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ABSTRACT Object detection acts as an essential part in a wide range of measurement systems in
traffic management, urban planning, defense, agriculture, and so on. Convolutional Neural Networks-based
researches reach a great improvement on detection tasks in natural scene images enjoying from the strong
ability of feature representations. However, because of the high density, the small size of objects, and the
intricate background, the current methods achieve relatively low precision in aerial images. The intention of
this work is to obtain better detection performance in aerial images by designing a novel deep neural network
framework called Feature Fusion Deep Networks (FFDN). The novel architecture combines a designed
structural learning layer based on a graphical model. As a result, the network not only provides powerful
hierarchical representation but also strengthens the spatial relationship between the high-density objects.
We demonstrate the great improvement of the proposed FFDN on the UAV123 data set and another novel
challenging data set called UAVDT benchmark. The objects which appear with small size, partial occlusion
and out of view, as well as in the dark background can be detected accurately.

INDEX TERMS Convolutional neural networks (CNNs), aerial images, feature fusion deep
networks (FFDN), object detection.

I. INTRODUCTION
In Unmanned Aerial Vehicles (UAV) images, object detec-
tion has attracted significant attention worldwide and has
received lots of significant applicable achievements [1]–[3].
However, this task still faces lots of challenges: First, aerial
images are taken from top to bottom vertically or obliquely
at high altitude, so the background is more cluttered than
that in the images taken from the ground. For instance, when
detecting vehicles in aerial images, some similar objects such
as the roofing equipment and substation box possibly cause
false positive detection. Second, objects in aerial images are
much smaller and always with a higher density than that in
the natural scene images, especially when shooting images
at a wider view angle. Third, the lack of large-scale and
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well-annotated data sets limits the high performance of a
trained network.

In previous years, the works that are mostly based
on the sliding window search, as well as the shallow-
learning-based features [4], [5] have been fully researched.
Liu and Mattyus [6] propose a method for detecting vehi-
cles in several categories and different orientation in aerial
images. Nowadays, R-CNNbased detectionmethods [7] have
brought about the huge success in natural scene images.
Although CNNs can learn powerful hierarchical features,
they would result in signal down-sampling problem and
relatively weak spatial description when they are utilized
to object detection task in aerial images [8], [9]. This is
because the network performs multiple operations of max-
pooling and down-sampling, which are originally constructed
for feature abstraction task. The feature dimension is largely
reduced. This results in the weak spatial description with
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drastically reduced spatial resolution. CNN cannot learn the
spatial description of the structural relationship effectively.
Moreover, due to the high and variable flight altitude and
multi-angle rotate shooting of UAV views, the ground objects
with the same semantics are usually with small size, multiple
scales and high density. The convolutional mode is effec-
tive for large objects, but not so effective for small objects
with high density. Thus, the feature extraction performance
is not outstanding in aerial images. This inherently limits
the spatial description ability of CNNs especially for aerial
images. Conditional Random Fields (CRFs) [10], which can
clearly infer the spatial dependencies between objects, have
been applied for object detection problem for boosting the
accuracy of detection [11]. Zhang et al. [12] build a CRF
model to use the interaction between neighboring regions for
overtaking object detection. Li et al. [13] fuse the LIDAR
and monocular images into the CRF for detecting the road
robustly in intricate scenarios.

In this paper, different from above-mentioned meth-
ods [12], [13], we design a frame of networks combining
Convolutional Restricted BoltzmannMachines (CRBM)with
CRF, in which CRF model is one layer of FFDN. By this
way, the networks can obtain the structural learning ability.
In short, there are three major layers in the proposed FFDN:

1) Feature learning layer: we adopt CRBM to learn
deep hierarchical features (DHF), which can express
pyramid representations of different scales of the input
image. Therefore, the DHF can hierarchically express
small objects and intricate background information in
aerial images.

2) Structural learning layer: the CRF is adopted as a
layer of the FFDN for expressly generating the spa-
tial relationship between adjacent objects and back-
ground, then we generate spatially inferred features
(SIF) by encoding region information using spatial
relationships. By this way, we can improve the struc-
tural representative performance of the FFDN.

3) Feature fusion layer: to take both advantages of the
DHF and the SIF mentioned above, we fuse DHF and
SIF by Deep Sparse Autoencoder (DSA) [14], [15],
as a result, the network has got stronger representative
features for locating objects in intricate backgrounds.

