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ABSTRACT In this paper, we propose new serial decoding of Luby transform (LT) codes over additive white
Gaussian noise channels. LT encoder generates a potentially limitless number of encoded packets, and the
decoder incrementally collects the packets to ensure successful recovery of the information. In the proposed
algorithm, the newly coming code nodes are the first to pass the messages, and it is their neighboring source
nodes that will receive these input messages and update their output messages; then, the next neighboring
code nodes that have not been covered are to be included in the updating group; in this greedy way,
the message propagation is conducted from neighbors to neighbors. The analysis demonstrates that the
proposed algorithm has a faster convergence speed than the conventional ones, and simulation shows that it
has an effective bit error rate performance.

INDEX TERMS AWGN channel, fountain codes, LT codes, soft decoding.

I. INTRODUCTION
To guarantee reliable data transmissions over noisy chan-
nels, forward error correction (FEC), or channel code, is a
promising way for receivers to restore the information. Along
with FEC, automatic repeat-request (ARQ) is applied when
receivers can not recover the data correctly. With regard to a
varied noisy channel, it is challenging to set the rate of the
code if one utilizes channel code with a constant rate. That
is, when a channel is varying from time to time, a low rate
code promises a good transmission if the channel is in bad
condition but it may cause a waste of channel use when it
is in good condition, and vice versa if one chooses a code
with a relatively high rate. It is also difficult to ensure a good
quality of service when it comes to multicast and broadcast
communication with such coding schemes. In point to mul-
tiple environment, receivers send requests of retransmission
when their errors can not be corrected, and toomany demands
can lead to a feedback implosion. Even if the transmitter is
able to handle these requests, the retransmission can cause
delays among other receivers. Fountain codes [1]–[5] can
be a solution. With such codes, one can produce a poten-
tially limitless number of code symbols, which is why it is
also known as rateless codes. Such codes can be applied in
massive MIMO system [6] and relay channels [7]. And they
have been widely used in practice, such as 3GPP Multimedia
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Broadcast Multicast Services (MBMS) and and Digital Video
Broadcasting (DVB) standards.

Fountain codes are originally invented for data distribution
on the Internet which can be regarded as erasure channels.
Packets transmitted on such channels are treated as corrupted
or error free at the receivers’ end. A set of k information
symbols are encoded into an arbitrary number of packets,
each receiver picks up them and join them into the decoding
procedure if they are correct, and the decoding will succeed
when enough symbols are received. It is like collecting drops
of water from a fountain into a cup until it is filled, where the
name ‘‘fountain’’ comes from. For the transmitter, the encod-
ing is ended by setting a maximum number of packets or
indications from each receiver that it has successful recov-
ered the information. Therefore, the feedback implosion that
conventional channel codes and ARQ techniques incur can
be avoided by fountain codes. Moreover, it is natural that this
‘‘rateless’’ property makes fountain codes adapted to systems
where the channel state information (CSI) is not available.

LT codes are the first practical realization of fountain
codes introduced by Luby [8]. The encoded packets are linear
combination of information symbols on binary field. In the
following sections, we refer to the packets as code symbols
or code nodes, and information symbols as source symbols
or source nodes, alternatively. Shokrollahi [9] developed LT
codes by introducing precoding, which is called ‘‘Raptor
Codes’’. Raptor codes are also a class of rateless codes, its
performance depend on the inner LT codes to a large extent,
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and some decoding algorithm of Raptor codes can be drawn
to apply to that of the latter.

LT codes were originally designed over binary erasure
channels (BEC) with two decoding methods, namely, belief
propagation (BP) and Gaussian elimination (GE). BP is a fast
algorithmwith complexity ofO(klog(k)), and its performance
of successful decoding is exploited in [10]. GE is a maximum
likelihood decodingwith complexity ofO(k2), whichwas fur-
ther developed byKim et al. [11], [12] and Bioglio et al. [13].
Lazaro et al. [14] analyzed the distribution of inactivation
in GE, and redesigned the output degree distribution with
simulated annealing. On noisy channels, there are coding
schemes combine LT codes on erasure level with other FEC
codes on noise level, and the decoding is conducted on both
levels. Hybrid hard and soft decoding algorithms under such
scheme was proposed in [15] and [16], later Chen et al. [17]
developed a new cross-level decoding that will not bring
computation in real field to hard decoding. Essentially, their
decoding of LT codes is still hard BP algorithm.

In AWGN channels or fading channels, LT codes are
usually concatenated with a linear code forming so-called
Raptor codes. Decoding of single LT codes over these noisy
channels can get intuition of that of the latter ones. In [18]
and [19], Log-BP soft decoding of LT codes were reviewed,
which stemmed from the decoding of Gallager’s LDPC [20].
Decoding is carried out iteratively, and if it fails, additional
packets are needed in order to redo the process. Such algo-
rithm keeps collecting residual output symbols and redoes
the decoding round by round, which seems to regard the
rateless codes as ones with fixed rate but in an incremental
way. Numerous attempts of decoding are needed to restore
the source symbols, and plus the original Log-BP algorithm
itself, the decoding of LT codes on noisy channels have pretty
high complexity.

