
Received December 25, 2018, accepted March 2, 2019, date of publication March 6, 2019, date of current version March 26, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2903304

Exploring Various Levels of Parallelism in
High-Performance CRC Algorithms
MUCONG CHI , DAZHONG HE , AND JUN LIU , (Member, IEEE)
1Center for Data Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
2School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
3Beijing Laboratory of Advanced Information Networks, Beijing University of Posts and Telecommunications, Beijing 100876, China
4Beijing Key Laboratory of Network System Architecture and Convergence, Beijing University of Posts and Telecommunications, Beijing 100876, China

Corresponding author: Mucong Chi (chimucong@bupt.edu.cn)

This work was supported by the 111 Project of China under Grant B08004 and Grant B17007.

ABSTRACT Modern processors have increased the capabilities of instruction-level parallelism (ILP) and
thread-level parallelism (TLP). These resources, however, typically exhibit poor utilization on conventional
cyclic redundancy check (CRC) algorithms. In this paper, various levels of parallelism in high-performance
CRC algorithms are investigated. The main idea of the proposed algorithms is to make full utilization of
modern processors, from the perspective of both instruction-level and thread-level parallelism. First, a fine-
grained algorithm executes the CRC computation in an interleaved manner, so that multiple independent data
flows can be processed simultaneously. This algorithm allows instruction-level parallelism, which triples
and doubles the performance of the existing slicing-by-4 and slicing-by-8 algorithms, respectively. Second,
a coarse-grained algorithm can ideally deal with data in a parallel way by parallelizing a family of serial
CRC generating algorithms. Therefore, this algorithm allows thread-level parallelism, which can make full
use of multi-core computing capability. As a result, it achieves a speedup that is almost equal to the number
of threads used. In addition, both fine-grained and coarse-grained algorithms can be applied together to
achieve high throughput further. (This is an extended version of a paper that appeared at the 28th Annual
International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC) in Montreal,
QC, Canada, in 2017.)

INDEX TERMS Cyclic redundancy check (CRC), fault detection, parallel algorithms.

I. INTRODUCTION
Cyclic Redundancy Check (CRC) codes are widely used
in digital networks and storage systems to detect the acci-
dental alterations of data during its transmission or stor-
age. For instance, the CRC-32 is employed by IEEE 802.3
(Ethernet) network standard [2] and compression programs,
such as Bzip2 and Gzip, for data integrity checks. Besides,
Stream Control Transmission Protocol (SCTP) and Internet
Small Computer Systems Interface (iSCSI) adopt CRC-32C
to detect errors. Due to Gaussian noise in transmission, hard
drive malfunctions, and some other reasons, data may be
modified accidentally. CRC demonstrates a good Hamming
distance and has a good error detecting performance, which
makes it suitable for error detection.

In this paper, we study the implementation of the CRC
algorithm in software. While CRC generation can be effi-

The associate editor coordinating the review of this manuscript and
approving it for publication was Antonio J. Plaza.

ciently implemented in hardware, software-based CRC gen-
eration is important as well. This is becausemany commercial
servers that are widely used do not include dedicated CRC
generation circuits. Moreover, many applications require the
CRC generation to be implemented as effectively as possible.

In order to improve the performance of the CRC generation
process, a number of software-based algorithms have been
proposed in the past. Among these algorithms, the most
commonly used today are table lookup based CRC [3], [4],
parallel table lookup based CRC [5]–[7], symbolic simpli-
fication based CRC [8] and multi-processor based parallel
CRC [9]–[11].

In recent years, computer architecture technology has pro-
gressed dramatically. Modern processors have increased the
capabilities of instruction-level parallelism (ILP) and thread-
level parallelism (TLP). However, most existing CRC gen-
eration algorithms do not make full use of these resources.
Therefore, the purpose of this paper is to employ these new
techniques to accelerate the process of well-known CRC

VOLUME 7, 2019
2169-3536
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

32315

https://orcid.org/0000-0003-3356-0277
https://orcid.org/0000-0002-1895-0122
https://orcid.org/0000-0003-4007-6109

M. Chi et al.: Exploring Various Levels of Parallelism in High-Performance CRC Algorithms

codes that are widely used today. From the perspective of
instruction-level and thread-level parallelism, two types of
algorithms are proposed to make full use of modern proces-
sors. The contribution of this paper is summarized as follows:

• A fine-grained CRC algorithm is proposed, which
divides the CRC computation into multiple independent
data flows and performs the CRC process in an inter-
leaved manner. This algorithm makes the existing table-
based CRC algorithms suitable for processing multiple
independent data flows simultaneously, which allows
instruction-level parallelism. We apply this fine-grained
interleaved method to the well-known Slicing-by-4 and
Slicing-by-8 algorithms. As a result, it triples and dou-
bles the performance of Slicing-by-4 and Slicing-by-
8 algorithms, respectively.

• A coarse-grained CRC algorithm is proposed for effi-
cient multi-core processor computation. This algorithm
can ideally parallelize conventional CRC algorithms,
which allows thread-level parallelism. The evaluation
results demonstrate that the speedup achieved by this
algorithm is almost equal to the number of threads used.

• Since these two algorithms optimize the CRC generation
from different perspectives, they can be combined to
improve the performance further.

The most significant innovation of our work is that the pro-
posed algorithms can be achieved with a variable number of
interleaved data flows for instruction-level parallelism, and
also a variable number of threads for thread-level parallelism.

The rest of this paper is organized as follows: we present
related work in Section II. An overview of the CRC gener-
ation is provided in Section III. We present our fine-grained
and coarse-grained algorithms in Sections IV and V, respec-
tively. In SectionVI, we provide experiments and results. And
then we conclude in Section VII.

II. RELATED WORK
The CRC algorithm was first proposed by Peterson and
Brown [12]. Traditionally, CRC calculation is achieved with
a linear-feedback shift register (LFSR). In the original LFSR
method, a simple shift register is used, and one input bit is
processed at a time [13]. For an l-bit message, we need l
times of operations to perform the CRC calculation. How-
ever, this scheme significantly limits the throughput of the
CRC generation. To improve the performance, a number of
previous works have focused on efficient implementation of
CRC computation from a software or hardware perspective.

