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ABSTRACT The optical output power of a laser diode ismodulated by the self-mixing effect when the optical
beam is back-reflected or back-scattered into the laser cavity by a target. The optical feedback factor C is
the most important one that defines the feature of the self-mixing signals (SMSs). And the estimation of C is
indispensable for the displacement reconstruction by the phase unwrapping method because it is impossible
to reconstruct the displacement with sub-wavelength resolution, provided the exact value of C is unknown.
Unfortunately, C is subject to constant change during the measurement and, what is worse; its estimation is
usually very time-consuming. This paper studies the feature of a high and low fringe of SMSs in moderate
and strong feedback regime and the effect of the feedback factor and the linewidth enhancement factor on the
fringes and presents a simple approach to the estimation of C when C > 1.5 based on the behavioral model
proposed by Plantier et al. In particular, the novel approach enables fast direct estimation of C because it is
based on analytic relations between C and the amplitudes of the high and low peak in SMSs.

INDEX TERMS Low-cost self-mixing sensor, optical feedback factor, fast estimation, laser diode,
behavioral model.

I. INTRODUCTION
The self-mixing effect occurred by optical feedback has been
widely used during the last three decades for displacement,
velocity, distance and flow measurements, for the setup is
simple and compact and particularly does not need difficult
collimation and, therefore, it is very easy to use it. It is
important to estimate the feedback factor C in real time in the
measurement of the displacement. In fact, C is proportional
to the distance and reflectivity of the target, thereby changing
during the measurement of SMSs. In particular, C must be
exposed to large variation when the target is non-corporative
or the displacement is great [1], [2].

The waveform of SMSs depends mainly on the feedback
factor C . The feedback regime can be classified to three
regimes depending on the value ofC [3], [4]: a weak feedback
regime (C < 1); a moderate feedback regime (1 < C < 4.6);
and a strong feedback regime (C > 4.6). An SMS takes
sinusoidal shape in a weak regime and saw-toothed shape
with hysteresis in moderate and strong regimes.

What is interesting in SMSs with hysteresis is the fact
that the amplitude of a ‘‘high peak’’ is always lower than
that of a ‘‘low peak’’ and their amplitudes decrease as C

increases [2]. The high and low peaks constitute the SMS
when the target moves away from and toward the LD,
respectively. Fig. 1 shows the occurrence of the high and
low peaks in SMSs with hysteresis. The high and low peak
not only have different amplitudes but also opposite slopes,
for the moderate and strong regime exhibit hysteresis. This
hysteresis effect, which has been deeply studied, is due to
the phase jump in the phase equation obtained from the
Lang-Kobayashi equations [2], [5], [6]. But, unfortunately,
there has not been an analysis of why the amplitude of the
high peak is always lower than that of the low one and of
how the feedback factor and the linewidth enhancement factor
influence on their amplitudes. Actually the amplitudes of
the peaks are directly concerned with C and therefore the
determination of the C value requires the analysis of the
relation between the amplitudes and C .
Another interesting matter in SMSs with hysteresis is the

‘‘loss of peaks’’ (or ‘‘disappearance of peaks’’), in which the
peaks of the high and low fringes disappear with increase
in C [2]. In other words, the peaks disappear in pairs when-
ever C reaches certain values. A single fringe in SMSs cor-
responds to a half-wavelength displacement of the target and
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FIGURE 1. High peaks and low ones in an SMS with hysteresis. The high
peaks occur when the target is moving toward an LD and the low peaks
do when away from it.

therefore the total number of the fringes is proportional to the
total displacement of the target. As a result the exact measure-
ment of the displacement cannot be assured in the feedback
regime with peak disappearance. But the accuracy of the
displacement measurement can be secured even in the regime
with peak disappearance if C is exactly measured, because
the mechanism of the peak disappearance which occurs in the
feedback regimes with hysteresis has been clarified in [2].