This paper has three main contributions summarized as
follows: First, in this work, the upper layer of the CRBM
covers a larger region through the pooling and downsampling,
therefore the CRBM can absolutely learn the structural rela-
tionship in small regions. Furthermore, the proposed FFDN
includes the CRF layer, which means that the structural learn-
ing executes explicitly and thus enhance the capability of
inference; Second, the SIF can boost the spatial inference
by encoding the region information between objects. Thus
the features of both the object itself and its region relation-
ship information can be encoded to learn stronger represen-
tation. The network achieves significant improvements in
object detection among adjacent small objects; Third, a new
competitive feature learning algorithm is proposed. To take

advantage of various features, we put forward a feature fusion
layer based on DSA to fuse the multimodal features, and thus
to learn the inherent nonlinear relationships of comprehensive
local and global information. We consequently improve the
ability to model complicated transformations of the FFDN.

Extensive experiments have been conducted on the
UAV123 data set [16] and UAVDT data set [17]. Quantita-
tive comparisons and analysis show that the proposed FFDN
obtains promising performance.

II. RELATED WORKS
There are two main factors affecting the performance of
the detectors: one is the partial occlusions caused by other
things that would significantly increase detection errors, and
the other is the illumination condition critical for detection
task in aerial images [18]. Many effective research meth-
ods have been proposed to find suitable techniques and
have achieved great performance. In the following content,
we review the traditional detection methods which rely on
shallow-learning-based feature extraction, then discuss the
representative CNN-based and feature fusion based methods,
respectively.

A. TRADITIONAL DETECTION METHODS
The traditional detection methods generally rely on hand-
crafted feature extraction. For instance,Moon et al. [19] focus
on four elongated edges of cars in aerial images of park-
ing lots, and they also discuss how much prior information
improves detection performance. Hinz et al. [20] introduce
a 3-D model describing the geometric features and the radio-
metric features (colors of vehicles and windshields, the inten-
sity of car’s shadow). Wang [21] propose a framework to
fusion improved shadow features and shape matching of
corner features. Moranduzzo [2], by using the scalar invariant
feature which identifies a set of key points of cars and a
support vector machine classifier, represent a ‘‘one keypoint-
one car’’ method for car detection. Yamazaki et al. [22]
suggest the parameters of gray values and sizes for object
classification in aerial images and also derive the speed of
moving cars by exploiting the shadows. Moranduzzo and
Melgani [23] utilize several invariant features to discover
the objects, in addition, to calculate the moving speed by
analyzing the centroid position movement between two suc-
cessive frames. Although these methods have made good
performances, they still have limited application range and
always cause inconsistent on other different tasks because
of the trivial partial information of objects generated from
images.

B. DEEP-LEARNING BASED DETECTION METHODS
Over the past several years, to overcome the disadvantages
of those features, some methods [24]–[26]tend to simu-
late human vision mechanism. In recent researches, deep
learning based methods [27]–[30] have become a hot topic
in computer vision and have made great achievements.
After the AlexNet [31] won the ILSVRC-2012 competition,
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FIGURE 1. Overview of the proposed FFDN. Different categories of features generated from different layers are represented by different
colors.

CNNs [32] enhance the feature extraction performance of
various computer vision tasks (object detection and track-
ing [32], [33], image classification [31], [32], and fine-
grained categorization [8]). There are typically two groups of
methods in CNN-based detection methods. One is two-stage
methods, in which the process of object location and object
classification is finished in two steps. The representatives of
this group are Faster R-CNN [34], Mask R-CNN [35] and
so on. The other is one-stage methods such as YOLOv3 [36]
and DSSD [37]. The former group outperforms the latter one
in terms of accuracy. The latest Mask R-CNN expands the
Faster R-CNN to an instance segmentation framework by
generating the bounding boxes and predicts masks for them
simultaneously in the second stage. Whereas, the latter group
of methods, which remove the proposal generation stage,
performs much faster than the former. YOLOv3 [36], which
has a simpler pipeline and uses the strategy of multi-scale
prediction, achieve excellent performance in detection speed.
Although these two groups of detection methods achieve sat-
isfactory performance in natural scene images, when applied
to the aerial images, there still exist problems. It is very
essential for the former group to ensure a reliable recall rate
during the proposal generation process, if some objects are
missed in the head network, they will not be recovered in
the second stage. Focusing only on extracting features from a
single feature map layer is not sufficient for object detection
in challenging aerial images.