Fortunately, since the decoding is incrementally deployed,
the message left from the last iteration can be used for the
next attempt. Hu et al. [21] proposed a parallel storage (PS)
BP algorithm, which initialized the current decoder with the
results obtained by the previous iterations. PSBP significantly
advances the decoding process and decreases the complexity
comparing to the conventional one. But its remaining decod-
ing details stays the same as the original one. Wu et al. [22]
noticed that the structure was always varying with the joining
of the newly incoming packets, which gave inspirations to
elaborately devise the message passing rules. Wu et al. [22]
developed a serial storage (SS) BP decoding, which collects
packets in groups and serially propagates messages from the
latest groups to the earliest ones. SSBP makes the message
convergence much faster, however, it leaves a huge delay of
decoding due to the grouping techniques.

This paper proposes a greedy serial BP (GSBP) decod-
ing of LT codes over AWGN channels. The receiver starts
decoding when a required number of packets have been
collected. When it fails, the decoder restarts a new attempt
with a set of newly incoming packets, and the previous results
are set as the initialization. Then the messages pass from

FIGURE 1. System model with LT coding over fading channel.

the newly received ones to their neighbors, after which the
updatedmessages are transmitted to the next neighbors. Thus,
the messages are propagated from neighbors to neighbors,
the latest information is spread greedily at a fast speed.

The paper discusses how fast the message propagation will
cover the whole decoding graph. By analyzing the degree dis-
tribution of merged nodes, it is found that it only takes several
rounds to go through the graph. Also, the speed of decoding
convergence is studies, with the Gaussian approximation, it is
observed that the proposed scheme has faster convergence
speed over the parallel ones. Regarding the decoding com-
plexity, since each node transmits messages only once during
each iteration, both the proposed algorithm and the parallel
ones have the same level of decoding complexity in one
iteration.

This paper is organized as follows. Section II reviews the
encoding and conventional Log-BP decoding of LT codes.
Then the proposed greedily spreading serial decoding algo-
rithm is detailed in Section III. In section IV, asymptotic anal-
ysis of the decoding, including the speed of greedy spread and
convergence, and the decoding complexity, is demonstrated.
After that, simulation results of the BER are presented in
section V. Finally, we draw conclusions in section VI.

II. REVIEW OF LT CODES
A. SYSTEM MODEL
We have adopted a similar system in [22]. It is a simple point-
to-point communication model, which can be expressed by

yi = hi · ti + ni, (1)

where yi, ti, and ni represent received symbol, transmit-
ted symbol, and added white Gaussian noise, respectively,
hi signifies the channel gain, and i stands for the time slot.
Channel state information is available at the receiver but not
at the encoder. Castura and Mao [23] have shown that the
distribution of hi can be neglected in such system. Thus,
this paper simplifies this model into AWGN channel with
parameter SNR.

In each decoding attempt, the decoder employs an itera-
tive method to restore the information. At the end of each
iteration, hard decision is made to judge whether the results
are coincided with the information bits. A cyclic redundancy
check (CRC) should be appended to justify the correctness
of decoding results. It is assumed that the CRC is embedded
into the information sequence. Once the decoding succeeds,
the receiver sends acknowledgment (ACK) to inform the
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sender to transmit the next information sequence, and the
current decoding is terminated. Otherwise, when the source
symbols are not correctly recovered within maximum iter-
ations, the receivers needs more packets to start the next
decoding attempt.

B. ENCODING
An LT encoder generates a sequence of information symbols
into a potentially infinite number of encoded packets. Here
one symbol or packet indicate as many as binary bits, and
without loss of generality, we refer to a single symbol or
packet as one bit in this paper. To obtain packets, an output
degree distribution should be designed, where the term degree
indicates the number of neighbors of a symbol. The distribu-
tion can be concluded by the polynomial

�(x) =
Dcmax∑
i=1

�i · x i, (2)

where �i denotes the probability that a degree i should be
selected, and Dcmax is the maximum degree. Now we encode
k information bits s = [s1, s2, . . . , sk ] into a stream of LT
code symbols e = [e1, e2, ...]. In order to generate ei, its
degree d is chosen randomly based on the designed distribu-
tion �(x), and its d neighbors are usually selected uniformly
random from the k source symbols. Thus, ei is obtained by
xoring its neighbors such that ei = sp1⊕sp2⊕· · ·⊕spd , where
‘‘⊕’’ indicates exclusive OR. Accordingly, the equation ei =
gi ·s denotes the connection between one encoded bits and the
information bits, in which gi = [gi1, gi2, . . . , gik ], i.e., gij = 1
indicates that sj participates the xor operation to generate ei,
otherwise not.

FIGURE 2. Encoding of LT codes.

Fig. 2 gives a simple illustration of LT encoding pro-
cess. The transparent circles in the bipartite graph indicate
the source/information symbols, the ones filled in black are
encoded packets, and their links have clearly shown the gen-
eration constructions. The connections can be expressed by
generation G matrix as well, which satisfies

G · sT = eT . (3)

It should be noted that the multiplication and addition are
both conducted in binary field. Since LT encoder generates
limitless packets, G has a potentially limitless number of
rows, while the number of its column keeps the same of the
information dimension.