The shape of fringes in SMSs with hysteresis depends
slightly or partly on the linewidth enhancement factor of an
LD, too [2], [5], [6], and therefore its effect has to be taken
into account for the estimation of C .
There have been proposed many methods of the estimation

of C [1], [6]–[11]. These methods, however, are limited to
a certain feedback level such as a weak or moderate regime
and most of them except the method proposed in [6] need
numerous samples for the estimation of C , which results
in long time of calculation. Such a pity in these methods
results mostly from not estimating C based on an analytic
relationship betweenC and the so called interference function
which expresses the shape of SMSs. Many models which
describe the self-mixing effect have been presented and the
behavioral model in [5] can be applied to all kinds of feed-
back regimes. The first order approximation in this model is
relatively accurate and so it is used in a fast algorithm for
the process of SMSs [5]. It is also possible to obtain the
analytic relation of the effect of the feedback factor Cand
linewidth enhancement factor α on the amplitudes of the high
and low peak by means of the first order approximation of the
behavioral model.

In this paper we analyze the amplitude of peaks in SMSs
with hysteresis based on the behavioral model of [5] and pro-
posed a method of estimating C . In fact, the exact estimation
of C is essential to reconstructing the displacement with sub-
wavelength resolution by means of the phase unwrapping
which is a very important technique for a displacement sensor

based on the self-mixing effect [1], [7]. And an analytic
relationship or simple algorithm for the estimation of C is
very important to the real time and high-speed estimation
of C especially in a low-cost embedded self-mixing sensor.
Because our estimation method is based on the analytic rela-
tion toC , it is not only exact enough but also very simple, and
therefore it will be very useful to the real time and high-speed
estimation of C for a low-cost embedded self-mixing sensor
with sub-wavelength resolution.

II. BASICS OF BEHAVIORAL MODEL
The self-mixing effect of an LD can be explained by the fol-
lowing phase equation obtained from the Lang-Kobayashi [5]

x0 (t)=xF (t)+ Csin [xF (t)+arctan (α)]=G[xF (t) ;C, α],

(1)

where xF and x0 are the phases of the external cavity with
and without optical feedback, respectively, and are written as
follows:

xF (t) = 2πvF (t) τ (t)

x0 (t) = 2πv0 (t) τ (t) , (2)

where vF and v0 are the lasing frequencies with and with-
out optical feedback, respectively, and τ (t)= 2D(t)/c is the
round time of the external cavity, where D(t) is the distance
between the LD and the target which back-scatters a part of
optical beam into the LD cavity and c the velocity of light in
the external cavity. The inverse function ofG[xF (t) ;C, α] is
written as

xF (t) = F [x0 (t) ;C, α] = G−1 [x0 (t) ;C, α] . (3)

The LD OOP is given as

P (t) = P0 {1+ mcos [xF (t)]} , (4)

where P0 is the OOP emitted by the free running state LD
and m is the modulation index. The function I= cos[xF (t)] is
called the interference function which expresses the shape of
a normalized SMS.

Our interest is the moderate and strong regimes with hys-
teresis, for the peak disappearance does not occur in a weak
regime and therefore there is no need for the estimation of C
in the measurement of displacement in this regime. Hence we
study the feature of the fringe of SMSs and the estimation of
C only for the regime with C >1.

Fig. 2 shows the graph of xF = F[x0(t);C, α]. The points
[x0,R(k), xF,R(k)] and [x0,F (k), xF,F (k)] are the ones where
the function xF = F[x0;C, α] has infinite slope and are given
for even integers k as

x0,R (k) = kπ − arctan (α)+ β + Csin(β)

x0,F (k) = (k + 2) π − arctan (α)− β − Csin(β)

xF,R (k) = kπ − arctan (α)+ β

xF,F (k) = (k + 2) π − arctan (α)− β, (5)
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FIGURE 2. Plot of function xF = F [x0;C, α] when C = 3 and α = 3. L(k)
with k even is the line tangent to the curve of the function F [x0;C, α] at a
point with coordinates [kπ − arctan (α) ,kπ − arctan (α)].

where

β = arccos(−1/C). (6)

[5] presented the approximate relation (7) between x0(t)
and xF (t), which is the first order Taylor approximations of
F[x0(t);C, α] about x0(t) = kπ − arctan (α).

xF (t)≈
x0 (t)+(−1)k C [kπ − arctan (α)]

1+(−1)k C
= F̃[x0 (t) ;C, α]

(7)

The introduction of this approximation allows the function
F[x0(t);C, α] to be expressed by the straight lines L(k) as
shown in Fig.2. By the way, the first order approximation of
the function G[xF (t) ;C, α] is written as

x0 (t) ≈ [1+ (−1)k C][xF (t)− kπ + arctan (α)]

+kπ − arctan (α) . (8)

Fig. 3 shows the simulation result of the exact and approx-
imate model for an experimental displacement presented
in [5]. As shown in Fig. 3 both of the results are nearly same
except the discontinuities. Hence, in the next sections we
compare the amplitude of the high peak with that of the low
one, analyze the effect of C and α on the amplitudes of the
peaks and propose a method of the estimation of C based on
the simple approximate model of [5] while we enhance the
accuracy of the estimation of C through some compensation
taking account of the errors between the exact model and the
approximate model.