Except for the above methods, there are some other
methods that focus more on feature fusion strategy and
have received increasing attention in recent researches.
In Li et al. [38], the authors propose a SingleNet for object
detection. They apply the fully convolutional network as
the base network to generate feature maps and construct a
fusion network to fuse these feature maps in different layers.
Finally, they merge these features by the element-wise sum.
Guan et al. [39] propose multi-scale feature fusion based
object detectionmethod, which constructs a region object net-
work and jointly fuses the high-abstracted semantic knowl-
edge to learn a fine resolution feature maps. Jiang et al. [40]
integrate the semantic segmentation feature layer by layer

into the feature pyramid structure and predict the location on
fusion feature maps of different layers independently.

Different from above-mentioned researches, in our work
the graphical model (CRF) is considered as one layer of the
proposed FFDN to enhance the definite inference ability,
then we generate structural relationships by encoding the
inference results. Therefore, deep learning based feature is
combined with the graphical model to simultaneously exploit
the advantages of both of them. Furthermore, DSA is used
to fuse deep hierarchical features and spatially inferred fea-
tures, and thus the nonlinear relationships of them would be
obtained, which means that we can fully grasp the inherent
feature of small objects.

III. FEATURE FUSION DEEP NETWORKS
The feature learning layer constructed by CRBMs is firstly
introduced in this section, then we discuss the structural
learning layer of getting the strong spatial relationship repre-
sentation between objects and background. Finally, we briefly
introduce the feature fusion layer to generate more powerful
representative features. Fig. 1 gives a general view of the
proposed networks.

In our framework, structural learning can be regarded as a
processing layer and is trained separately. It is known that the
CRF model has the advantage of overcoming lack of long-
range spatial inference of traditional deep neural networks
because it definitely generates a spatial relationship between
objects and background. As a result, object detection perfor-
mance can be improved.Moreover, training those three layers
individually can make three separate modules to be trained
repeatedly and simultaneously, as a consequence, it makes the
trainingmore quickly and then reduces the time consumption.

A. FEATURE LEARNING LAYER
It is well known that powerful representations are crucial for
promising performance on computer vision task. Contempo-
rary methods indicate that powerful internal feature repre-
sentations are hierarchical, and the convolutional operation is
invariant to tilt, translation, scaling, and other deformations,
which makes object detection more accurate and convenient
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FIGURE 2. The principle of feature learning with CRBMs.

than other shallow feature based methods. Norouzi et al. [41]
introduce the stacks of CRBM for shift-invariant feature
learning and have proved their extracted features are effec-
tive for object detection. Here, we adopt multilayer CRBMs
to generate the DHF. Fig. 2 shows the principle of feature
learning with CRBMs.

1) CONVOLUTIONAL RESTRICTED BOLTZMANN MACHINE
So as to obtain local rotation invariant characterization,
Lee et al. [42] put forward CRBM and Convolutional Deep
Belief Networks (CDBN). The basic CRBM is a two-layer
structure (visible layer V and detection layer H) similar
to RBM. Suppose H includes k ‘‘groups’’ of units. Max-
pooling layers P reduce the dimensions of layer H by using
the pooling window Bα(with the width of G pixels). Due to
the same meaningful features might appear anywhere of the
image, the convolutional kernel W k (k ∈ [1, k]) are shared
among all regions of an image between layer V and layer H.
By stacking multiple CRBMs, we can construct, similar to
DBN, a CDBN. Suppose V is a binary unit of Nv dimension.
The detection layer uses K convolution filters, each of which
is a matrix of Nw dimensions. The k-th convolutional kernel
W k is used to acquire the K ‘‘groups’’ ofHk in the layerH by
convolving the entire image. TheHk is a Nh-dimensional unit
matrix, in which each unit hkij shares the same weightW k and
bias bk , and i, j represent the vertical or horizontal indexes.
The single bias c is shared with all of the units vij in visible
layerV. The joint probability over visible unit v and detection
unit h is given by

p(v,h) =
1
Z
exp(−E(v,h)), (1)

where Z =
∑

v
∑

h exp(−E(v,h)) is defined as the nor-
malized parameter of the separation function. The energy
function of CRBM is defined as