C. DECODING
Decoding algorithm of LT codes over AWGN channel draws
inspiration from that of LDPC codes [20], since they are both

graph based. The message pass decoding of an LDPC code
runs in terms of its (N − K ) × N check matrix H . Variable
nodes/symbols represent the code symbols, corresponding
to the columns of H , and check nodes/symbols are imag-
ined in order for decoding, corresponding to the rows of H .
Log-BP algorithm is the conventional decoding method of
LDPC codes, in which decoding messages, log-likelihood
ratio (LLR), are propagated among variable nodes and check
nodes. LT code is treated as a fixed-rate code temporarily
when a decoding attempt is conducted, during which the code
construction is also fixed. Once the current attempt is failed,
more packets are needed to enter the construction joining the
next decoding attempt. Thus, we say the bipartite graph of
LT codes is fixed during each decoding attempt, but it varies
incrementally during the whole decoding process.

We use BPSK mapping code bits 1s and 0s into trans-
mitted bits −1s and 1s, respectively. We take advantage of
log-likelihood ratio to indicate the probability that a binary
random variable takes value from {0, 1} or {1,−1}, that is

L(ti) = ln
Pr(ti = +1)
Pr(ti = −1)

= ln
Pr(ei = 0)
Pr(ei = 1)

, (4)

where Pr denotes the probability. Over AWGN channels,
received bit yi is the sum of transmitted bit ti and added white
Gaussian noise ni with variance σ 2 andmean value 0, namely,
yi = ti+ni. It is assumed that the code bit takes value on {0, 1}
with equal probability. By Bayes’ theorem, the observed LLR
from AWGN channel of received symbol yi can be derived
from the following equations. We have

L(yi) = ln
Pr(ti = +1|yi)
Pr(ti = −1|yi)

= ln
Pr(yi|ti = +1) · Pr(ti = +1)/Pr(yi)
Pr(yi|ti = −1) · Pr(ti = −1)/Pr(yi)

= ln
Pr(yi|ti = +1)
Pr(yi|ti = −1)

, (5)

with

Pr(yi|ti = ±1) =
1

√
2πσ

· exp(−
yi ∓ 1
2σ 2 ), (6)

we obtain

L(yi) =
2yi
σ 2 . (7)

To establish the bipartite graph onwhich the decoding process
is based, check matrix of the LT code should be conducted.
We have G · sT = eT , thus G · sT + eT = 0. When the
current length of code bits is N , the corresponding check
matrix becomes

H = [G, IN ], (8)

where IN is identity matrix of dimension N . Here the source
symbols and code symbols are concatenated forming variable
symbols v, namely, v = [s, e], which satisfies H · vT = 0.
Fig. 3 presents a simple decoding bipartite graph.

Assume decoding of the LT code starts when N0 code
symbols are received. Among variable nodes, source nodes
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are regarded as punctured ones which are not transmitted,
so the channel input LLR of them are set to be 0s, and
only code nodes have useful channel messages. According
to (7), the channel input LLR of each code node is 2yi

σ 2
. Let

V (i), C(i) denote the index set of variable/check nodes which
are connected to the i-th check/variable node, respectively.
The maximum iteration times is set to be Lmax . The current
attempt carries out as follows.

1) Initialization. Let vo,i denotes channel information of
the i-th variable node, and the initialization becomes

vo,i =

{
0, i ≤ K
2yi−K/σ 2, i > K .

(9)

The current iteration l is set to be 1, and all the other
messages are set to be 0.

2) Update the messages from check nodes to variable
nodes. In the l-th iteration, for each of the N0 check
nodes, the message from the i-th check node to its
j-th neighboring variable node is

cl
i,j
= 2tanh−1[

∏
j′∈V (i),j′ 6=j

tanh(vl−1
j′,i
/2)], (10)

where i = 1, 2, . . . ,N0, and for each i, j ∈ V (i).
3) Update the messages from variable nodes to check

nodes. In the l-th iteration, for each of the K + N0
variable nodes, the message from the j-th variable node
to its j-th neighboring check node is

vlj,i = vo,j +
∑

i′∈C(j),i′ 6=i

cli′,j, (11)

where j = 1, 2, . . . ,K + N0, and for each j, i ∈ C(j).
4) Update the final LLR messages of source nodes.

vlj = vo,j +
∑
i′∈C(j)

cli′,j, (12)

where j = 1, 2, . . . ,K , corresponding the indexes of
source nodes.

5) Hard decision.

ŝlj =

{
0, vlj ≥ 0

1, vlj < 0,
(13)

where j = 1, 2, . . . ,K . Assign l = l + 1. If ŝl passes
CRC, which means ŝl = s, the decoding succeeds.
If not and l ≤ Lmax , go back to step 2). The current
decoding attempt fails when CRC is not satisfied and
l > Lmax .