III. AMPLITUDES OF HIGH AND LOW PEAK
Fig. 4 shows the trajectory of the phase and ‘‘phase jumps’’
while the phase x0(t) lies between x0A and x0B.

In this case a point [x0 (t) , xF (t)] follows the trajec-
tory A, B, C, D, E, F and back to A while x0 (t) passes
from x0A to x0B and back to x0A. The phase xF (t) jumps
from B to C if the phase x0 (t) becomes greater than

FIGURE 3. Simulation results of exact and approximate models with
C = 4.2 and α = 3.4 in [5]. The error between the two models occurs
mainly at the discontinuities.

FIGURE 4. Trajectory of a phase point [x0
(
t
)
, xF

(
t
)
] of the function

F [x0;C, α] with C = 3 and α = 3 and phase jumps at points B and E. The
line L(k) with k even is the first order approximation of the function
F [x0;C, α]. The points B′ and F′ on the line L(k) and the points C′ and E′
on the line L(k+2) correspond to the points B, F, C and E on the curves of
the function F [x0;C, α], respectively.

x0,R (k) = kπ − arctan (α) + β + Csin(β) but jumps from
E to F if it becomes smaller than x0,F (k) = (k + 2) π −
arctan (α)− β − Csin(β).
(7) gives the ordinates of points B′, C′, E′ and F′ on the

line L(k) which is the first order of the function F [x0;C, α].
The ordinate xF,B′ of B′ whose abscissa is x0,R (k) = kπ −
arctan (α)+ β + Csin(β) and the ordinate xF,F ′ of F′ whose
abscissa is x0,F (k) = (k + 2) π − arctan (α)− β − Csin(β)
on the line L(k) are, respectively, given as

xF,B′ = kπ − arctan (α)+
β + Csin(β)

1+ C
(9)

and

xF,F ′ = (k + 2) π − arctan (α)−
β + Csin(β)

1+ C
−

2πC
1+ C

.

(10)
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Likewise, the ordinate xF,C ′ of C′ and the ordinate xF,E ′ of E′

on the line L(k + 2) are, respectively, written as

xF,C ′ = kπ − arctan (α)+
β + Csin (β)

1+ C
+

2πC
1+ C

(11)

xF,E ′ = (k + 2) π − arctan (α)−
β + Csin(β)

1+ C
. (12)

Nowwe analyze the features of the high and the low peaks.
First, we examine why the amplitudes of the high and low
peaks get lower with increase in C.

It is necessary to represent the interference function
I= cos[xF (t)] as the function of the phase x0 (t) to obtain the
peak amplitude.

As shown in Fig. 5, a single high peak appears when the
phase xF (t) jumps fromB to C in Fig. 4, thereby being written
the amplitude of the high peak 1Ih as

1Ih = I
[
xF,R (k)

]
− I

(
xF,C

)
= I

(
xF,B

)
− I (xF,C )

= cos
(
xF,B

)
−cos(xF,C ), (13)

where xF,C is the phase xF at point C.

FIGURE 5. The interference function I plotted with respect to the phase
x0

(
t
)
. The dashed line is the mathematical solution of the function

I[x0
(
t
)
] and the solid line the physical trajectory of it. Points A, B, C, D, E

and F are the same as those in Fig. 4.