E(v,h) = −
K∑
k=1

hk · (W̃ k
∗ v)−

K∑
k=1

bk
∑
ij

hkij − c
∑
ij

vij,

(2)

where ∗ denotes the two-dimensional convolution, · repre-
sents element-wise multiplication, as well as the tilde above
W k denotes flippingW k horizontally and vertically. To learn
high-level representations, similar to DBNs, stacking mul-
tiple CRBMs can obtain deeper CDBNs. Lee et al. [42]
further combine the probabilistic max-pooling with CRBM,
so the structure of the CDBN is generally based on prob-
abilistic max-pooling. In other words, the units calculate
(by probability) the maximum activation in small areas of the
detection layer H. The energy function of this probabilistic
max-pooling-CRBM is given by

E(v,h) = −
∑
K

∑
ij

(hkij(W̃
k
∗ v)ij + bkhkij)− c

∑
ij

vij

s.t.
∑

(ij)∈Bα

hkij ≤ 1,∀k, α, (3)

where Bα (with the width of G pixels) is pooling window
of detection layer. The stochastic gradient descent (SGD) is
performed to optimize the parameters of the CRBM [43].
However, it is unrealistic to calculate the exact gradient
accurately, instead, we use the contrast divergence (CD) [44]
approximation, which has been confirmed to work well in
practice. Similar to [43], we train the CDBN in a greedy way.

2) SUPERPIXELS
In our proposed FFDN, superpixel segmentation is a vital
step. We use the algorithm of simple linear iterative cluster-
ing (SLIC) [45] to obtain superpixels, which are regarded
as elementary units of similar color, textual, and category
to eliminate some aberrant pixels. On the other hand, using
superpixel can boost the total computational speed signifi-
cantly because there are much fewer superpixels than pixels
in an image. As we all know, superpixels can explicitly keep
the boundaries between objects, which can help us get a pre-
cise distinguishment of the adjacent objects. It can especially
promote the detection performance of small objects [9]. For
each superpixel, we calculate the average feature denoted as
Sp ∈ RN in the detected region.
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FIGURE 3. The flowchart of structural representation learning.

B. STRUCTURAL LEARNING LAYER
Although CNNs can generate powerful hierarchical features,
the hierarchical features are still short of strong spatial rela-
tionship representations (without neighborhood information)
among objects, thus CNNs is not particularly suitable for
accurate small-sized objects detection alone. For these rea-
sons, we use the CRF model based on superpixels to learn
the SIF [9]. We illustrate how to learn the spatially inferred
feature in Fig. 3.

1) CONDITIONAL RANDOM FIELDS
We generate the superpixels of an input image by performing
the SLIC [45] algorithm. For an image, we define a graph
model G = (V ,E), in which the vertexe v ∈ V and the
edge e ∈ E ∈ RV×V , respectively. Under this definition,
each superpixel can be considered as a vertex unit, as well
as the edge can be regarded as the connection among the
neighboring unit pairs. Specifically, the symbol eij represents
the edge consisting vertex vi and vj, while the observation
of units are expressed as x, whose corresponding states are
y =< y1, y2, ..., yn >. The conditional distribution of every
vertex and edge is decomposed into the potentials of the units
φN (xi, yi) (unary) and edges ψE (xije, yi, yj) (pairwise). Con-
sidering the possibility of having a weight w in the training
data, the conditional probability distribution is given by:

p(y|x,w) =
1

Z (x,w)

∏
i∈V

φN (xi, yi)
∏
eij∈E

ψE (xije, yi, yj),

(4)
where Z (x,w) denotes a partition function with unary or pair-
wise potentials on the constructed graph model. Defining the
feature functions of the unit φN (xi, yi) and ψE (xije, yi, yj)
as fN and fE , the potentials is expressed as the log-linear
combination of fN and fE . we reform the training process as:

w∗ = argmin
w
λ ‖w‖2 −

M∑
n=1

(
∑
i∈V

wT
N fN (x

n
i , y

n
i )

+

∑
eij∈E

wT
E fE (x

n
ije, y

n
i , y

n
j ))+

M∑
n=1

logZ (xn,w), (5)

where λ denotes the non-negative L2-regularizer parameter,
w = [wN ,wE ] is the weight of unary and pairwise terms,
and (xni , y

n
i ) is defined as the training examples of a sample of

the graphical model. When p(y|x,w∗) reaches the maximum,
the conditional probability distribution over the class variable
and the most likely assignment of labels y can be acquired
simultaneously by solving (5).