Among these algorithms, the tea-leaf reader algorithm [3]
is one of the first to use lookup tables. In order to support
the generation of CRC-32, five 256-byte tables are employed.
For each byte of the input, this algorithm performs five table
lookups, five exclusive OR (XOR) operations, and four shift
operations to generate the CRC-32 code of the message.
Compared to the original bit-wise approach aforementioned,
this byte-wise algorithm is 19 times faster. To optimize the
tea-leaf reader algorithm, Sarwate [4] proposed a classic

table-based CRC algorithm, which reads 8 bits at a time and
a single table of 256 32-bit entries is used to calculate the
CRC value. This algorithm performs a single table lookup,
two XOR operations, a shift, and an AND operation for each
byte of the message. Table lookup based CRC can be viewed
as a parallel method of LFSR by combining several bit-wise
iterative steps into one, obtaining high throughput.

The Sarwate algorithm was proposed at a time when
XOR operations of most processors could only be performed
between 8-bit bytes. Since then, computer architecture tech-
nology has made significant progress, and arithmetic oper-
ations between 32- or 64-bit words can be performed effi-
ciently. At the same time, processors are equipped with large
cache units that can be accessed in a few clock cycles.
Moderate-size tables (such as 1 KB) are suitable to be stored
in cache units, which significantly reduce the access latency.
In order to improve the performance further, Kounavis and
Berry [7] proposed a novel lookup-based framework. In this
framework, the number of bits that read at a time can be
arbitrarily large. Based on this framework, two algorithms are
designed to run on the Intel IA32 processor. First, the Slicing-
by-4 doubles the performance of the Sarwate algorithm.
It reads 32 bits at a time, and four 1-KB lookup tables are
required. Second, the Slicing-by-8 triples the performance,
using eight 1-KB lookup tables. By slicing the bits that read
each time into smaller terms, table lookups can be simulta-
neously performed on these terms to accelerate the process.
In this paper, the slicing technology and lookup tables are
adopted as well. But unlike other table-based algorithms, our
fine-grained parallel CRC algorithm performs table lookups
in an interleavedmanner, which can improve the performance
further.

From another point of view, symbolic evaluation can be
leveraged to simplify the CRC generation. Based on this
concept, a CRC generation algorithm without lookup tables
was proposed by Engdahl and Chung [8]. No table lookups
are needed in this proposed methodology, which reduces the
memory accesses. In some cases, their algorithm is more
efficient than conventional table lookup methods. However,
in other cases, this solution is even slower and provides no
benefit. Besides, for some complex polynomials, such as
CRC-32K, it is hard to simplify.

The algorithms as mentioned above are all fine-grained
parallel methods. In recent years, coarse-grained parallel
CRC algorithms based on multi-processor architectures are
proposed [9], [11]. These algorithms can be easily combined
with fine-grained CRC algorithms to improve performance
further. Do et al. [11] proposed a parallel CRC algorithm
called ‘‘N-byte RCC (Repetition of Computation and Com-
bination).’’ In this algorithm, n × N bytes of the message
are processed at each iteration. If the message is not a mul-
tiple of n × N , extra zero bits are inserted at the front of
itself. At each iteration, n numbers of N -byte blocks are
computed by n processors simultaneously. The Slicing-by-
4 algorithm [7] is leveraged to generate partial CRC values of
eachN -byte block.When CRC computations by n processors

32316 VOLUME 7, 2019

M. Chi et al.: Exploring Various Levels of Parallelism in High-Performance CRC Algorithms

are completed, a combination operation, which is through
table lookups, is performed to combine the partial CRCs
from n processors. The CRC value combined previously is
XORed with the following n × N bytes of the message, and
the iteration is repeated until there are no more bytes left.
Notice that, this algorithm induces folk-join overhead for
every n× N bytes. In order to minimize the synchronization
overhead, Cho et al. [9] proposed a block-interleaving based
parallel CRC algorithm. This algorithm is similar to [11],
except that a propagation step, instead of the combination
step mentioned in [11], is performed so that the dependency
problem is resolved. In this manner, partial CRC values can
be combined only at the last stage. Since algorithms proposed
in [9] and [11] split the message into blocks of fixed size,
more synchronization or propagation steps are required as
the size of the message grows. Different from these two
algorithms, our coarse-grained parallel algorithm divides the
message into only n blocks. Furthermore, no synchronization
or propagation steps are required during the CRC computa-
tion. As a result, the overhead of thread synchronization is
minimized.

From a hardware perspective, some kinds of parallel LFSR
architectures for efficient CRC generation have been pro-
posed. A tree structure of gates has been designed in [14]
to optimize the cascaded logic parts. In order to reduce the
complexity of parallel CRC circuits, a state-space transfor-
mation has been proposed in [15] and [16]. A novel parallel
LFSR based on IIR filter topology [17]–[19] uses a pipeline
technique to improve the hardware efficiency. Besides, table-
based algorithms have been explained in detail in [20]–[22].
Recently, a new method to construct the transformation
matrix used in state-space transformation has been pro-
posed in [23]. Besides, a novel approach of applying iterative
decoding technology has been introduced in [24]. Abdulnabi
and Ahmed [25] have presented an FPGA-based implemen-
tation of Slicing-by-16.

Since software-based CRC algorithms can be widely
applied to commercial servers, this paper mainly focuses on
the software implementation of parallel CRC algorithms.

III. THE CRC GENERATION PROCESS
A. DESCRIPTION
Cyclic Redundancy Check (CRC) is a well-known error-
detecting code, which has the capability to detect whether the
message transmitted over a noisy channel has been corrupted.
This technique can also be applied to storage systems to check
the integrity of the data stored on the hard drive.

For a message M with N = |M | bits, it can be denoted in
binary form

M = [mn−1mn−2 · · ·m0] (1)

where mi ∈ {0, 1}. In particular, mn−1 and m0 are referred to
as the most significant bit (MSB) and the least significant bit
(LSB), which are corresponding to the first and the last bits
of the messageM , respectively. Mathematically, the message

FIGURE 1. Division of polynomial using modulo-2 arithmetic.

