the predicted probability, s, is defined as

l = −
C∑
i=1

yilog(si). (14)

RMSProp is used as an optimizer [18]. The network parame-
ter θ is updated at every back-propagation step t by

Gt = γGt−1 + (1− γ )(∇θL(θt ))2, (15)

θt+1 = θt −
η

√
Gt + ε

∇θL(θt ), (16)

where γ is the momentum, η is the learning rate, and L is the
averaged loss function over a mini-batch with respect to the
parameter θ .

IV. EXPERIMENTS
A. EXPERIMENTAL SETUP
In this section, we describe the details of the 2D FFT, the net-
work structure, and the training parameters used in the exper-
iments. First, the output size of 2D FFT was set to 29 × 28

(512 × 256), and the RDM was generated every 25.0 ms.
Second, we found the best structure of the LSTM encoder
through repeated experiments. The LSTM encoder has one
hidden layer which consists of 128 nodes. Finally, hyper-
parameters used in the training were also determined through
repeated experiments. The batch size, number of epochs,
learning rate, and momentum were set to 10, 1000, 10−5, and
0.9, respectively.

B. DATA SET
To validate the proposed system, we acquired a data set of
the hand gestures consisting of 10 classes: (1) sliding left to
right (2) sliding right to left (3) rotating clockwise (4) rotating
counter-clockwise (5) push (6) double push (7) drawing X (8)
drawing reverse-X (9) hold (10) double hand push. In the rest
of the paper, each gesture is denoted in the order of R, L,
CW, CCW, P, DP, X, RX, H, DHP. Fig. 7 shows the selected
10 hand gestures. The ten chosen gestures are designed to

control or interact with devices. For examples, R is for chang-
ing channel, CCW is for rewinding video, and P is for pausing
the devices. 10 participants performed the hand.

10 participants performed the hand gestures to collect
data. The participants are composed of 8 men and 2 women
between ages of 23 and 35 (mean: 30.1). All participants
are right-handed and naturally performed the hand gestures
using right hand. Each participant performed all 10 gestures
20 times for each gesture throughout 2 recorded sessions.
Thus, a total of 4,000 hand gesture data were obtained.

In the first session, the supervisor showed each gesture
twice as an example before collecting data. The participants
watched the example gesture and repeated the same gesture
20 times. They sat on a chair and performed the gestures at
a height ranging from 10.0 cm to 20.0 cm above the radar
sensor attached to a desk. The speed of the gesture was
freely performed by the participants at a similar pace to the
example gesture. The second session was conducted on a
different day from the first session to provide data diversity.
In the second session, all participants immediately performed
gestures without example gestures. Participants performed
gestures in a slightly different way compared to those of the
first session. Since the participants were instructed to take
the gestures in their own way, the data was collected under
the various conditions: the distance between the hand and the
sensor, the speed and style of the gesture.

FIGURE 8. The data processing scheme and the network structures of the
RNN encoder and the 2D CNN.

C. COMPARED ALGORITHM
We compared the proposed LSTM encoder with two machine
learning algorithms, RNN encoder and 2D CNN. Fig. 8
depicted the data processing scheme and the network struc-
tures of two compared algorithms. First, the RNN encoder
was used to measure the accuracy of recognizing hand ges-
tures. Like the LSTM encoder, the RNN encoder has one
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hidden layer, and one layer has 128 nodes. In training, all
hyper-parameters (batch size, number of epochs, learning
rate, and momentum) were the same as those of the LSTM
encoder.

Second, we used the 2D CNN similar to the previous
study [8]. We processed the RDM sequences to use them as
the inputs of 2D CNN as follows. Total eight matrices were
constructed by the following: each range profile sequence
from each receiver, RPit , is stacked on top of each other to
compose a matrix. Consequently, four matrices are obtained
from the range profile sequences. We also obtain four matri-
ces from the Doppler profile sequence,DPit by using the same
method. Ultimately we combine the matrices of the range and
the Doppler, making the total of eight matrices. However,
since all inputs must have the same size in the 2D CNN,
they were resized to 256-by-160 with zero padding. The eight
matrices were used as the inputs of the 2D CNN. The 2D
CNN consists of three layers, and each layer consists of a
convolutional layer and a max pooling layer. The size of the
convolutional filters is 5-by-5, and their numbers are set to
10, 4, and 2, respectively. The pooling size is 2-by-2. The last
pooling layer is connected to the fully-connected layer with
128 nodes, and then to the softmax layer.

D. OFFLINE TEST
We measured the performance of the proposed system by
using the 5-fold cross-validation with the data set collected
from the 10 participants. The data set was divided into
5 sets, four of which were used for training and the rest for
testing. Since the trained models showed slightly different
performance depending on the initial weight, we obtained the
average accuracy of 10 trained models for each fold.

E. NEW PARTICIPANT
We collected data from the 11th participant to test how well
the learned model recognizes the hand gesture of a new
participant whose data was not used for training and testing
the networks in the offline test. The 11th participant is a
25 year old man. Data were collected in the same process as
described in Section IV-B. All the collected data were used
only for the test to measure the performance of the trained
models.

F. ONLINE TEST
In order to process the radar signals sampled at 500 kHz
gathered from four receivers in a real time, CUDA stream pro-
cessing was applied to our system. We configured the system
to process four 2D FFT operations in parallel by allocating
one stream for each receiver. The overall architecture of the
online gesture recognition system is depicted in Fig. 9. In the
experiment, 2.6 GHz quadcore Intel i7-6700HQ laptop was
used. One of 50 trained LSTM encoder models was randomly
selected and used for online test.