The first order approximate expression of 1Ih can be
determined by (9) and (11) as follows:

1Ih1st = cos
(
xF,B′

)
− cos

(
xF,C ′

)
= cos

[
− arctan (α)+

β + Csin (β)
1+ C

]
− cos

[
− arctan (α)+

β + Csin (β)
1+ C

+
2πC
1+ C

]
(14)

Likewise, a single low fringe is produced due to the jump of
the phase xF (t) from E to F and the first order approximation
of its peak amplitude1Il can be written by (10) and (12) as

follows:

1Il1st = cos
(
xF,F ′

)
− cos

(
xF,E ′

)
= cos

[
− arctan (α)−

β + Csin (β)
1+ C

−
2πC
1+ C

]
− cos

[
− arctan (α)−

β + Csin (β)
1+ C

]
. (15)

The term 2πC
1+C in both (14) and (15) approaches 2π with

increase in C . As a result, both the first order approxi-
mation of the amplitude of the high peak 1Ih1st and the
first order approximation of the amplitude of the low peak
1Il1st approach zero as the feedback factor C increases. This
explains why both of the amplitudes of the high and low peaks
in SMSs with hysteresis decrease as C increases.

Second, we compare the amplitude of the high peak with
that of the low peak in order to explain why the former
is always lower than the latter. For the sake of more exact
explanation of it, (14) and (15) have to be modified. In fact,
the difference between the ordinate xF,R(k) of the point B
and the ordinate xF,B′ of its first order approximation point B′

and the difference between the ordinate xF,F (k) of E and the
ordinate xF,E ′ of its first order approximation point E′ can be
determined by (5), (9) and (12), respectively, as

xF,R (k)− xF,B′ = β −
β + Csin (β)

1+ C
and

xF,F (k)− xF,E ′ = −β +
β + Csin (β)

1+ C
,

which are relatively great in magnitude as shown Fig. 4.
But the points C and F coincide with the points C′

and F’, respectively, and therefore the differences of
the ordinates xF are very small. Table 1 shows the
values of

∣∣1xF,CC ′ ∣∣ =
∣∣xF,C − xF,C ′ ∣∣, ∣∣1IC,C ′ ∣∣ =∣∣cos (

xF,C
)
− cos(xF,C ′ )

∣∣, ∣∣1xF,FF ′ ∣∣ =
∣∣xF,F − xF,F ′ ∣∣,∣∣1IF,F ′ ∣∣ = ∣∣cos (

xF,F
)
− cos(xF,F ′ )

∣∣ for different values of
C and α, where xF,F is the phase xF at point F and note
xF,F 6= xF,F (k). As shown in Table 1, |1xF | depends only on
C and does not do on α. Note that

∣∣1xF,CC ′ ∣∣ and ∣∣1IC,C ′ ∣∣ can
be neglected when C >2 because they are very small. Hence
we can write much more exact expressions of the amplitudes
of the high and low peak than (14) and (15), respectively, as

1I ′h1st = cos [xF,R(k)]− cos
(
xF,C ′

)
= cos [− arctan (α)+ β]

− cos
[
− arctan (α)+

β + Csin (β)
1+ C

+
2πC
1+ C

]
(16)

1I ′l1st = cos
(
xF,F ′

)
− cos [xF,F (k)]

= cos
[
− arctan (α)−

β + Csin (β)
1+ C

−
2πC
1+ C

]
− cos [− arctan (α)− β] . (17)
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TABLE 1. Values of
∣∣1xF

∣∣ and
∣∣∣1IC,C ′

∣∣∣ for different feedback factors and
linewidth enhancement factors.

It is clear that (16) and (17) are the more exact expression
than (14) and (15) to determine the amplitudes of the high
and low peaks and therefore we will use these equations to
estimate C .
As shown in (16) and (17) both of the amplitudes of the

high and low peaks depend on C and α.
Fig. 6 shows the plots of the amplitude of the high peak

1I ′h1st and of the amplitude of the low peak 1I ′l1st with
C for different values of α. As shown in Fig. 6, it turns out
that the amplitude of the low peak 1I ′l1st is always greater
than the amplitude of the high peak1I ′h1st and both of them
decrease greatly with increase in C .

FIGURE 6. Comparison of amplitudes of high peak and low peak.

In fact the difference of both of the amplitudes is due to the
presence of the linewidth enhancement factor. To be concrete,
if it becomes zero in (16) and (17), the amplitude of the high
peak 1I ′h1st will be equal to the amplitude of the low one
1I ′l1st . The exact behavioral model in [5] gives the same
consequence, too. As a result, it is the very the linewidth

enhancement factor that makes the difference of both of the
amplitudes.

In addition, it is interesting to note that the difference of
both of the amplitudes is larger when α is smaller in Fig. 6.