2) SPATIALLY INFERRED FEATURE
It can be noted that in the recent research literature, CRF
is usually considered to be the last procedure for refining
the classified labels in different vision tasks. In our work,
we improve the structure by adjusting this procedure. It is
well known that inference label probabilities for each super-
pixel generated by CRBM learning features lack the power-
ful capability to learn spatial relationships. Even though the
graphical model can partially make up those disadvantages,
to further improve performance, SIF is put forward to indicate
both the feature of superpixel and the spatial relationships.
We define the connection graph as Gµ = (Vµ,Eµ), which is
generated by the superpixel µ and its local region, thus the
SIF �(µ) can be expressed as

�(µ) = λ
∑
i∈Vµ

∑
j∈Vµ

θiθ
T
j exp

(
−kd

d(vi, vj)
σd

)
. (6)

In (6), � is n × n matrix, which indicates the frequency
of occurrence of the nearby probability of vertices i and j.
d(vi, vj) denotes the distance of superpixel i and j, while kd ,
σd , and λ denote the distance decay rate, themaximal distance
of the vertices in the graphGµ, and the normalized parameter,
respectively [9].

C. FEATURE FUSION LAYER
In this section, we briefly discuss DSA used in our pro-
posed framework, which is a neural network with multi-
layer sparse autoencoder (SAE). DSA can discriminatively
learn hierarchical features by finding out similarities between
training samples. We show how to fuse the various features
in Fig. 4. When the networks accomplish the courses of
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FIGURE 4. The illustration of hybrid feature learning.

feature learning and structural learning, we get two types
of descriptors: DHF Sp and SIF �, which are concatenated
into [Sp,�] ∈ RN+n×n in our method, and then we use
DSA [14] to fuse the connected features, at the same time,
the comprehensive nonlinear relationships between different
dimensional features are also explored.

DSA application results in recent years [14], [15] have
demonstrated its capability to learn multi-layer nonlinear
features with less labeled data, which are beneficial for
object detection. The features are generated layer by layer
with greedy learning strategy [15] through contrastive diver-
gence (CD) algorithm [44]. When the unsupervised pre-
training phase is completed, supervised backpropagationwith
less labeled data is carried out to fine-tune the network for
optimal parameters, as a result, the DSA can output the highly
representative feature that encodes its input data.

FIGURE 5. The architecture of Sparse Auto Encoder.

Suppose each training sample of SAE as x =

(x1, x2, ..., xN )T and there are Nh hidden units in layer l,
the learned features of x from the hidden units in layer l
is expressed as hl = (hl1, h

l
2, ..., h

l
Nh ). SAE is a symmet-

ric network including the encoding and decoding stages,
the architecture of SAE is shown as Fig.5. In the encoding
stage, we define the linear mapping and nonlinear sigmoid
activation function as

hl = sigmoid(Wx+ bh), (7)

where hl denotes the relevant representation changed by the
encoder from the input x. sigmoid(z) = (1 + exp(−z))−1,
W ∈ RN×Nh , and bias bh ∈ RNh×1. At the same time,
an approximation x̃ can be written as (8).

x̃ = sigmoid(WThl + bo),bo ∈ RN×1. (8)

In (8), W and bo is the weight and the bias. We define (9) to
minimize the error between x and x̃.

O =
1
Ns

Ns∑
i=1

∥∥∥x̃ i − x i∥∥∥2 + β ‖W‖22 + α Nh∑
j=1

KL(ρ||ρ̃j), (9)

where ρ̃j denotes the average activation of the j-th hidden unit,
while ρ is the desired activation, which can be set by users.
Ns, α, and β denote the number of training samples, the sparse
penalty, and weight penalty term, respectively. KL(ρ||ρ̃j) is
the sparse term expressing the Kullback-Leibler (KL) diver-
gence between the actual average and the desired activation
of the hidden unit.

