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ABSTRACT This paper investigates deep learning for risk detection and trajectory tracking at construction
sites. Typically, safety officers are responsible for inspecting and verifying site safety due to many potential
risks. Traditional target detection algorithms depend heavily on hand-crafted features. However, these
features are difficult to design, and detection accuracy is poor. To solve these problems, this paper proposes
a deep-learning-based detection algorithm that uses pedestrian wearable devices (e.g., helmets and colored
vests) to identify pedestrians. We train a special dataset by labeling helmets and colored vests to detect the
two features among construction workers. Specifically, Kalman filter and Hungarian matching algorithms are
employed to track pedestrian trajectories. The testing experiment is run on an NVIDIA GeForce GTX 1080Ti
with a detection speed of 18 frames/s. The mean average precision can reach 0.89 when the intersection over
union is set at 0.5.

INDEX TERMS Safety officer detection, pedestrian tracking, deep learning, Kalman filter, Hungarian

matching algorithm.

I. INTRODUCTION

Intelligent detection is an emerging technology in computer
vision and internet of things (IoT), especially at construc-
tion sites. The core idea is to replace manpower in tradi-
tional technology with artificial intelligence (AI) technology.
With the development of artificial intelligence, intelligent
detection can achieve better identification performance than
humans. Intelligent detection technology has been applied
to many practical scenarios; however, actual scenarios pose
many risks, and existing technologies cannot fully monitor
all of them. Many companies thus require safety officers to
supervise local safety throughout projects. However, it is not
always possible to tell whether safety officers are on site and
their trajectories are being supervised effectively.

At construction sites, many potential risks often occur
such as falling objects from tall building. Wearing a helmet
can avoid these risks or at least reduce the degree of
injury. In addition, there are many dangerous places at

The associate editor coordinating the review of this manuscript and
approving it for publication was Zhanyu Ma.

the construction site and hence non-professionals are not
allowed. So we have to verify the identity of the work-
ers and track their walking trajectories. Workers wearing a
vest is not only be used to identify the identity, but also
the eye-catching color is more conducive to confirm their
position.

In traditional target detection, the sliding window method
is used to determine the candidate region. Then, hand-crafted
features (e.g., Hog [1], Haar [2], LBP [3]) are used for feature
extraction, followed by the use of classifiers for identifi-
cation. To improve detection accuracy, system complexity
must increase continuously, which requires growing detec-
tion efficiency. However, the sliding window method contains
many repeated calculations, which cannot meet real-time
requirements of the system. In addition, hand-crafted fea-
tures require extensive expert knowledge and are not robust.
Hinton et al. [4] proposed the concept of deep learning
in 2006. With ongoing improvements in computer perfor-
mance, deep learning has evolved substantially. The approach
has come to be widely applied in various fields, such as intel-
ligent wireless communications [5]-[14], natural language
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processing [15]-[21], computer vision [22]-[32], and robot
design [33]-[38].

Computer vision presents an important application area
for deep learning. Image classification, detection, and
segmentation are three major tasks in this field. Current
deep-learning-based target detection algorithms can be clas-
sified into two-stage and one-stage algorithms. Conventional
two-stage detection algorithms include faster region-based
convolutional neural networks [39] and region-based fully
convolutional networks [40]. They divide the detection mech-
anism into two phases. First, the network generates candi-
date regions and then detects and classifies these regions.
Common examples of one-stage detection algorithms are the
single shot multi-box detector [41] and You Only Look Once
(YOLO) [42]. They directly generate the class probability and
position coordinate values of the object. The advantage of
one-stage detection algorithms is their rapid detection speed,
whereas two-stage detection algorithms possess high detec-
tion accuracy. In addition, Zhang et al. [43], Cheng et al. [44],
and Han et al. [45]-[47] and took the lead in combining deep
learning with target detection. They have made outstanding
contributions in the field of target detection.

Given the limitations of current technology, it is impossible
to efficiently and effectively detect all dangerous situations at
construction sites; therefore, safety officers are indispensable.
This paper proposes deep-learning-based risk detection and
trajectory tracking for safety officers at construction sites.
Safety officers often wear red vests and helmets, which
are obvious features used to identify safety officers in our
proposed method. To improve detection accuracy, we have
established a proprietary dataset. We use YOLOV3 [48] to
implement safety officer detection, which guarantees real-
time detection. Based on the detection results, the Kalman
filter [49] and Hungarian matching algorithm [50] are used to
establish a correlation between the previous frame and current
frame, ultimately achieving safety officer tracking.

The remainder of this paper is arranged as follows.
Section II proposes the deep-learning-based risk detection
and tracking algorithm. Section III presents the experimental
results when testing our proposed method. Section IV con-
cludes the paper.

il. PROPOSED METHOD

In this paper, we propose a method for deep-learning-based
risk detection and trajectory tracking at a construction site.
The method is divided into two parts, namely safety officer
detection and pedestrian tracking. In this section, we discuss
the method principles in detail.