In Fig. 3, it is observed that each of the code nodes has
only one single link to its only neighbor. According to (11),
the LLR message that a code node passes to its neighboring
check node is always the same, namely, its initial channel
information. Further, the LLR message that a check node
delivers to its only neighboring code node is unnecessary,
since the code bits are not required to be recovered. Thus,
it is equivalent that the channel information of each code

FIGURE 3. Decoding of LT codes.

node should be treated as the inherent message of each cor-
responding check node, and the message propagation should
be constrained only among the source nodes and code nodes.
Let co,i denotes inherent message of the i-th check node, then
co,i = 2yi/σ 2. Thus, formula (10) is modified as

cl
i,j
= 2tanh−1[tanh(co,i/2) ·

∏
j′∈V (i),j′ 6=j

tanh(vl−1
j′,i
/2)]. (14)

And the index j in (11) should take values in 1, 2, . . . ,K .
Additional code symbols are needed when the decoding

fails, and we assume the number is Ns. At the same time,
the dimension of the check matrix increases and the construc-
tion of the decoding bipartite graph varies. Standard paral-
lel (SP) BP decoder restarts the decoding as shown before, but
H becomes an (N0+Ns−K )×(N0+Ns) one, and the number
of code nodes and check nodes both increase by Ns, whereas
parallel storage (PS) BP decoder differs from the SPBP one
only in one way. PSBP keeps the LLR information updated in
the previous decoding attempt unchanged, and the other steps
are the same as those in SPBP.

III. GREEDILY SPREADING SERIAL DECODING
In order for better demonstration of the decoding, we use the
concept ‘‘step rate’’, parameterized by Rs, to denote the ratio
of number of additional packets to the information dimen-
sion. Specifically, the number of additional packets in each
decoding attempt is Ns = K · Rs.

GSBP propagates the messages greedily, which can facili-
tate the convergence speed. The first decoding attempt starts
when N0+Ns encoded packets have been collected. The soft
information is first passed from the newly coming Ns code
nodes, after they have updated the messages, the neighboring
source nodes will transmit the messages to their neighbors.
Then, it is these neighboring check nodes’ turn to update
the messages, noticing that among these check nodes, some
have already done the updates, and these will not update
twice. Now it is again the source nodes that are connected
to the previous check nodes, to update their messages to their
neighboring check nodes, and those that have updated will
not be included in the current operation as well. A ‘‘round’’
begins when a set of check nodes update the messages,
and ends precisely before the very next set of check nodes
update the messages. The decoding of the current iteration
goes like this way round by round, until the message prop-
agation tracks cover the whole decoding bipartite graph.
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Specifically, the current iteration halts when the number of
updated code nodes have accounted for 95 percent of the
received code nodes.The reason why we set this percentage
is that, the occasion that some source code has none links and
that the decoding bipartite graph is not fully connected may
occurs, and the percentage allows the messages to propagate
adequately in the graph.

FIGURE 4. Illustration of the proposed decoding.

Fig. 4 gives an example of how the messages are propa-
gated. Fig. 4 (a) and (b) make up one round, (c) and (d) do the
next round. The two rightmost check nodes represent newly
coming packets. In Fig. 4 (a), LLR messages begin to pass
from the two check nodes to their three neighbors, after that,
the two are shadowed to indicate that they have been updated.
Then the three neighboring source nodes transmit messages
to their neighbors, after which they are filled with shadow
as well. In Fig. 4 (c), neighboring check nodes except the
shadowing ones propagate the messages. The process pro-
ceeds in this way until most connections have been covered.
In Fig. 4 (d), it is observed that there is still a pair of nodes
that can not be reached by the propagation. As mentioned
above, similar situation will occur when the bipartite graph
is not fully connected. We can employ a parallel decoding for
a single iteration at first before the serial decoding, to make
the LLR messages totally spread. Moreover, as the increase
of the dimension of check nodes, the chance that the graph
can not be connected will vanish, and that is where additional
packets are required when decoding fails.

Hard decision is performed at the end of each iteration.
Within the maximum iterations, if the results passes CRC,
the decoding succeeds, otherwise, decodingmoves forward to
the next iteration. Similarly, additional packets are needed to
carry out the next decoding attempt, and our algorithm keeps
the LLRmessages left by the last attempt unchanged. Not like
SPBP or PSBP, the proposed algorithm employ the decoding
serially, and the advantage of serial decoding lies in its faster
convergence speed.

We treat the channel information as the inherent feature of
check nodes and set it in the initialization. And the source
nodes are regarded as punctured, so their initial LLR values
are set to be 0s and the values are not added to their final LLR
messages. Let V (i), C(i) denote the index set of source/check
nodes which are connected to the i-th check/source node,
respectively. Let C denote the index set of the whole received

check nodes. It is assumed the first attempt begins at receiving
(N0+Ns) code symbols. The details of the serial update rules
are described as follows.

1) Initialization: Let co,i denotes inherent message of the
i-th check node, and its initialization is

co,i =
2yi
σ 2 , (15)

where i = 1, 2, . . . ,N0 + Ns. The current iteration l is
set to be 1, and all the other messages are set to be 0.

2) Initialize the relevant index set. The index set of
check/source nodes that are going to be updated in the
next round isCn/Vn, and that have already been updated
is Cd /Vd . They are initialized as

Cn = {i|N0 + 1 ≤ i ≤ N0 + Ns}, (16)

Cd = ∅, (17)

Vn = ∅, (18)

Vd = ∅. (19)

3) Update the messages from check nodes to source
nodes.

cl
i,j
= 2tanh−1[tanh(co,i/2)

·

∏
j′∈V (i),j′ 6=j,j′ /∈Vd

tanh(vl−1
j′,i
/2)

·

∏
j′∈V (i),j′ 6=j,j′∈Vd

tanh(vl
j′,i
/2)], (20)

where i ∈ Cn, and for each i, j ∈ V (i).
4) Update the relevant sets. After step 3), the index set of

source nodes that are to be updated is changed, and that
of check nodes which have been updated is changed as
well.