D. TRAINING PROCEDURE
The stacked CRBMs in feature learning layer is trained
in a greedy layerwise [41]. The 1-th convolutional feature
extraction layer is followed by a pooling layer aggregating
features over local regions of images. We define the pooling
layer as the deterministic max-pooling (DM) layer, which
can learn features invariant to slight distortions and shifts.
Subsequently, we froze the parameters of the lower layer, and
use the conditional probability of Nh to generate features for
training the 3-th layer. Again, another DM layer is stacked
above the feature detectors. In our method, the procedure
stops after the 6-th layer. In the structural learning layer,
the graph-cut algorithm [46], [47] is adopted to obtain the
optimal weight with the CRBM features, so we can opti-
mize the CRF energy function. For feature fusion, deep
sparse autoencoder is broken down into lots of SAE trained
through CD algorithm [44]. After the pre-training procedure,
the backpropagation is performed to fine-tune the parameters.
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E. BOUNDING BOX PREDICTION
Through the steps introduced in previous sections, we have
performed high-performance pixel-level object segmenta-
tion, and then we predict candidate bounding boxes of dif-
ferent aspect ratios based on the height and width distance
of the semantic segmentation location boundaries. To ensure
that the object can be assigned to at least one candidate pre-
dicted box, we adopt the following strategy: First, we match
the ground truth with the candidates that have got max-
imum Jaccard overlap. Then, we match these candidates
with the ground truths with Jaccard overlap higher than 0.5.
We assign positive labels to the boxes in which the Jaccard
overlap is over 0.7, negative labels to those below 0.3, and
unrecognizable or no labels to boxes with overlap between
0.7 and 0.3.

IV. EXPERIMENTS
In this section, we demonstrate the great improvement of the
proposed FFDN on the UAV123 data set [16] and another
novel challenging data set called UAVDT benchmark [17].
The former dataset has various target categories while the
latter one is constructed in an unconstrained complex scene.
We show a comprehensive analysis of the experimental
results. The experiments are conducted on a computer
with Intel Core i9-7900 3.3-GHz CPU, a NVIDIA
GTX-1080Ti GPU.

A. DATA SETS
The UAV123 data set [16] is a recent data set constructed
in 2016, which comprises 123 videos recorded by UAV
cameras. We choose 33 challenging videos to generate
48,770 frames which cover all kinds of scenarios of the data
set. We generate 13,871 frames from the videos and man-
ually produce the ground truth. The main objects varieties
considered for the experiments mainly focus on bikes, boats,
buildings, people, cars, and so on.

To evaluate the effectiveness of the FFDN in more uncon-
strained complex scenes, another data set we use for experi-
mental comparative analysis is the UAVDT benchmark [17],
which is a new data set constructed in 2018 and has
more complex scenarios and higher challenges. The UAVDT
data set is captured in over 6 different urban areas and
defines 6 attributes (i.e., weather condition, vehicle occlu-
sion, flying altitude, out of view, camera view, and vehicle
category) [17]. On consideration with the low resolution,
the authors declared the ‘‘Ignored’’ regions where cover too
small vehicles. ‘‘Ignored’’ regions are labeled as pink regions
as shown in Fig.8. There are over 2,700 vehicles anno-
tated in this data set. We choose 50 videos sequences with
all above-mentioned challenges to generate 40,735 frames,
which cover all kinds of scenarios and attributes of the
data set.

B. IMPLEMENTATION DETAILS
In both feature learning layer and feature fusion layer, when
the unsupervised pre-training phase is completed, supervised

backpropagation with labeled data is carried out to fine-tune
the network. For UAV123 data set, we randomly divide the
labeled data into the training set and the test set with a ratio
of 1:1. We choose 30 videos sequences for training, while
20 sequences for testing on UAVDT data set. They share
similar scenes and attributes but have different shooting loca-
tion, which would help to avoid overfitting to some extent.
For the stacked CRBMs, the 2-th, 4-th, and 6-th layers of
this hierarchy are DM layers that only have the parameters
of the subsampling window size. The 1-th, 3-th, and 5-th
layers are the convolutional layers adjusted by CD learning
of individual CRBMs. During the CD learning procedure,
we update the batch gradient using the additional momentum
of the previous step gradient [41]. Since some high and low
learning rate suppress some of CRBM’s feature maps and
always makes them inactive, in fact, some meaningful fea-
tures are dismissed. Several learning rates are tested to select
the most proper one that can activate most of the features.
On UAV123 data set, there are 15 filters of 7×7 pixels at
the 1-th layer, and both 30 filters of 5×5 pixels at the 3-th
and 5-th layers. The DM layer is with 4×4 and both with
2×2 subsampling windows at the 2-th, 4-th, and 6-th layers,
respectively. The learning rate is set to be 0.01; On UAVDT
data set, we learned 20 filters of 5×5 pixels at the 1-th layer,
and both 30 filters of 3×3 pixels at the 3-th and 5-th layers.
The sub-sampling windows in DM layer remain constant.
The number of hidden units in three layers is 500 on both
data sets in the experiment, and 0.05 as the learning rate on
UAVDT data set. The RBMs are tuned with 3000 epochs of
pre-training and 5000 epochs of fine-tuning. The initial biases
are set to be 0.