IV. PREPARATION FOR ESTIMATION OF C
The interference function I can be expressed as the function
of time when the target is in motion. The real-time estimation
of C demands the direct estimation from an OOP signal, that
is, the interference function I (t). Hence, first of all, we study
the characteristics of the interference function with the time t .
Assume that the target is in uniform motion. Actually

targets are usually in sinusoidal motion in most of applica-
tions of self-mixing effect, but it will prove later that our
assumption does not set a limit to solving the problem. Then
the phase x0(t) can be written as

x0 (t) = 4π
D0

λ0
+ 4π

vt
λ0

(18)

where D0 is the initial distance of the target and λ0 the
wavelength of the LD without optical feedback.

As shown Fig. 7, the slope of the interference function
increases with increase in the velocity of the target v.

FIGURE 7. Interference function I(t) for different velocities.

Using (7), the approximate derivative of the interference
function I in terms of the time t at x0 (t) = kπ − arctan(α) is
written as

dI
dt
≈

(
∂I
∂xF

∂xF
∂x0

dx0
dt

)
x0=kπ−arctan(α)

= 4π
v
λ0

1
1+ C

sin(arctan(α)), (19)

where k is even. The length 1t of the time inter-
val [t1, t2] corresponding to the interval [x0 (k) =

kπ− arctan (α) , x0 (k + 2)= (k+2)π − arctan(α)] is given
by (8) as

1t = t2 − t1 =
λ0

2v
. (20)
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From (19) and (20) the increment of the interference
function 1I corresponding to 1t is written as

1I ≈ 4π
v
λ0

1
1+ C

sin (arctan (α)) ·
λ0

2v

=
2

1+ C
sin (arctan (α)) . (21)

(21) implies that the increment of the interference function
1I does not depend on the velocity of the target and the lasing
wavelength but does only on C and α. The observation of the
derivation of (21) tells that the increment of the interference
function I does not depend on the velocity of the target
v even when the first order approximation is not applied.
Consequently, the increment of the interference function and
thereby the amplitudes are related only to C and α.
Now we discuss the way of estimating the feedback fac-

tor C based on the above consideration. As shown in Fig. 6,
the amplitude of the high peak 1I ′h1st and the amplitude of
the low peak1I ′l1st are determined by C and α. It is possible
to estimate C and α through (16) and (17) because both of the
amplitudes of the high and low peaks can be found directly
and simply from SMSs. The linewidth enhancement factor α
is usually constant while C changes during the measurement
of SMSs. Therefore, the important task is to estimate the
feedback factor C rather than α. We use (16) and (17) to find
the following equations for estimation of C .

Adding (16) to (17), we have

1I ′add= 1I ′h1st+1I ′l1st= 2sin(arctan(α))

·

(
sin (β)− sin

(
β + Csin (β)+ 2πC

1+ C

))
. (22)

Subtracting (16) from (17) gives

1I ′sub= 1I ′h1st−1I ′l1st= 2cos(arctan(α))

·

(
cos (β)− cos

(
β + Csin (β)+ 2πC

1+ C

))
. (23)

As shown in (22) and (23), the terms with the linewidth
enhancement factor α are separated from the term with the
feedback factor C. Combining (22) with (23), we can remove
the term with α as follows:

(1I ′add )
2

4
(
sin (β)− sin

(
β+Csin(β)+2πC

1+C

))2
+

(1I ′sub)
2

4
(
cos (β)− cos

(
β+Csin(β)+2πC

1+C

))2 = 1. (24)

When obtaining (24), it was taken into account that

sin2 (arctan (α))+ cos2 (arctan (α))= 1. (25)

(24) without α and has the form of the elliptic equation.
Consequently (16), (17), (23), (24) and (25) can be used for
estimation of C , respectively.

V. SIMULATION AND EXPERIMENT
A. VERIFICATION OF THE PROPOSED METHOD FOR
ESTIMATING C THROUGH SIMULATION
Fig. 8 shows the simulated SMSs with different values of C
and a constant α = 3. It is important to note Fig. 9 before
discussing the method of estimating C by means of (16),
(17), (22) and (23) for these SMSs, respectively. As shown
in Fig. 9, the amplitudes of the high and low peaks involved
in the proposed estimation method are slightly different from
those obtained in the practical processing of the SMS. In fact,
in our estimation method the amplitudes of the peaks are
determined by the points, marked with an asterisk in Fig. 9,
where the phase jumps, but in the practical processing of the
SMS they are obtained by the maximum and minimum of the
signal where the values of the interference function I are±1,
respectively. Fortunately, the error of the estimation of C
due to this difference can be improved through appropriate
compensation.