M can be viewed as a polynomial of degree (N − 1)

M (x) =
N−1∑
i=0

mix i (2)

For a specific CRC, there is a predetermined polynomial
G(x) of degree J = deg(G(x)), which is called a generator
polynomial. The CRC value of the message M is defined as
the reminder of divisionM (x) · xJ by G(x). Namely, it is

CRC[M (x)] = M (x) · xJ mod G(x) (3)

Since coefficients of polynomials are defined in GF(2), all
arithmetic operations on polynomials are performed using
modulo-2 arithmetic. For example, addition:

(x2 + x + 1)+ (x + 1) = x2 + 2x + 2 = x2

subtraction:

(x2 + 1)− (x + 1) = x2 − x = x2 + x

multiplication:

(x + 1) · (x + 1) = x2 + 2x + 1 = x2 + 1

In this way, additions and subtractions of coefficients are
equal to the XOR logical operation.

The division operation of the polynomial is a little bit
complicated. Figure 1 demonstrates a division example. In
this example, x2 + 1 is the divisor, whereas x5 + x4 + x3 + x
is the dividend. At the first step, the polynomial (x2+1)·x3 =
x5+ x3 is found, which is a multiple of the divisor x2+1 and
shares the same degree of the dividend x5+ x4+ x3+ x. It is
subtracted from x5+ x4+ x3+ x, obtaining x4+ x. The next
step goes in the same way, which subtracts (x2 + 1) · x2 =
x4 + x2 from x4 + x, and x2 + x is obtained. The process is
repeated until the degree of the difference is less than 2 (the
degree of x2+1). At last, we get the quotient x3+ x2+1 and
remainder x + 1.

B. THE SARWATE ALGORITHM
The Sarwate algorithm is one of the most well-known CRC
algorithms, which is based on a lookup table. This algorithm
generates a 32-bit CRC value, which is shown in Figure 2.
At first, the variable crc is set to a specific number (e.g.,
0xFFFFFFFF for CRC32c). In each iteration, this algorithm
reads one byte (8 bits) from the data buffer and performs an

VOLUME 7, 2019 32317

M. Chi et al.: Exploring Various Levels of Parallelism in High-Performance CRC Algorithms

FIGURE 2. The Sarwate algorithm.

FIGURE 3. The Slicing-by-4 algorithm.

XOR operation between this byte and the least significant
byte of the variable crc. Then, a table lookup operation is
performed, which uses the number produced in the previous
step as an index. The most significant bytes of the crc, which
are obtained by shifting the crc by 8 bits to the right, are
XORed with the value returned from the table lookup. The
crc is updated to the result from this last XOR operation
and is used in the next iteration. The loop continues until
all bits of the input buffer are processed. Finally, the crc is
XORed with a given number that depends on the standard
(e.g., 0xFFFFFFFF for CRC32c), and this value is returned
as the CRC value of the original input buffer.

This algorithm is considered to be rather slow nowadays:
First of all, reading data byte by byte is not an efficient data
access approach on modern processors. Secondly, modern
processors are equipped with multiple ALUs, and 3-4 instruc-
tions may be executed simultaneously to handle independent
data flows. However, the Sarwate algorithm processes data
byte by byte and contains only one data flow. Most instruc-
tions take the result from the previous instruction as inputs,
which may lead to CPU stalls owing to the result propagation
delays (e.g., accessing the L1 cache requires∼ 4 CPU cycles
of latency).

C. THE SLICING-BY-4 ALGORITHM
In order to speed up the Sarwate algorithm, a straightforward
approach is to read multiple bytes at a time. However, the size
of the lookup table increases exponentially with the bits read
at a time, which may make the lookup table unable to fit into
the L1 cache (e.g., 32 KB). For example, a table of 216 entries
is required to achieve acceleration by reading 16 bits at a time.

The Slicing-by-4 algorithm [7] reads 32 bits at a time,
while the memory requirement is optimized to occupy rea-
sonable cache footprints. Figure 3 demonstrates the imple-
mentation of the Slicing-by-4 algorithm. In each iteration,

FIGURE 4. Demonstration of the folding method. (a) Folding the most
significant chunk into an adjacent chunk of the data buffer, (b) A general
method of folding a data chunk across s bits.

a 32-bit chunk is read from the data buffer and is split into
four slices. Then four table lookups are performed, which use
these four slices as indexes. This algorithm is called ‘‘Slicing-
by-4’’ because it can perform four table lookups at a time.

IV. FINE-GRAINED PARALLEL CRC ALGORITHM
The Slicing-by-4 algorithm reduces the number of data access
operations and allows instruction-level parallelism: multiple
table lookup operations may be processed in parallel. As a
result, it doubles the performance of the Sarwate algorithm.

However, there is still room for further performance
improvement. At the beginning of each iteration, all table
lookup operations contend for a single source of data (vari-
able crc in Figure 3). At the end of each iteration, the value
XORed from all results of the lookup operations is written to
a single destination (variable crc again). Further improvement
may be achieved by processing multiple independent data
flows in an interleaved manner. The benefit of an interleaved
approach is that when the execution of one data flow path
is stalled, the processor may switch execution to another
one so that the CPU utilization is improved. In this section,
we propose an interleaved Slicing-by-4 algorithm to improve
the performance further.

A. THE FOLDING METHOD
Commonly, in order to perform the CRC computation, a few
constants are precomputed, which are stored in a lookup
table. And then these constants are applied to fold the most
significant chunks of the data buffer repeatedly. In each iter-
ation, a new buffer is created, which is small in length but
congruent to the original one. Figure 4 (a) demonstrates a
simple example, where the most significant chunk of the data
buffer is folded into the adjacent chunk.

32318 VOLUME 7, 2019

M. Chi et al.: Exploring Various Levels of Parallelism in High-Performance CRC Algorithms

FIGURE 5. Folding method of the Slicing-by-4 algorithm.