Vn =
⋃
i∈Cn

V (i)− Vd , (21)

Cd = Cd
⋃

Cn. (22)

5) Update the messages from source nodes to check
nodes.

vlj,i =
∑

i′∈C(j),i′ 6=i,i/∈Cd

cl−1i′,j +
∑

i′∈C(j),i′ 6=i,i∈Cd

cli′,j,

(23)

where j ∈ Vn, and for each j, i ∈ C(j).
6) Update the relevant sets. After step 5), the index set of

check nodes that are to be updated is changed, and that
of source nodes which have been updated is changed as
well.

Cn =
⋃
i∈Vn

C(i)− Cd , (24)

Vd = Vd
⋃

Vn (25)

7) Determine the end of the current iteration. If |Cd | <
0.95 · |C|, go back to step 3), otherwise, go to the next
step.
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8) Update the final LLR messages of source nodes.

vlj =
∑
i′∈C(j)

cli′,j, (26)

where j = 1, 2, . . . ,K , corresponding the indexes of
source nodes.

9) Hard decision.

ŝlj =

{
0, vlj ≥ 0

1, vlj < 0,
(27)

where j = 1, 2, . . . ,K . Assign l = l + 1. Three
cases may occurs. Case 1: If ŝl = s, the decoding
succeeds.Case 2: If not succeed and l ≤ Lmax , go back
to step 2). Case 3: If l > Lmax and decoding attempt
fails, the decoder waits additional Ns encoded packets
to be received to conduct the next attempt. AssignN0 =

N0 + Ns, and go back to step 1), but instead of reset
other messages to 0, the next attempt keeps the LLR
messages left by the last one unchanged.

IV. ASYMPTOTIC ANALYSIS
A. ANALYSIS OF GREEDY SPREAD
As mentioned in section II, LT encoder selects information
symbols uniformly at random to generate code symbols.
As the dimension of information symbols and code symbol
tend to infinite, the degree of source nodes tend to be Poisson
distribution [8]. The polynomial of the distribution is

3(x) =
Dvmax∑
i=1

3i · x i, (28)

where 3i denotes the probability that a source node with
degree i should be selected, and Dvmax is the maximum
degree. 3i is approximated by e−θ · θ i/i!, which makes
the degree distribution become

3(x) = eθ (x−1) =
∞∑
i=0

e−θ · θ i

i!
· x i (29)

where θ is the average degree, defined by θ = Dcavg · N/K ,
and Dcavg is the average degree of check nodes, given by

Dcavg =
Dcmax∑
i=1

�i · i. (30)

The degree distributions of source nodes and check nodes
determine how fast the propagation covers the graph in the
proposed decoding algorithm. At the beginning of decoding,
messages are first propagated from the latest Ns check nodes,
and the total number of the neighboring source nodes that
will receive these messages depends on the degree of these
check nodes. Then at the next propagation, it is these source
nodes’ turn to spread the messages, and the total number of
the neighboring check nodes relies on the degree of these
source nodes. By this greedy propagation, most of the nodes
will be covered at last. In order to research on the speed of

the propagation, the degree distribution of a group of nodes
should be derived.

We focus on the total number of receiving nodes when a
set of transmitting nodes are considered. Here transmitting
node refers to the one that sends out messages, which could
be check/source node, and receiving node refers to the one
that takes in messages, which could be source/check node
accordingly. A bunch of transmitting nodes are merged into
one single node in order to investigate the combined degree
distribution. We use the term ‘‘rank’’ to denote the extent
of combination. Rank 1 node is the one with the original
degree distribution, namely, the distribution of source node
or check node. Specifically, if a node has a rank of n, then it
is merged by n node of which each has a rank of 1. The degree
distribution of transmitting node with rank 1 is precisely that
of a source node or a check node, which is known at the
beginning.

When two nodes are merged into one, the degree of the
new node is not simply the sum of the degrees of the two
old nodes, since there is a chance that the two nodes share
the same neighboring nodes. An example of two check nodes
merging into one node is shown in Fig. 5. The check nodes
in the figure both have 3 neighboring source nodes, and they
have one common source node, so when the two nodes merge
into one, the new node has a degree of 5 (3 + 3 − 1) instead
of 6 (3 + 3). Thus, the distribution of the merged node can
not be directly obtained by the convolution of the two old
distributions.

FIGURE 5. An example of merging two check nodes.

Let Dn(i) denotes the probability that a transmitting node
with rank n has a degree of i, Drn(i, r) denotes the prob-
ability of degree i while the old two nodes to be merged
share r same neighbors, and M denotes the total number of
receiving nodes, which limits the maximum degree of the
merged node (0 ≤ i ≤ M ). Considering two nodes may have
common neighbors, the degree distribution of transmitting
node with rank n could be derived from those of two nodes
with rank n− 1 and rank 1 respectively. The recursive rule is
derived as

Drn(i, r) =
i∑

m=1

[Dn−1(m) · D1(i+ r − m)

·

(
m
r

)
·

(
M − m
i− m

)
(

M
i+ r − m

) ] (31)
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and

Dn(i) =
i∑

r=0

Drn(i, r). (32)

It is not hard to understand the above equation. The two
transmitting nodes to be merged may share at least zero or at
most i neighbors when the merged new node has a degree of i,
thus, we obtain (32). A new merged node of degree i where r
neighbors have been shared must be combined by two nodes
whose degrees add to i+ r , and that is why the ‘‘

∑
’’ comes

in (31). The fraction item in (31) denotes the probability that
a rank n − 1 node with degree m and a rank 1 node with
degree i + r − m share r same neighbors, and it should be
noted that the numerator and denominator have a common

factor ‘‘
(
M
m

)
’’, which has been removed. Multiplied by the

removed factor, the denominator would denote the number of
possible combinations of transmitting node withm neighbors
and the other with i+ r − m neighbors, where the neighbors
are among the M receiving nodes, and the numerator would
denote the number of possible combinations of the two nodes
sharing r same receiving nodes.