In the structural learning layer, CRF is utilized as a pro-
cessing layer, because it is trained with DHF without back
propagation optimization. When generating superpixel some
experiments are conducted to select a proper region size to
ensure the good experimental performance and high com-
putation efficiency simultaneously. We choose the region
size 15 of each superpixel. We use 0.2 as the non-negative
L2-regularizer parameter λ and 0.1 as the distance rate kd .
The CRF computes the spatial relationships between super-
pixels, thus the unreasonable and incorrect labels are
efficiently rectified.

In the stage of feature fusion, we stacked three SAEs
for constructing DSA. There are 1100, 800 and 500 hidden
units in each hidden layer. We set the sparse penalty
term α to 2, 0.1, and 0.05, respectively. The weight
penalty term β is set to 0.001, the activation ρ 0.05,
and learning rate 0.1. We use 1000 as the batch size and
2000 as the epoch. These parameters remain unchanged
in all experiments for training convergence and avoiding
overfitting.

C. EVALUATION METRICS
We use four metrics (i.e., precision (P), recall (R),
F1-score (F1) and mean intersection over union (Mean IoU))
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FIGURE 6. Some detection results in several scenarios of the UAV123 data set include Bike1, Boat1, Car1, Person5, Car5, Boat4, Car4, and Car6.

expressed in (11) - (13) to compare the performance
quantitatively.

P =
TP

TP+ FP
, (10)

R =
TP

TP+ FN
, (11)

F1 =
2× R× P
R+ P

, (12)

where TP (true positive) expresses the number of positive pre-
diction which should be positive, FP (false positive) denotes
the number of positive prediction which should be negative,
and FN (false negative) indicates the number of negative
prediction which should be positive.

IoU =
target ∩ prediction
target ∪ prediction

(13)

The IoU metrics is virtually a way to quantify the accuracy
of the predicted bounding box. As shown in (13), it measures
the percentage of overlap between the intersection and the
union of the target and prediction by the number of pixels.
Mean IoU indicates the average value of all the categories
of IoU.

D. EXPERIMENTAL RESULTS
The quantitative comparison, some images of detection
results, as well as comprehensive analysis of the proposed
FFDN are illustrated on two latest challenging data sets.
Finally, we summarize the reasons behind performance
improvement and some failure detection samples.

1) UAV123 DATA SET
In order to illustrate the great performance, Table 1 reports
the comparison results of five recent methods. Accurate
Vehicle Proposal Network(AVPN) [48] integrates hereti-
cal feature maps for detecting small-sized objects. Hyper
Region Proposal Network with cascade classifier (HRPN
with CC) [49] is used to improve the recall rate by adopt-
ing a technique similar to [48]. Then, the authors use
the cascade classifier to replace the one after region pro-
posal network to reduce the false alarm. It is obvious that
Faster R-CNN, AVPN, and HRPN with CC perform bet-
ter than ACF, Especially, our method FFDN achieves the
highest recall of 88.31%, precision of 89.82%, as well
as F1-Score of 0.89 atop the leaderboard. Compared to
the second in the leaderboard, our method achieves com-
paratively improves the recall by 10.01%, F1-score by 0.06,
respectively.

TABLE 1. Comparison of performance with different methods on
UAV123 data set.

From Fig.6, we can find that even small objects that are
partially occluded and the objects in the dark background

VOLUME 7, 2019 30987



H. Long et al.: Object Detection in Aerial Images Using FFDN

FIGURE 7. Some bad detection results of the large occlusion and small
size. Green boxes denote missing and inaccurate detection.

can be located accurately. Except for the good results illus-
trated above, several bad detection examples are shown
in Fig.7, in which the green boxes denote missing or inac-
curate detection. The serious problem is that some small-
sized objects which have the color similar to the intricate
background or objects with the large occlusion are difficult
to recognize and locate accurately. As shown in Fig.6, despite
the objects appear in small scale or with a small and medium
occlusion, the proposed networks has accurately detected the
objects. These results indicate that the FFDN has promising
detection ability in the UAV images, but it still has some
unsatisfactory performance. In detail, bad detection results
mostly come from the objects which are occluded heavily
(see Fig. 7a, e, f, g, i, and l). The missing detection occurs
when the very small-sized objects have the color similar to
the intricate background (see Fig. 7d, j, and k), the detector
would consider objects as parts of the backgrounds. This may
be because the FFDN loses some details of objects in Fig. 7
when obtaining their superpixels.