A more generalized method is introduced in this paper,
which folds themost significant chunk to an arbitrary position
in the data buffer. This method reduces the data buffer into a
smaller one, keeping the CRC value of the buffer unchanged.
For a message U , we write

U = [V : W] (4)

where V and W are the most significant v-bit and remaining
w-bit chunks of U , respectively. Mathematically, it can be
expressed as

U (x) = V (x) · xw ⊕W (x) (5)

In Figure 4 (b), we show the folding method. In order to
fold the V into the position that is s-bit (s ≤ w) after itself,
we compute

V ′(x) = V (x) · xs mod G(x) (6)

and XOR it withW (x) at that position. Therefore, the reduced
data buffer is

U ′(x) = V ′(x) · xw−s ⊕W (x)

=
(
V (x) · xs mod G(x)

)
· xw−s ⊕W (x) (7)

We compute the remainder of U ′ divided by G

U ′(x) mod G(x)

=
((
V (x) · xs mod G(x)

)
· xw−s ⊕W (x)

)
mod G(x)

=
(
V (x) · xs · xw−s ⊕W (x)

)
mod G(x)

=
(
V (x) · xw ⊕W (x)

)
mod G(x) (8)

which is equal to

U (x) mod G(x) =
(
V (x) · xw ⊕W (x)

)
mod G(x) (9)

At this point, we have proven that the general folding method
generates a new data buffer that is congruent to the original
one but smaller in length.
The Slicing-by-4 algorithm can also be viewed as perform-

ing four folding operations at a time, and Figure 5 demon-
strates the details. In each iteration, four bytes are folded,
which are denoted as V1, V2, V3 and V4. Since that these bytes
are in the different positions, different offset values are used

to fold them, which are 56, 48, 40 and 32 bits, respectively.
The value V ′i (1 ≤ i ≤ 4) to be XORed withW (x) is given by

V ′i (x) = Vi(x) · x32+(4−i)×8 mod G(x) (10)

As a whole, a 32-bit chunk of data is folded into an adjacent
chunk of the same size. Notice that the length of each data
chunk Vi (1 ≤ i ≤ 4) is 8 bits. Therefore four lookup tables
of 256 32-bit entries each are required to compute V ′i .
To illustrate themain points, our discussions are focused on

32-bit CRCs in the following sections of the paper. However,
these points can also be applied to CRCs of other sizes.

B. THE INTERLEAVED SLICING-BY-4 ALGORITHM
Suppose that the input message M consists of T groups Mt ,
and each groupMt consists of N W -bit words, that is,

M (x) =
T−1∑
t=0

Mt (x) · x tNW (11)

Mt (x) =
N−1∑
n=0

mt,n(x) · xnW (12)

where mt,n is the (N − n)-th W -bit word of the Mt . The
messageM can be represented as

M (x) =
T−1∑
t=0

Mt (x) · x tNW

=

T−1∑
t=0

(
N−1∑
n=0

mt,n(x) · xnW
)
· x tNW

=

N−1∑
n=0

(
T−1∑
t=0

mt,n(x) · x tNW
)
· xnW

=

N−1∑
n=0

In(x) · xnW (13)

where

In(x) =
T−1∑
t=0

mt,n(x) · x tNW (14)

It means that, In is composed of a W -bit word mT−1,n fol-
lowed by (N − 1)W zero bits, then a W -bit word mT−2,n
followed by (N − 1)W zero bits, . . ., ending up with m0,n.
Figure 6 shows the relationship betweenM and In.
The CRC value of the messageM can be represented as

CRC[M (x)] = CRC

[
N−1∑
n=0

In(x) · xnW
]

=

N−1∑
n=0

CRC[In(x) · xnW] (15)

which means that the CRC computation of message M can
be split into N independent data flows. Therefore, the folding
method can be applied to compute CRC values of each In(x) ·

VOLUME 7, 2019 32319

M. Chi et al.: Exploring Various Levels of Parallelism in High-Performance CRC Algorithms

FIGURE 6. Splitting a message in an interleaved manner.

FIGURE 7. Folding scheme of the interleaved Slicing-by-4 algorithm.
(a) Folding two 32-bit buffer chunks at a time, (b) Final reduction.

xnW in an interleaved manner, and the contentions on a single
data source and destination are eliminated.

We take the implementation of the interleaved Slicing-by-
4 algorithm with two independent data flows as an example.
As Figure 7 (a) shows, when the message buffer is large
(length ≥ 4 × 32 bits), it is iteratively reduced by folding
operations in an interleaved manner. For each data flow,
the operation of folding 32 bits is similar to the Slicing-by-
4 algorithm, except that different lookup tables are adopted.
This folding operation continues until there are only 64 bits
remaining in the buffer. At last, a final reduction is performed
to combine the results of two data flows into one, which
is demonstrated in Figure 7 (b). Notice that, the length of
the message is assumed to be divisible by 64 (8 bytes). In
other cases, several steps of the Sarwate algorithm are firstly
performed to make the length divisible.

For a more specific description, the C implementation of
the interleaved Slicing-by-4 algorithm is shown in Figure 8.
In the folding loop (lines 3-18), table lookup and XOR oper-
ations are performed in an interleaved manner. Unlike the
Slicing-by-4 algorithm, which folds 32 bits into the adjacent
one, this algorithm folds each chunk across 32 bits. Therefore,
the offset values used for the lookup tables are 88, 80, 72 and

FIGURE 8. The interleaved Slicing-by-4 algorithm.

64 bits, respectively. The loop repeats until there are 64 bits
(8 bytes) left. In the last step (lines 19-29), a final reduction
is performed, combining two CRC values into one.

V. COARSE-GRAINED PARALLEL CRC ALGORITHM
In this section, we introduce a coarse-grained parallel CRC
algorithm that is suitable for multi-core processors. This algo-
rithm can extend the parallelism to thread level.