A. PRINCIPLE OF YOLOV3

YOLOv3 is an excellent performance network structure,
which transforms the problem of target detection into a
regression problem. For a given image, the bounding box
of the target and its classification category are directly
returned at multiple image locations. Thanks to this design,
the detection speed of YOLOvV3 is quite fast, essentially
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meeting real-time requirements. We review each aspect of
the algorithm below.

YOLOV3 is a typical supervised learning algorithm. For
a given picture, we first divide it into S x S grids. If the
center of an object falls within this grid, then the grid is
responsible for predicting the object. Each grid predicts B
bounding boxes and the category confidence to which these
bounding boxes belong. This is good for the detection of
small objects or overlapping objects. Each bounding box
contains five pieces of information (x, y, w, h, C), denoting
the center position, width, height of the bounding box, and
confidence, respectively. Confidence reflects the accuracy
of the bounding box containing the object. The calculation
method is given as

C = Pr(object) x loU}l 1)

where Pr(object) represents whether the object is contained
in the grid. If the bounding box contains the object, then
Pr (object) = 1; otherwise, Pr (object) = 0. The intersection
over union (IoU) indicates that the bounding box contains the
accuracy of objects.

_ area(ground truth) N area(prediction box)

foU = area(ground truth) U area(prediction box) @
The final confidence we use ¢ to represent:
¢ = Pr(class;|object) x Pr(object) x IoUlﬁrr’;g'
= Pr(clsass;) x IOUIZZZ' 3)

Figure 1 shows that YOLOv3 uses the darknet53 network
for feature extraction. This network is superimposed by the
residual unit, which is more conducive to model convergence.

Type Filters  Size Output
Convolutional 32 3x3 256x256
Convolutional 64 3x3/2 128x128
Convolutional 32 1x1

1x | Convolutional 64 3x3
Residual 128x128
Convolutional 128  3x3/2 64x64
Convolutional 64 1x1

2x | Convolutional 128 3x3
Residual 64x64

Convolutional 256  3x3/2 32x32
Convolutional 128 1x1
8x | Convolutional 256 3x3
Residual 32x32
Convolutional 512 3x3/2 16x16
Convolutional 256 1x1
8x | Convolutional 512 3x3
Residual 16x16
Convolutional 1024  3x3/2 8x8
Convolutional 512 1x1
4x | Convolutional 1024 3x3

Scale3

Scale2

] ]
Scalel / /
l Y Y

Residual 8x8
Avgpool Global
Connected 1000

Softmax

YOLO Detection

FIGURE 1. YOLOv3 network architecture. (Column 1 lists the network
type, Column 2 lists the number of channels in the convolutional layer,
Column 3 lists the size of the convolution kernel, and Column 4 lists the
output size.)
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In addition, due to the addition of the residual unit, the num-
ber of network layers can be expanded, and network feature
extraction can be improved.

The introduction of the 1 x 1 convolution kernel in the
residual module reduces the number of channels in the convo-
lution operation. This step reduces the number of parameters
in the network, thus making the entire network model weigh
less, and reduces the calculation amount.

Unlike the previous version, YOLOV3 is predicted from
three scale feature maps, which greatly improves detection
rate of small targets.

In the detection phase, YOLOv3 adopts a full convolution
method. There are two advantages to doing so: first, the net-
work can accept input images of any size without requiring
all training images and test images to be the same size; and
second, the convolutional layer replaces the fully connected
layer in the traditional network, greatly reducing the amount
of computation.

The output of YOLOV3 is a tensor with S x S x
((4 + 1) x B x C') dimensions, where S x S is the number
of input images divided into grid cells; B is the number of
bounding boxes predicted by each grid cell; and C’ is the
number of categories of detected objects.

We take the visual object classes (VOC) dataset as an
example, which contains 20 object types to be detected. The
network output will have 96 prediction results, which is not
in line with the actual situation. We use non-maximum sup-
pression to find the correct bounding box as described below.

In the first step, we set a certain threshold; if the confidence
score of the bounding box is lower than this threshold, then
the bounding box is deleted. In the second step, we sort
the remaining bounding boxes by the confidence score and
select the bounding box with the highest score. In the third
step, the remaining bounding boxes are traversed, and the
IoU between them and the highest bounding box is calcu-
lated. When the obtained IoU exceeds a certain threshold,
the bounding box is deleted. In the fourth step, we continue
to select the highest-margined bounding box from the unpro-
cessed bounding boxes and repeat the above steps. The results
of non-maximum suppression are shown in Figure 2.