2) UAVDT DATA SET
We compare our work with the other three methods on
UAVDT data set. They areMask R-CNN [35], YOLOv3 [36],
as well as another feature fusion based method called
SingleNet [38]. SingleNet applies the fully convolutional
network as the base network to generate feature map and
construct a fusion network to fuse these feature maps in each
layer. Finally, it merges these features by element-wise sum.
Table 2 reports the comparison results on UAVDT data set.
Analyzing the detection performance reported in Table 2,
we can conclude that all the comparative methods achieve
unfavorable performance on the UAVDT data set. This may
be because the UAVDT data set pays more attention to
the UAV based unconstrained real scenes [17]. There are
numerous small targets with high density, and the background

TABLE 2. Comparison of performance on UAVDT data set.

becomes more cluttered in UAVDT data set. Moreover, there
are many challenging weathers such as fog and night in it.
These factors bring new challenges to the detection task in
aerial images.

SingleNet [38] is inferior to our method, since the Sin-
gleNet only uses the fully convolutional network as a base
network to generate feature map and fuse semantic infor-
mation from each layer. The CNN has the shortcoming of
weak spatial description, so the reverse fusion cannot capture
the spatial relationship between objects effectively, which is
very crucial for detecting small objects with high density in
the cluttered background. Mask R-CNN obtains the highest
precision which benefits from the region proposal process
and segmentation mask prediction for each instance. Our
method achieves the highest recall rate, F1-score and mean
IoU of 35.44 percent, 0.46, and 0.71, respectively. Besides,
our method makes an improvement of 1.95% recall rate over
SingleNet. The experimental results validate the competitive-
ness of our method in unconstrained real scenes. We show
detection results on UAVDT data set in Fig. 8. According to
different weather conditions and attributes illustrated in the
black box at the top right of the images, our method predicts
the exact boxes that fit the different categories of vehicles.
The bottom-left image shows a false negative case.

3) RESULTS ANALYSIS
Overall, the improvements benefit from two aspects: (1) we
embed the CRF based structural learning in the framework to
capture the spatial relationship features, and simultaneously
to remedy the boundaries between objects at the pixel level.
The spatially encoded features, including powerful spatial
constraints between objects, can boost the performance of
object locating, specifically for small objects with intricate
backgrounds. (2) DSA is used to further calculate the nonlin-
ear relationships between various low-level features. By fus-
ing the spatial and structural features, the FFDN abstracts
more representative features for detection, especially for
differentiate ambiguous ground objects in large and aerial
images. On the other hand, The inaccurate or missing detec-
tion reveals that the FFDN loses some key information of
objects. These problems might come from two aspects: First,
we just construct six layers for extracting feature maps in
consideration of the calculation consumption factors, there-
fore some basic information is dropped accidentally. Second,
the superpixels instead of pixels are used to accelerate the
computational speed, which will also result in the loss of
details of objects. In the future study, we will consider more
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FIGURE 8. Some detection results on UAVDT data set. The bottom-left image shows detection failure in the blue box.

powerful structural learning models and multi-model feature
fusion methods to enhance the detection ability of the deep
networks.

V. CONCLUSIONS
Feature fusion based novel network framework is proposed
for object detection in UAV-based aerial images. There are
three main types of layers in the proposed FFDN. Differ-
ent from other common methods, the structural learning in
our model is embedded into the network for the purpose of
providing more robust spatial information. The unsupervised
deep learning methods (CDBN and DSA) are used to extract
deep features and spatial information simultaneously with
less labeled data. The experimental results verify the remark-
able and powerful performance of the proposed FFDN on
both UAV123 data set and UAVDT data set. Furthermore,
the proposed FFDN is confidently suited for detection appli-
cation to differentiate ambiguous ground objects in large and
aerial images.
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