For a given parallel factor P, we split the input messageM
into P blocks of approximately the same size, that is

M = [MP−1 : MP−2 : · · · : M0] (16)

Mathematically,

M (x) =
P−1∑
p=0

Mp(x) · xKp (17)

32320 VOLUME 7, 2019

M. Chi et al.: Exploring Various Levels of Parallelism in High-Performance CRC Algorithms

Kp =

{∑p−1

i=0
Li, 1 ≤ i ≤ p− 1

0, i = 0
(18)

where Li is the length ofMi. Therefore,

CRC[M (x)]

= CRC

P−1∑
p=0

Mp(x) · xKp

=

P−1∑
p=0

CRC[Mp(x) · xKp]

=

P−1∑
p=0

CRC[Mp(x)] · (xKp mod G(x)) mod G(x) (19)

For the sake of conciseness, we define coefficients by

βp = xKp mod G(x), 0 ≤ p ≤ P− 1 (20)

and modular multiplication

A(x)⊗ B(x) = A(x) · B(x) mod G(x) (21)

Equation (19) can be simplified to

CRC[M (x)] =
P−1∑
p=0

CRC[Mp(x)]⊗ βp (22)

Therefore, we design the coarse-grained parallel CRC algo-
rithm as follows:

1) Split the input messageM into P blocks.
2) Compute the CRC values of these P blocks in parallel

by P threads. The computation parts may be carried on
existing fine-grained CRC algorithms.

3) The CRC values are modular multiplied by the cor-
responding coefficients βp respectively and XOR all
the products to obtain the CRC value of the original
message.

In what follows we describe the implementation of modu-
lar multiplication and computation of coefficients βp in detail.

A. MODULAR MULTIPLICATION
Modular multiplication takes A and B as inputs, which are
32-bit words. A can be represented as

A = [a31a30 · · · a0] (23)

where ai ∈ {0, 1}. Therefore

A(x) =
31∑
i=0

aix i (24)

and

A(x)⊗ B(x) = A(x) · B(x) mod G(x)

=

(
31∑
i=0

aix i
)
· B(x) mod G(x)

FIGURE 9. The modular multiplication algorithm.

=

(
31∑
i=0

aix i · B(x)

)
mod G(x)

=

31∑
i=0

aix i · B(x) mod G(x)

=

∑
i∈R

x i · B(x) mod G(x) (25)

where R = {i | ai = 1, 0 ≤ i ≤ 31}.
The modular multiplication algorithm is shown

in Figure 9, which is analogous to the Galois Field mul-
tiplication. During each iteration of the loop (lines 2-11),
the variable i traverses from 0 to 31, and the variable B
corresponds to x i · B(x) mod G(x) in Equation (25). For each
ai that equals to 1 (i.e., the test expression in line 3 is true),
the corresponding x i ·B(x) mod G(x) is XORed with product ,
and produce is updated with the new value (line 4). When
the loop ends, the variable product is exactly the modular
product of A and B. Notice that, the variable POLY (line 7) is
the binary form of the CRC generator (e.g., 0x82F63B78 for
CRC32c).

B. EFFECTIVE COMPUTATION OF COEFFICIENTS
In order to compute the coefficients effectively, a precom-
puted lookup table LUT is defined by

LUT [i] = x2
i
mod G(x), 0 ≤ i ≤ 63 (26)

Since that

LUT [i+ 1]

= x2
i+1

mod G(x)

= x2
i
· x2

i
mod G(x)

=

(
x2

i
mod G(x)

)
·

(
x2

i
mod G(x)

)
mod G(x)

=

(
x2

i
mod G(x)

)
⊗

(
x2

i
mod G(x)

)
= LUT [i]⊗ LUT [i] (27)

elements of LUT can be calculated iteratively based on the
previous value.

We define the modular exponentiation as

MOD_EXP(L) = xL mod G(x) (28)

VOLUME 7, 2019 32321

M. Chi et al.: Exploring Various Levels of Parallelism in High-Performance CRC Algorithms

FIGURE 10. The modular exponentiation algorithm.

Often it is necessary for very large values of L. Therefore, it is
represented as a 64-bit word, that is,

L =
63∑
i=0

li · 2i (29)

where li ∈ {0, 1}. Then

MOD_EXP(L) = x
∑63

i=0 li·2
i
mod G(x)

=

(
63∏
i=0

x li·2
i

)
mod G(x)

=

(∏
i∈S

x2
i

)
mod G(x)

=

(∏
i∈S

x2
i
mod G(x)

)
mod G(x)

=

(∏
i∈S

LUT [i]

)
mod G(x)

=

⊗
i∈S

LUT [i] (30)

where S = {i | li = 1, 0 ≤ l ≤ 63}. Similar to
the Knuth’s square-and-multiply algorithm [26], which is a
general method for fast computation of large positive integer
power of a number, theMOD_EXP is used for computation of
large positive modular power of a polynomial. Equation (30)
implies that the modular exponentiation can be calculated by
performing a series of modular multiplication, the multipliers
of which are elements of LUT .
The implementation of modular exponentiation is demon-

strated in Figure 10. Initially, the accumulator acc is set to
0x00000001 (corresponding to polynomial 1, which is the
multiplicative identity element). During each iteration of the
loop (lines 2-6), the variable i traverses from 0 to 63. For
each li that equals to 1 (i.e., the test expression in line 3 is
true), the corresponding LUT [i] is modularly multiplied by
acc, and acc is set to the product (line 4, MOD_MUL stands
for modular multiplication).When the loop ends, variable acc
is exactly the result of modular exponentiation. The coeffi-
cients βp can be calculated by the modular exponentiation
algorithm:

βp = MOD_EXP(Kp)

VI. EXPERIMENTS AND RESULTS
In order to evaluate the performance, experiments both in
instruction and thread levels are carried out. The experiments

are performed on an Intel Xeon E5-2680 processor, which is
equipped with 12 cores operating at 2.5 GHz. This processor
has a 32-KB first-level (L1) data cache per core and a 256-KB
second-level (L2) cache per core. The operating system is
Linux running with a 3.10.0 kernel, and the GNUCCompiler
4.8.5 is used. The CPUID and RDTSC instructions are used
to measure the consumed clock cycles.

All evaluations are performed using random input data
over various message lengths. Lookup tables are aligned on
a 256-byte boundary to eliminate the non-aligned penalty.
In order to minimize performance variations, we perform
2000 runs for each message length, discarding the 500 fastest
and 500 slowest times, and the mean of the remaining
1000 values is used. Besides, the evaluations are performed
at high priority to minimize the interference of the operating
system and other applications.

In what follows, we present our experiments of fine-
grained and coarse-grained parallelism respectively.