As an example, we will investigate the combined degree
distribution when the number of source/code node is K =
1000/N = 2000. The widely used output degree distribution
in [9] is applied, which is

�(x) = 0.007969x + 0.493570x2 + 0.166220x3

+ 0.072646x4 + 0.082558x5 + 0.056058x8

+ 0.037229x9 + 0.055590x19 + 0.025023x65

+ 0.003135x66. (33)

According to (28)∼(30), the degree distribution of source
node is approximated by

3(x) =
∑
i=1

e−11.74 · 11.74i

i!
· x i. (34)

For convenience of computation, those ‘3i’s less than 10−4

is neglected, and the remaining fractions are normalized so
that they sum to 1.

Let vector Dcn denotes the degree distribution of the check
node of rank n, and Dsn denotes that of the source node.
Then Dc1 and Ds1 is defined by (33) and (34), respectively.
The combined degree distribution of merged check/source
node with any rank can be deduced based on (31) and (32).
Fig. 6 illustrates the degree distributions of merged check
node (CN) with rank 1, 400, 800, 1200, 1600 and 2000, and
those of merged source node (SN) is presented in Fig. 7. It is
observed that the degree of the two are both like Gaussian
distribution when the nodes are with a high rank, regardless
of what the original distribution is. In Fig. 6, the degree
concentrates near the maximum degree when the rank tends
toK , whichmeans that, as the number of check nodes become
larger, the probability of covering the whole source nodes
tend to be 1, and the situation is true of Fig. 7.

FIGURE 6. Degree distributions of merged CN under different ranks.

FIGURE 7. Degree distributions of merged SN under different ranks.

The degree distributions of the merged node are utilized to
research on the speed of the message propagation. Since the
propagation starts from the latest Ns code nodes, the average
degree of the merged code node with rank Ns is treated as
the expected number of the neighboring source nodes. Then
making use of the degree distribution of the merged source
node, the expected number of neighboring check nodes can
be derived. Thus, the average degree of merged transmitting
node is regarded as the rank of the merged receiving node.
By averaging the degree of merged CN/SN in the whole range
of rank, the process of message propagation can be depicted
in Fig. 8, where Ns = 100.
The solid line in Fig. 8 is the average degree of merged

check node, with its rank on the horizontal axis and the related
degree on the vertical axis. The dash dot line corresponds
to that of merged source node, with its rank on the vertical
axis and the degree on the horizontal axis. By swapping the
axes of the curve for source node like this, the evolution of
the message propagation can be shown with arrows in one
figure. LLR messages start from the latest Ns code nodes,
and arriving at neighboring source nodes of an expected
number of 444. Then messages are updated and transmitted
to neighboring check nodes of an average number of 1882.
Tracking the arrows in Fig. 8, it is observed that it takes 3
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FIGURE 8. Speed of message propagation.

rounds of propagation on average to cover all the connections
in the decoding graph.

Base on (2), (28), (32) and (31), the speed of the mes-
sage propagation can be derived like the form in Fig. 8,
for any other degree distributions. And it is observed that
the proposed decoding exchanges messages in a fast speed,
allowing the updated LLR messages to be immediately made
advantage of in the current iteration, and most of the nodes
will be covered in several rounds.

B. ANALYSIS OF CONVERGENCE SPEED
OnAWGN channels, Gaussian approximation [24] is applied
to study the speed of convergence during the iterations. The
theory in [24] approximates the LLR messages among the
two kinds of nodes to variables conformed to Gaussian distri-
bution. The mean and variance of the distribution vary during
the iterations, and error probability can be deduced based on
the two parameters.

The channel input LLRmessage is regarded as the inherent
message of check node, rewritten as co,i = 2yi/σ 2. Since
the error probability is independent of the specific values of
information bits, all zero bits are encoded in order to analyze
the decoding performance, without loss of generality. Then
0s are mapped into 1s by BPSK, and yi = 1 + ni, where
ni is Gaussian noise with variance σ 2 and mean 0. We get
co,i = (1+ n) · 2/σ 2, and

co,i ∼ N (2/σ 2, 4/σ 2). (35)

It is observed that the variance of the Gaussian variable is
twice as large as the mean, and this condition is enforced
to all LLR messages during the analysis. Thus, only means
of Gaussian variables are needed to investigate the rate of
convergence.