B. PRINCIPLES OF PEDESTRIAN TRACKING

In this section, we discuss the principles of pedestrian track-
ing. We use the Kalman filter and Hungarian algorithm to
achieve pedestrian tracking. The role of the Kalman filter is to
predict the position of the current frame pedestrian based on
the position of the pedestrian in the previous frame. We use
a discrete control process system to represent the position
prediction process. The system can be described by a linear
stochastic difference equation:

Xk)=AxX(k—-1)+BxU(k)+ W(k) 4
The measured value of the system can be expressed as
Z(k) =H x X(k) + V(k) 4)
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FIGURE 2. Comparison of bounding box before and after non-maximum
suppression.

where X (k) is the system state at time k, and U(k) is the
amount of system control at time k. A and B are system
parameters, and for multi-model systems, they are matrices.
Z (k) is the measured value at time k, and H is the parameter
of the measurement system; for multi-measurement systems,
H is a matrix. W (k) and V (k) represent noise in the process
and measurement, respectively. They are assumed to be white
Gaussian noise, and the covariance is R (assuming no vari-
ance with the state of the system).

The Kalman filter workflow is divided into two parts,
namely prediction and updating. During prediction, assuming
that the system state at time k is X (k), and according to the
system model, a certain state can first be predicted based on
the previous system state:

Xklk— 1) =A x X(k — 1|k — D+B x Uk)+W(k) (6)

where X (k|k — 1) is the result of the prior state prediction,
and X (k — 1|k — 1) is the result of the previous state. Second,
we predict the covariance of X(k|k — 1) according to the
covariance of X(k|k — 1).

Pklk —1)=Ax Pk — 1k —1) x AT+ Q )

In the update part, we first calculate the weighting matrix
(e.g., Kalman gain) via

Kg(k) = P(k|k — 1) x HYJ(H x P(klk — 1) x HT + R)
(®)

30907



IEEE Access

Y. Zhao et al.: Deep Learning for Risk Detection and Trajectory Tracking at Construction Sites

Then, we calculate X (k|k) (the optimal estimate of k time)
based on the Kalman gain obtained in the previous step.
X(klk) =X(klk — 1)+ Kg(k) x (Z(k) — H x X(k|k — 1))

)

Finally, we update the covariance of X(k|k).
P(klk) = (I — Kg(k) x H) x P(klk — 1) (10)

where I is expressed as an identity matrix.

Next, we calculate the IoU ;41 between the predicted posi-
tion and real position after calculating the predicted position
of the current frame by the Kalman filter. The calculation
method is as follows:

area(predicted position) N area(real position)

loUyaek = ; . R
area(predicted position) U area(real position)

an

We combine the calculated IoU o into a matrix and
use the Hungarian matching algorithm to find the location
where the front and back frames match. The specific steps
are discussed in detail as below.

We take four people as an example, assuming no detec-
tion loss in the front and back frames. The matrix is shown
in Figure 3(a). We use {J;, i = 1, 2, 3, 4} to represent the pre-
dicted position of the Kalman filter, and {W;,i = 1, 2, 3, 4}
represents the actual position of the current frame. The cal-
culated IoU ;4¢ values are in the matrix. For the convenience
of calculation, all values are multiplied by 100.

112 )3 )4 1 J2 J3 |4 12 3 J4
wi| 18|17 |31 8| wi|82|83|6o|92| wi| 13|14 0| 23|69

W2 23[63|51] 8 W2 | 77| 37 | 49| 92 w2 | 40| 0 | 12| 55 |(-37)

W3 | 89| 31 95| 14 W3[|11 (63| 5 | 86 W3| 6|64 0 |81](5)

wa[o9z|o1| 2|77 wa| 8| 9 98|23 walo ]| 1][90]15](8)

Wi| 13 )14 0 g

W2 |40 0| 12| 40

W3 )| 6|64 0|66

W4 | 0 119 0

@

FIGURE 3. Flow of Hungarian matching algorithm.

The Hungarian matching algorithm solves the optimal
solution of the assignment problem, and we want to maximize
the IoU qcr of the predicted position and actual position;
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as such, we first subtract 100 from the value in the matrix
as shown in Figure 3(b).

Second, each row of the matrix is subtracted from the
minimum value of the row, as depicted in Figure 3(c). In the
third step, the minimum value of the column is subtracted
from each column of the matrix [see Figure 3(d)] to ensure
each row and column contains at least one zero.

In the fourth step, we find the location of all zero elements
and include them with as few rows and columns as possible.
As shown in Figure 3(e), we find the row containing W2 and
W4 and the column containing J3 to have all zeros.

In the fifth step, we find the minimum number in the row
and column not included in the fourth step. Then, we subtract
the minimum number from all uncontained numbers and add
the minimum number in the fourth step where the row and
column overlap; see Figure 3(f). We repeat steps 4 and 5 until
the number of rows required to contain all zeros is equal to the
size of the matrix, which represents the optimal distribution
of zeros in the matrix, as shown in Figure 3(g).