A. FINE-GRAINED PARALLELISM
We implement N -way interleaved versions of Slicing-by-
4 and Slicing-by-8, which are denoted as Slicing-by-4/N and
Slicing-by-8/N respectively. We compare the performance of
our algorithms with the Slicing-by-4 and Slicing-by-8 algo-
rithms, and the Sarwate algorithm is used as a baseline.

Figure 11 (a) shows the performance of the Sarwate,
Slicing-by-4, and interleaved versions of Slicing-by-4 algo-
rithm. We observe that, for table-based algorithms, it is
important to place lookup tables in the cache unit, especially
when the message length is small. For example, the perfor-
mance of the Slicing-by-4 algorithm is 0.31 byte/cycle when
the message length is 64 bytes. For large message length,
the performance of the Slicing-by-4 algorithm is stable at
0.38 byte/cycle. It is explained by the fact that when the
lookup tables are first accessed, the latency is significant
(commonly a few hundred CPU cycles) since tables are
fetched from the main memory. As the size of the mes-
sage grows, the impact of the access latency is not that
high because after some bytes of the message are processed,
lookup tables may be found in the cache unit and only a few
CPU cycles are needed. This phenomenon is more obvious
on Slicing-by-4/4 and Slicing-by-4/8 algorithms than other
algorithms since more lookup tables are fetched from the
main memory during the computation. In contrast, there is no
lookup table needed for the Sarwate algorithm. As a result,
the performance of it is independent of the values of message
lengths.

When the message length is larger than 128 bytes, the pro-
posed algorithms achieve good performance. For example,
the performance of the Slicing-by-4/2 is 0.76 byte/cycle,
which achieves 1.98× speed-up compared to the Slicing-
by-4 algorithm. Furthermore, the Slicing-by-4/4 and Slicing-
by-4/8 algorithms achieve 2.99× and 3.15× speed-up
respectively.

Another observation we make is that the performance dif-
ference between the Slicing-by-4/4 and Slicing-by-4/8 is not

32322 VOLUME 7, 2019

M. Chi et al.: Exploring Various Levels of Parallelism in High-Performance CRC Algorithms

FIGURE 11. Performance of the fine-grained parallel CRC algorithms.
(a) Slicing-by-4, (b) Slicing-by-8. The N-way interleaved versions of
Slicing-by-4 and Slicing-by-8 are denoted as Slicing-by-4/N and
Slicing-by-8/N respectively. In each plot, the performance of the Sarwate
algorithm is used as a baseline.

as noticeable as expected. Since that each core of CPU has
a fixed number of ALUs, the performance does not increase
linearly with the number of interleaved data flows.

In Figure 11 (b), we study the performance of Slicing-
by-8 algorithm [7] and its interleaved implementations. The
Slicing-by-8 algorithm is similar to the Slicing-by-4 algo-
rithm, except that the former reads 8 bytes at a time, instead
of reading 4 bytes like the latter. This algorithm uses 8 lookup
tables, and the total space required is 8KB,which is two times
the space requirement of Slicing-by-4. As shown in Figure 11
(b), the interleaved versions of the Slicing-by-8 algorithm
improve the performance significantly. The speed-ups are
1.91×, 2.10×, and 1.96× for Slicing-by-8/2, Slicing-by-8/4,
and Slicing-by-8/8, respectively.

To our surprise, the Slicing-by-8/4 achieves better per-
formance than Slicing-by-8/8 does. In the main loop of the
Slicing-by-8/N algorithm, 2N 32-bit words are needs to hold
the folding results. Therefore, the Slicing-by-8/N algorithm

FIGURE 12. The Slicing-by-4/4×4 algorithm.

uses at least 2N variables. Too many variables may cause
spilling of registers [27] since processors have a limited
number of registers and not all variables can be assigned
to registers. Commonly, a spilled variable is stored in stack
space, which has a much slower accessing speed than a vari-
able in a register. Therefore, the number of interleaved data
flows should matter: a) too few may cause underutilization
of instruction-level parallelism of the processor; b) too many
may cause spilling of registers, which leads to performance
degradation instead.

B. COARSE-GRAINED PARALLELISM
We implement the coarse-grained parallelism based on
POSIX Threads, which is a parallel execution model for
multi-core systems. Four algorithms, Slicing-by-4, Slicing-
by-8, Slicing-by-4/4, and Slicing-by-8/4 are chosen to
be parallelized. The corresponding coarse-grained paral-
lel algorithms are denoted as Slicing-by-4×P, Slicing-by-
8×P, Slicing-by-4/4×P, and Slicing-by-8/4×P, respectively,
where P is the parallel factor. Three different parallel factors,
2, 4, and 8 are achieved for each algorithm. For a given
parallel factor P, the message is split into P blocks, and
the pthread_create function is invoked to create P threads.
For each thread, the corresponding algorithm is employed
for partial CRC computation. Then the pthread_join func-
tion is invoked in the main thread to wait for partial CRC
computations on these P blocks to finish. At last, all partial
CRC values are recombined to obtain the CRC value of
the original message. For example, Figure 12 illustrates the
Slicing-by-4/4×4 algorithm which executes four Slicing-by-
4/4 processes simultaneously.

Figure 13 demonstrates the performance of the coarse-
grained parallel algorithm proposed in this paper. For a
message with small length, the overhead of thread folk-join
and CRC recombination accounts for the majority, which
makes the coarse-grained parallel algorithm not as efficient
as expected, and even worse than the sequential algorithm in
some cases. Fortunately, the efficiency of the proposed algo-
rithm is significantly improved when the message reaches a
certain size.

We take parallelizing Slicing-by-4 as an example.
As shown in Figure 13 (a), when the message length is
smaller than 32 KB, the performance of Slicing-by-4×2 and
Slicing-by-4×4 is worse than that of Slicing-by-4, while
the performance of Slicing-by-4×8 does not exceed that of

VOLUME 7, 2019 32323

M. Chi et al.: Exploring Various Levels of Parallelism in High-Performance CRC Algorithms

FIGURE 13. Performance of the coarse-grained parallel CRC algorithms. (a) Slicing-by-4, (b) Slicing-by-8, (c) Slicing-by-4/4, (d) Slicing-by-8/4.
The corresponding coarse-grained parallel algorithms are denoted as Slicing-by-4×P , Slicing-by-8×P , Slicing-by-4/4×P , and
Slicing-by-8/4×P , respectively, where P is the parallel factor.