Edge degree distribution should be obtained to start
Gaussian approximation. Here edge refers to the connection
between SN and CN. The degree of an edge at the SN’s/CN’s
side is defined as the degree of its connected SN/CN, which
partly features the propagation depth of the massages passed
on this edge. Degree distribution of the edge on the side of
SN can be calculated by 3(x)′/3(1)′, which is actually the

same of 3(x) in (29), given by

λ(x) = eθ (x−1) =
∞∑
i=0

e−θ · θ i

i!
· x i =

∞∑
i=1

λi · x i−1, (36)

where λi denotes the probability that an edge is linked to an
SN with degree i. And accordingly, the edge degree distribu-
tion on the CN’s side is

ω(x) = �(x)′/�(1)′ =
Dcmax∑
i=1

ωi · x i−1. (37)

Let mv denote the mean value of LLR messages sending
from source node, and mc denote that from check node.
Except for the channel input information, all the LLR mes-
sages are initialized to 0. We will first analyze the decoding
convergence of conventional parallel algorithm.

In (11), the initial value of SN is 0, and input messages of
SN are considered independent. Since all the variables on the
LHS and RHS of (11) are Gaussian, the evolution of mv,i for
the i-th SN could be obtained by

mlv,i = (|C(i)| − 1)mlc, (38)

where |C(i)| denotes the degree of the i-th SN. mv is the
average of mv,i of the whole SN. Since LLR messages are
transmitted along the edges, mv could be derived based on
the edge distribution of SN. Thus,

mlv =
∑
i=1

(i− 1) · λi · mlc = (θ − 1)mlc. (39)

Assuming the input messages of CN are independent,
from (14) we have

E
[
tanh(cli,j/2)

]
= E

[
tanh(co,i/2)

]
·

∏
j′∈V (i),j′ 6=j

E
[
tanh(vl−1j′,i /2)

]
(40)

By Gaussian approximation,

E
[
tanh(cli,j/2)

]
=

1√
4πmlc

∫
R

tanh(
u
2
) · e
−

(u−mlc)
2

4mlc du. (41)

Define φ(x) as

φ(x) =


1−

1
√
4πx

∫
R

tanh(
u
2
) · e−

(u−x)2
4x du, x > 0

1, x = 0,

(42)

where φ(∞) = 0. φ(x) is continuous, convex and monoton-
ically decreasing on [0,∞). To calculate φ(x), [24] gives an
approximated form as

φ(x) =


√
π

x
(1−

10
7x

) · e−x/4, x > 10

eαx
β
+γ , 0 < x ≤ 10,

(43)

where α = −0.4527, β = 0.86 and γ = 0.0218. Then,
from (40), we have

mlc,i = φ
−1
{1− [1− φ(m0)][1− φ(ml−1v )]|V (i)|−1}, (44)
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where m0 is the mean of co,i, namely, 2/σ 2. Similarly, mlc is
obtained from mlc,i based on the edge distribution of CN,
that is

mlc =
Dcmax∑
i=1

ωi · φ
−1
{1− [1− φ(m0)][1− φ(ml−1v )]i−1}.

(45)

With (45) and (39), the evolution of the LLR messages for
parallel decoding could be figured out.

In the next, wewill investigate the decoding convergence of
the proposed algorithm. Let rmax denote the maximum round
in one iteration. Vn,r /Cn,r refers to the index set of SN/CN
that is going to update the output messages in the r-th round.
Vn,0 and Cn,0 are both initialized to ∅. Let mlv,r /m

l
c,r indicate

the mean of output messages of SN/CN in the r-th round,
l-th iteration. m0

v,0/m
0
c,0 are both initialized to 0.

In (20), except for the inherentmessage, the inputmessages
of CN consist of two part. One part comes from the SN in
the last round, which is newly updated, the other comes from
the SN in the current round, which have not updated in the
current iteration but have done in the precious one. Thus,
the evolution rule of output messages of CN is

mlc,r =
Dcmax∑
i=1

ωiφ
−1
{1− [1− φ(m0)]

· [1− φ(µ1ml−1v,r + µ2mlv,r−1)]
i−1
}, (46)

with

µ1 =
|Vn,r |

|Vn,r | + |Vn,r−1|
, µ2 =

|Vn,r−1|
|Vn,r | + |Vn,r−1|

. (47)

The mean of output LLR messages of CN in the l-th iteration
is

mlc =

rmax∑
r=1
|Cn,r | · mlc,r

rmax∑
r=1
|Cn,r |

. (48)

Similarly, according to (23), the evolution rule of output
messages of SN is given by

mlv,r = (θ − 1) · (η1m
l−1
c,r+1 + η2m

l
c,r ), (49)

with

η1 =
|Cn,r+1|

|Cn,r+1| + |Cn,r |
, η2 =

|Cn,r |
|Cn,r+1| + |Cn,r |

. (50)

The mean of output LLR messages of SN in the l-th iteration
is

mlv =

rmax∑
r=1
|Vn,r | · mlv,r

rmax∑
r=1
|Vn,r |

. (51)

With (48) and (51), the evolution of the LLRmessages for the
proposed decoding could be worked out.

The values of the mean are related to the correspond-
ing |Vn,r | or |Cn,r |. To compare the evolution of the par-
allel and the proposed serial decoding, we will work out
by simulation. Degree distribution of check node in (33)
is applied. The dimension of the source nodes is set as
K = 1000, and that of the check nodes is set as N =
1000, 1200, 1400, 1600, 1800, 2000, and σ 2 is set to 1. |Vn,r |
and |Cn,r | for the proposed decoding are obtained based on
the previous subsection.