FIGURE 8. Simulated SMSs with C=1.6, 2, 3.5, 4, 6 and 7.5 and α = 3.

Table 2 shows the results of the estimation of C by means
of (16), (17), (22) and (23), respectively, for the simulated
SMSs with different values of C . As shown in Table 3,
the values estimated by (17) are the closest to the true ones
and those by (23) the furthest from the true ones. The reason

TABLE 2. Estimation of C by using (16), (17), (22) and (23).
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FIGURE 9. (a) Difference between our estimation method and the
practical processing of the SMS in determining the amplitudes of the high
and low peaks. (b) Zoom of the Part A in (a) which corresponds to the
area of the high peak. (c) Zoom of the Part B in (a) which corresponds to
the area of the low peak. The points marked with an asterisk are the
points where the phase jumps. In our estimation method the values of
the interference function at the phase jump points marked with an
asterisk are used in the calculation of the amplitudes of the high and low
peaks but in the practical processing of the SMS the maximum 1 and the
minimum −1 of the interference function are used in the calculation.

why the errors of estimation by (16) are larger than those
by (17) is because, in the processing of the SMS, the error in
determining the amplitude of the high peak is always greater

than the error in determining the amplitude of the low peak
as shown in Fig. 9.

The estimation error is added to the error which results
from the fact that this estimation method is based on the first
order approximate model. But these errors can be improved
by compensation. Our calculation proved that not only (17)
but also (16) and (22) could afford the estimation of C with
high accuracy when compensating through the interpolation.
In the experimental verification of our estimation method
below we estimate C based on the interpolation data obtained
from this simulation results.

B. EXPERIMENT
Fig. 10 shows the experimental setup for the estimation of C .
The setup contains an LD (model HL8325G, 820nm), a col-
limating lens, a variable attenuator to adjust the feedback
factor C , a reflector as a target mounted on a loudspeaker
which is driven by a sinusoidal signal at 210-Hz frequency.
Reference [6] indicates the linewidth enhancement factor
α = 3.2 with an accuracy of ±5.5% in a HL8325G. Accord-
ing to our simulation and experiment, we found that the effect
of the variation in α within its accuracy reported in [6] on
the accuracy of C estimation could be neglected; therefore,
we also used α = 3.2 for the estimation of C by the
experiment.

FIGURE 10. Setup for estimation of C . The variable attenuator can help to
adjust the feedback factor.

Table 3 shows the comparison of the values of C esti-
mated by the interpolation data based on (17) to those deter-
mined by a conventional data fitting technique for different

TABLE 3. Comparison of our estimation method and data fitting
technique.
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SMSs obtained while changing the feedback level by the
variable attenuator. The reason why we used (17) is that this
equation is the best relationship for Cestimation as shown
in Table 2. Every measurement result was obtained as an
average of 10 times for the average amplitudes of the high
and low peak over a period of the vibration of the target.

As shown in Table 3, both of the results coincide well and
the new approach is simpler and much less time-consuming.

But note that because our estimationmethod is based on the
analysis of the feature of the waveform of SMSs, it is affected
by the signal-to-noise ratio like other estimation methods
based on waveform analysis.

VI. CONCLUSION
In the paper we have studied the effect of the feedback
factor C and the linewidth enhancement factor α on the
amplitudes of the high and low peak in SMSs, based on the
behavioral model in [5], and presented the analytic relations
between C , α and the amplitudes of the peaks. From these
relations, we have found that the linewidth enhancement fac-
tor caused the difference of the amplitudes of the high and low
peak and explained why both of the amplitudes of the high
and low peak decrease with increase in C and why the high
amplitude is always smaller than the low one. In particular,
we have proposed a novel approach to simpler and faster
estimation of C with high accuracy for the moderate and
strong feedback regime when C is greater than 1.5. The
simplicity of our estimation method will be a great help to
designing the software of an embedded system as well as
the software of a personal computer-based system for a self-
mixing displacement sensor with sub-wavelength resolution.
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