Slicing-by-4 until the message length is greater than 128 KB.
It demonstrates the fact that, for a message with small length,
the number of CPU cycles spent doing CRC computation is
small and there is a fairly significant overhead involved with
creating and managing multiple threads. However, the effi-
ciency of the coarse-grained parallel algorithm increases
when the message length grows. As a result, for long enough
messages, it achieves 1.98×, 3.97× and 7.80× speed-ups for
parallel factors of 2, 4 and 8, respectively. Figures 13 (b), (c),
and (d) show the performance of parallelizing Slicing-by-8,
Slicing-by-4/4, and Slicing-by-8/4, respectively. Similar con-
clusions can be drawn from the results of these experiments.

Table 1 shows the thread synchronization overhead under
various parallel factors. For each parallel factor P, P threads
are created, and these threads terminate immediately without
performing CRC computations. The main thread waits until
all these P threads complete their executions. The number

TABLE 1. Overhead of thread synchronization under various parallel
factors.

of CPU cycles consumed by this process is measured as the
overhead of thread synchronization.

It is assumed that the thread synchronization overhead is
constant, regardless of the length of the message. Therefore,
the throughput of the coarse-grained parallel algorithm can
be estimated by the following equation

T̂P =
L

L
T · P

+ OP
(31)

where T̂P is the estimated throughput of the parallel algorithm
under parallel factor P, L is the length of the message, T is the

32324 VOLUME 7, 2019

M. Chi et al.: Exploring Various Levels of Parallelism in High-Performance CRC Algorithms

FIGURE 14. Actual and estimated performance of Slicing-by-4×P .
(a) Slicing-by-4×2, (b) Slicing-by-4×4, (c) Slicing-by-4×8.

throughput of the corresponding single-thread algorithm, and
OP is the synchronization overhead under parallel factor P.
Due to space limitations, we only show the result of Slicing-
by-4×P in Figure 14.We observe that the estimated curve and

the actual curve are highly coincident in each plot. The esti-
mation results of other coarse-grained are similar to Slicing-
by-4×P. From the experimental result, we have confirmed
that the thread synchronization overhead is the main factor
that causes the coarse-grained parallel algorithm to have low
performance when the message length is small.

VII. CONCLUSION
In this paper, we proposed two algorithms to paralleliz-
ing CRC computation at both fine-grained and coarse-
grained levels. First, the fine-grained parallel algorithm,
which utilizes the instruction-level parallelism, triples the
performance of the Slicing-by-4 algorithm and doubles the
performance of the Slicing-by-8 algorithm. Second, in order
to implement thread-level parallelism, the coarse-grained
parallel algorithm is designed, which achieves a speedup
almost equal to the number of threads employed. Further-
more, both fine-grained and coarse-grained algorithm can
be applied together to obtain a high throughput. Compared
to the Slicing-by-4 and Slicing-by-8 algorithms, the Slicing-
by-4/4×8 and Slicing-by-8/4×8 algorithms achieve 21.53×
and 15.66× speed-ups, respectively. The most important con-
tribution of this paper is that the proposed algorithms can
be achieved with an arbitrary number of interleaved data
flows and also an arbitrary number of threads. As a result,
the instruction-level and thread-level parallelism of the mod-
ern processor can be fully utilized.

The coarse-grained parallel algorithm achieves high per-
formance for long enoughmessages. However, in cases where
the message length is small, the performance drops dramati-
cally. This situation will be improved in our future work.

REFERENCES
[1] M. Chi and J. Liu, ‘‘VACA: A high-performance variable-length adaptive

CRC algorithm,’’ in Proc. IEEE 28th Ann. Int. Symp. Pers., Indoor, Mobile
Radio Commun. (PIMRC), Oct. 2017, pp. 1–6.

[2] IEEE Standards for Local Area Networks: Carrier Sense Multiple Access
With Collision Detection (CSMA/CD) Access Method and Physical Layer
Specifications, IEEE Standards 802.3-1985, 1985.

[3] G. Griffiths and G. C. Stones, ‘‘The tea-leaf reader algorithm: An efficient
implementation of CRC-16 and CRC-32,’’ Commun. ACM, vol. 30, no. 7,
pp. 617–620, Jul. 1987.

[4] D. V. Sarwate, ‘‘Computation of cyclic redundancy checks via table look-
up,’’ Commun. ACM, vol. 31, no. 8, pp. 1008–1014, Aug. 1988.

[5] F. Braun and M. Waldvogel, ‘‘Fast incremental CRC updates for IP
over ATM networks,’’ in Proc. IEEE Workshop High Perform. Switching
Routing, May 2001, pp. 48–52.

[6] Y. Sun andM. S. Kim, ‘‘A pipelined CRC calculation using lookup tables,’’
in Proc. 7th IEEE Consum. Commun. Netw. Conf., Jan. 2010, pp. 1–2.

[7] M. E. Kounavis and F. L. Berry, ‘‘Novel table lookup-based algorithms for
high-performance CRC generation,’’ IEEE Trans. Comput., vol. 57, no. 11,
pp. 1550–1560, Nov. 2008.

[8] J. R. Engdahl and D. Chung, ‘‘Fast parallel CRC implementation in soft-
ware,’’ in Proc. 14th Int. Conf. Control, Autom. Syst. (ICCAS), Oct. 2014,
pp. 546–550.

[9] J. Cho, B. Sung, and W. Sung, ‘‘Block-interleaving based parallel CRC
computation for multi-processor systems,’’ in Proc. IEEEWorkshop Signal
Process. Syst., Oct. 2010, pp. 311–316.

[10] H. M. Ji and E. Killian, ‘‘Fast parallel CRC algorithm and implementation
on a configurable processor,’’ in Proc. IEEE Int. Conf. Commun. Conf.
(ICC), Apr./May 2002, pp. 1813–1817.