FIGURE 9. The architecture of the real-time gesture recogntion system
based on Soli .

TABLE 1. The accuracy per each fold and the average accuracy of three
machine learning algorithms for the 10 participants.

V. RESULTS AND DISCUSSION
A. OFFLINE TEST
The LSTM encoder showed a high average recognition accu-
racy of 99.10% (std = 0.26) on 5-fold cross-validation.
The 2DCNN and RNN encoder also showed high recognition
accuracies of 95.39% (std = 1.01) and 92.90% (std = 1.42),
respectively. Table 1 summarizes the 5-fold validation and the
average accuracies.

FIGURE 10. The accuracy of the three machine learning algorithms for
each participant.

Fig. 10 illustrates the accuracy measured by using three
machine learning algorithms for each participant. Since the
speed and method of performing the gestures differs and the
distance between the radar sensor and the hand is different for
each participant, the accuracy of gesture recognition varies
for each participant. The standard deviation of the accuracy
for each participant was 1.67, 2.54, and 0.68 for 2D CNN,
RNN encoder, and LSTM encoder, respectively. We found
that the LSTM encoder performed not only with the best
accuracy, but also with more robustness to the diverse ges-
tures performed by the participants. Dealingwith the diversity
of human gestures in HCI is one of the important issues, and
the proposed system successfully handles the problem with
the LSTM encoder.
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FIGURE 11. The confusion matrices of three machine learning algorithms for the 10 participants. (a) 2D CNN. (b) RNN encoder. (c) LSTM encoder.

FIGURE 12. The confusion matrices of three machine learning algorithms for the 11th participant. (a) 2D CNN. (b) RNN encoder. (c) LSTM encoder.

Confusion matrices for 10 participants are shown in the
Fig. 11. The LSTM encoder classifies most of the gestures
adequately other than the fact that it sometimes confuses the
CW with CCW and vice versa. The 2D CNN also classifies
gestures quite well except CW and CCW, however, the per-
formance is lower than that of the LSTM encoder. The RNN
encoder confuses not only CW and CCW, but also R and RX,
L and X, P and DP. Since RNN cannot handle long term
dependencies, the RNN encoder confuses the gestures that
finish in a similar pattern.

TABLE 2. The accuracy per each fold and the average accuracy of three
machine learning algorithms for the new participant.

B. NEW PARTICIPANT
The results of 5-fold cross-validation for the new participant
are summarized in Table 2. The LSTM encoder was able to
maintain a high accuracy of 98.48% (std=0.28). However,
the accuracies of the 2D CNN and RNN encoder dropped
to 74.70% (std=2.27) and 85.93% (std=0.72), respectively.
In particular, the accuracy of the 2D CNN decreased sig-
nificantly. The 2D CNN performs zero padding to match
the sequence length of all data. Since the sequence lengths

of the gesture data for the new participant and for the ten
participants are different, the accuracy is greatly reduced.
On the other hand, the LSTM encoder is able to effectively
extract features even with the variable-length input sequence,
and thus it maintains the accuracy for the new participant.

Confusion matrices for the 11th participant are shown
in Fig. 12. Like the offline test, the LSTM encoder confused
CW and CCW the most but recognized the gestures correctly
overall. 2D CNN fails to classify X, RX, H, and DHP in
addition to CW and CCW. In the case of RNN encoder,
the performance for H and DHP is decreased as compared
to the offline test.

C. ONLINE TEST
It took about 7.7 ms to generate RDM in 4 receivers by
performing 2D FFT in the CUDA stream and took less than
1.0 ms for post signal processing. It also took about less
than 1.0 ms for forward-processing of the LSTM network.
Considering that the radar signals, to be processed in CUDA
stream, are received every 25.0 ms, it can be regarded as
operating in real time. Although there is about 118.0ms delay
for TCP/IP communication between the recognition client
and main server, the real-time gesture recognition is well
performed through buffering and parallel computing.

Fig. 13 shows the real-time demonstration for two par-
ticipants. They are both men and their ages are 25 and 31,
respectively. They individually performed 10 gestures
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FIGURE 13. Video captures of the on-line tests. Each row shows the randomly selected 5 gestures of the each participant. (a) Rotating
counter-clockwise. (b) Double push. (c) Hold. (d) Sliding right to left. (e) Drawing X. (f) Rotating clockwise. (g) Double hand push. (h) Sliding
left to right. (i) Push. (j) Drawing reverse-X.

randomly one by one. The system successfully recognized the
10 gestures for both participants in real time. 1

VI. CONCLUSION AND FURTHER WORK
This paper proposed a real-time gesture recognition sys-
tem using a short-range radar, Soli, developed by Google.
We developed the gesture recognition system from the
bottom-up including signal processing, machine learning,
and communication. In the signal processing, 2D FFT was
performed to generate the RDM sequences in real time,
and clutters were removed using adaptive background model
based on GMM. The gesture was detected by the CFAR algo-
rithm, and then recognized by the LSTM encoder. The LSTM
encoder extracted the global temporal features of the motion
profile sequences. Themotion profile sequences, the inputs to
the LSTM encoder, were designed to reduce computational
burden. As a result, the proposed system successfully per-
formed with high accuracies under the various conditions.

As the further work, we are trying to improve the proposed
algorithm to reduce false positive rate for the gestures that
are not included in the training process. In addition, a radar
sensor will be attached to a robot, and the proposed gesture
recognition technology will be applied to HCI scenarios.
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