FIGURE 9. Evolution of mv under the parallel and serial decoding.

Fig. 9 shows the evolution of mv, where the dash-dot curve
is that of the parallel decoding and the solid line is that of
the proposed serial decoding. At the beginning, serial mv
is slightly smaller than parallel mv, after that, the former
increases faster than the latter, and the gap between them
grows wider. Though the gap between the parallel decoding
and the serial one tend to be smaller as N increases, the evo-
lution of mv of the latter is still faster than the former. Both
curves stay at a specific iteration, which is caused by fixed
point introduced in [24]. As mv becomes larger, the decoding
error probability gets smaller, and it will tend to 0 as mv
tend to infinity. When the evolution curve hits a fixed point,
the error probability stops decreasing. However, the occur-
rence of fixed point is skipped here, since we focus on the
speed of convergence. Fig. 9 illustrates that the proposed
serial decoding is more effective than the parallel one when
the same number of iterations are employed. Further, in order
to achieve a specific error probability, the proposed algorithm
needs fewer iterations.

C. COMPARISON OF COMPLEXITY
Complexity of decoding depends on the structure of the code
and the decoding algorithm. Since the two algorithms are
performed based on the same decoding graph, here the dis-
cussion of the structure is skipped. Reviewing (14) and (20),
the numbers of items that involved in the update of check
nodes are the same, though the messages may come from the
last iteration or the current iteration. For parallel decoding
and serial decoding, output messages of CN are both updated
only once in one iteration, thus, the complexity of the two
algorithm is the same at the CN’s end. The same situation is
true for the SN. Reviewing (11) and (23), since all the initial
messages of SN are 0, vo,j in (11) could be omitted. Number
of addition items to update SN for parallel decoding equals to
that for the serial one, and all the SN are updated only once
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in one iteration, thus, the complexity of the two algorithm is
also the same at the SN’s end.

For the proposed algorithm, there are additional set oper-
ations. In the analysis of greedy spread, it is observed that
only several rounds should be taken to cover one iteration.
Also, since decoding complexity concentrates on the update
of the nodes, the complexity contributed by set operations
could be neglected. Thus, the complexity of the conventional
parallel algorithm and the proposed one is nearly the same,
with respect to one iteration. Thewhole complexity is directly
related with the decoding iterations. The last subsection
shows that decoding convergence of the proposed algorithm
is faster than the conventional one, therefore, the overall
complexity of the former is potentially better than the latter.

V. SIMULATION RESULTS
In this section, we present simulation results of SPBP, PSBP,
and GSBP decoding results for LT codes over AWGN.
Results are obtained by averaging 1000 times of relevant
simulations, and the generator matrix of LT codes keeps
the same for these algorithms in each simulation. Degree
distribution in (33) is used, and the SNR of the AWGN
channel is set to −2.83 dB, where the channel capacity is
0.5 bit/symbol. Different maximum iterations are considered
in order to observe the BER performance. The decoding starts
when N = 2000, and the step rate is set to 0.1.

Fig. 10 and Fig. 11 give the bit error performance under
the three algorithms. It is observed that the GSBP performs

FIGURE 10. BER under different algorithms with lmax = 10, 20, 40.

FIGURE 11. BER under different algorithms with lmax = 80, 100, 200.

the best at different code rates under the same maximum
iterations. While the BER of SPBP is the highest, since it
discards the messages of the last decoding attempt. When
lmax is no larger than 40, GSBP obtains rather lower BER
than the other two at the same code rate. As the increasing
of lmax , the gaps between the three curves becomes narrower.
In Fig. 11, it is witnessed that the curves start from nearly
the same point, differ among code rate 2.1−1 ∼ 2.4−1. And
GSBP along with PSBP arrives at around 5 ∗ 10−4 when
R = 2.5−1. Actually, increasing of lmax after 80 or so does
not give much improvement in terms of BER, especially for
PSBP and GSBP. In order to reach a BER of 10−3, GSBP
needs a maximum iteration of 40 and a code rate of 2.4−1,
whereas PSBP requires lmax of 40 but a code rate less of
2.5−1, or 200 for lmax when R = 2.4−1.
As mentioned in section IV, the complexity of these algo-

rithms is the samewithin one iteration. Since the conventional
algorithms need more iterations or more additional packets to
achieve the same BER, the proposed GSBP has the smallest
complexity among them all.

VI. CONCLUSIONS
In this paper we proposed a greedy spreading serial BP
decoding of LT codes over AWGN channel. Traditional soft
decoding of LT codes was reviewed, and we explained why
check nodes hold the channel input information as the inher-
ent values. In GSBP, LLR messages are firstly propagated
from the newly coming check nodes to their neighbors, then
the propagation is conducted from ones to all their neighbors.
By analyzing the spreading speed, it was found that the nodes
would be covered just in several rounds. Then we showed that
the decoding convergence of GSBP was faster than conven-
tional algorithm by Gaussian approximation, and the former
had less decoding complexity. Simulations demonstrate that
the proposed algorithm has better BER performance than
traditional algorithms over AWGN channel. Future work
will consider combining precoding with LT codes to further
improve the BER performance.
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