[11] Y. Do, S.-R. Yoon, T. Kim, K. E. Pyun, and S.-C. Park, ‘‘High-speed
parallel architecture for software-based CRC,’’ in Proc. 5th IEEE Consum.
Commun. Netw. Conf., Jan. 2008, pp. 74–78.

VOLUME 7, 2019 32325

M. Chi et al.: Exploring Various Levels of Parallelism in High-Performance CRC Algorithms

[12] W.W. Peterson and D. T. Brown, ‘‘Cyclic codes for error detection,’’ Proc.
IRE, vol. 49, no. 1, pp. 228–235, Jan. 1961.

[13] T. V. Ramabadran and S. S. Gaitonde, ‘‘A tutorial on CRC computations,’’
IEEE Micro, vol. 8, no. 4, pp. 62–75, Aug. 1988.

[14] T. Pei and C. Zukowski, ‘‘High-speed parallel CRC circuits in VLSI,’’
IEEE Trans. Commun., vol. 40, no. 4, pp. 653–657, Apr. 1992.

[15] J. H. Derby, ‘‘High-speed CRC computation using state-space trans-
formations,’’ in Proc. IEEE Global Telecommun. Conf. (GLOBECOM),
Nov. 2001, pp. 166–170.

[16] C. Kennedy and A. Reyhani-Masoleh, ‘‘High-speed CRC computations
using improved state-space transformations,’’ in Proc. IEEE Int. Conf.
Electro/Inf. Technol., Jun. 2009, pp. 9–14.

[17] M. Ayinala and K. K. Parhi, ‘‘High-speed parallel architectures for linear
feedback shift registers,’’ IEEE Trans. Signal Process., vol. 59, no. 9,
pp. 4459–4469, Sep. 2011.

[18] J. Jung, H. Yoo, Y. Lee, and I.-C. Park, ‘‘Efficient parallel architecture for
linear feedback shift registers,’’ IEEE Trans. Circuits Syst. II, Exp. Briefs,
vol. 62, no. 11, pp. 1068–1072, Nov. 2015.

[19] R. A. C. Varma and Y. V. Apparao, ‘‘High-Throughput VLSI Architectures
for CRC-16 computation in VLSI signal processing,’’ inMicroelectronics,
Electromagnetics and Telecommunications, J. Anguera, S. C. Satapathy,
V. Bhateja, and K. Sunitha, Eds. Singapore: Springer, 2018, pp. 23–32.

[20] Y. Sun and M. S. Kim, ‘‘A table-based algorithm for pipelined CRC
calculation,’’ in Proc. IEEE Int. Conf. Commun., May 2010, pp. 1–5.

[21] Y. Huo, X. Li, W.Wang, and D. Liu, ‘‘High performance table-based archi-
tecture for parallel CRC calculation,’’ in Proc. 21st IEEE Int. Workshop
Local Metropolitan Area Netw., Apr. 2015, pp. 1–6.

[22] Bajarangbali and P. A. Anand, ‘‘Design of high speed CRC algorithm for
ethernet on FPGA using reduced lookup table algorithm,’’ in Proc. IEEE
Annu. India Conf. (INDICON), Dec. 2016, pp. 1–6.

[23] G. Hu, J. Sha, and Z. Wang, ‘‘High-speed parallel LFSR architectures
based on improved state-space transformations,’’ IEEE Trans. Very Large
Scale Integr. (VLSI) Syst., vol. 25, no. 3, pp. 1159–1163, Mar. 2017.

[24] E. Tsimbalo, X. Fafoutis, and R. J. Piechocki, ‘‘CRC error correction in
IoT applications,’’ IEEE Trans. Ind. Informat., vol. 13, no. 1, pp. 361–369,
Feb. 2017.

[25] M. S. Abdulnabi and H. Ahmed, ‘‘Design of efficient cyclic redundancy
check-32 using FPGA,’’ in Proc. Int. Conf. Comput., Control, Elect.,
Electron. Eng. (ICCCEEE), Aug. 2018, pp. 1–5.

[26] D. E. Knuth, ‘‘The art of computer programming,’’ Seminumerical Algo-
rithms, vol. 2, 3rd ed. Reading, MA, USA: Addison-Wesley, 1997.

[27] C. W. Fraser and D. R. Hanson, ‘‘Simple register spilling in a retargetable
compiler,’’ Softw., Pract. Exper., vol. 22, no. 1, pp. 85–99, 1992.

MUCONG CHI received the B.E. degree from
Beijing Jiao Tong University, in 2014. He is
currently pursuing the Ph.D. degree with the
Beijing University of Posts and Telecommunica-
tions (BUPT). His research interests include big
data analysis and big data storage.

DAZHONG HE received the B.E. and M.E.
degrees in information engineering from the
Beijing University of Posts and Telecommunica-
tions (BUPT), in 1994 and 1997, respectively.
Since 1997, he has been with BUPT. His cur-
rent research interests include networks’ traffic
research, big data analysis, and hardware-based
deep learning.

JUN LIU received the B.E. and Ph.D. degrees
from the Department of Information Engineering,
Beijing University of Posts and Telecommunica-
tions (BUPT), in 1998 and 2003, respectively.
He is currently the Director of the Center for Data
Science, BUPT. His research interests include net-
works’ traffic monitoring, telecom big data analy-
sis, and streaming data algorithm.

32326 VOLUME 7, 2019

	INTRODUCTION
	RELATED WORK
	THE CRC GENERATION PROCESS
	DESCRIPTION
	THE SARWATE ALGORITHM
	THE SLICING-BY-4 ALGORITHM

	FINE-GRAINED PARALLEL CRC ALGORITHM
	THE FOLDING METHOD
	THE INTERLEAVED SLICING-BY-4 ALGORITHM

	COARSE-GRAINED PARALLEL CRC ALGORITHM
	MODULAR MULTIPLICATION
	EFFECTIVE COMPUTATION OF COEFFICIENTS

	EXPERIMENTS AND RESULTS
	FINE-GRAINED PARALLELISM
	COARSE-GRAINED PARALLELISM

	CONCLUSION
	REFERENCES
	Biographies
	MUCONG CHI
	DAZHONG HE
	JUN LIU