In the sixth step, we find the location of all zeros whose
rows and columns do not coincide, as shown in Figure 3(h).
These locations correspond to the largest JoU 4 allocation
in the original matrix as indicated in Figure 3 (i). W1 is paired
with J3, W2 is paired with J2, W3 is paired with J1, and W4
is paired with J4.

Through the above method, we can match the pedestrian
between the previous frame and the current frame, thus
achieving pedestrian tracking.

IIl. RESULTS OF EXPERIMENT
In this section, we introduce the experimental process. The
corresponding flow chart is shown in Figure 4.

Regional Color
division discrimination

The network
of
YOLOV3

Hungarian
matching
algorithm

Kalman
filter

FIGURE 4. Flow chart of experiment.

A. PREPARING THE DATASET

As the project needs are unique and no public datasets are
available, we must develop the dataset ourselves and integrate
it into the existing dataset. According to an analysis of project
needs, we need three types of data: people, helmets and vests.

First, by using the annotation tool, we create image anno-
tations and box out the areas of the image that contain pedes-
trians, helmets, and vests.

In the second step, we determine that the coco dataset
contains only humans without helmets and vests. Hence,
we use a script to filter out images of pedestrians in the coco
dataset and find the corresponding annotations.
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2.50 |
2.25 |
2.00 |

9 1.75

o
1.50 1
1.251
1.001
0.75 1

0 100000 200000 300000 400000

FIGURE 5. Loss curves of neural network model.

The third step involves modifying the annotation file to
meet the following format.

(object-class) (x) (y) (w) (h)

where object-class is the index of the class; x, y are the
horizontal and vertical ordinates of the center of the region
of interest (ROI), respectively; and w and h are the width and
height of the ROI, respectively. x, y, w, h are relative to the
size of the entire image.

The last step is to check whether the annotation file
matches image and then delete the unmatched file.

B. TRAINING THE NEURAL NETWORK MODEL

We pre-train the first 74 layers of weight in the darknet53 net-
work on the ImageNet dataset, which allows the network to
extract image features more effectively. Since the dataset we
produced is much smaller than ImageNet, we fixed the first

& haln wetuO.GS

~

FIGURE 6. Results of safety officer detection.
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74 layers of the network after pre-training. We only train the
next 32 layers parameters. After the training results converge,
we fine-tune all the parameters.

To prevent the training results from diverging in the train-
ing process, the system automatically adjusts the learning
rate. We find that simultaneous training with multiple GPUs
can greatly improve the training speed but may lead to a lower
loss rate, higher recall rate, and a final weight that cannot
predict the bounding box of the object. After many trials,
the following solution emerges. Before using multiple GPUs
for training, we use a single GPU and switch to multiple
GPUs when the ‘Obj’ (the parameter indicating whether the
system detects an object) starts to rise steadily in the training
result.

The loss curve of the neural network model is illustrated
in Figure 5. Our training samples combine multiple datasets,
and the number of training samples reaches 100,000.
However, from the final training results, our network con-
verges, and the actual test results were quite good.

C. PROCESSING OF TEST RESULTS

Using the neural network model from the above training,
we could detect the positions of pedestrians, vests, and hel-
mets. To determine the vest color, we convert the color space
of the vest area; specifically, we convert the vest area into the
HSYV color space, set a certain threshold to select the red pixel
area, and binarize the obtained area. After entering corrosion
expansion, we calculate the ratio of white pixels to all pixels
to determine vest color. In addition, if any pedestrians are not
wear a helmet, we warn them.

Using the pedestrian position information, we employ the
Kalman filter to predict the pedestrian position in the current
frame based on the pedestrian position in the previous frame.
We calculate the IoU of the predicted pedestrian position
and the position of the current frame. The above-mentioned

il

B | = Blhet 0.57
S e
3
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FIGURE 7. Results of pedestrian tracking.

Hungarian matching algorithm can be applied in match
pedestrians before and after the frame, thereby accomplishing
pedestrian tracking.

D. ACCURACY OF THE RESULT

This experiment is accelerated by GPU, and the calculating
experiment is a NVIDIA GeForce GTX 1080Ti. Specific
experimental accuracy is shown in TABLE 1. The actual
effects of security officer detection and pedestrian tracking
are pictured in Figure 6 and Figure 7.

TABLE 1. Average precision of different loU.

LuSdteeory | pedestrian Helmet Vest
0.5 0.89 0.84 0.94
0.7 0.7 0.23 0.4

IV. CONCLUDING REMARKS

In this paper, we have proposed a method for safety officer
detection and tracking based on deep learning. The detection
speed is 18 frames per second, which is close to the real-time
requirement. The proposed method can save substantial labor
costs. At many construction sites, detection objects may be
sparsely distributed; thus, sparse signal processing techniques
may provide some feasible solutions [51]-[58].
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