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ABSTRACT We demonstrate that the ellipsometric parameters of the isotropic samples can be measured
by a partial polarimeter with only eight intensity measurements. Under the Gaussian and Poisson noises,
we propose the optimal measurement matrices for the polarization state generator and the polarization
state analyzer that minimize the total estimation variance of eight nonzero Mueller elements related to
the ellipsometric parameters. In addition, since considering only four of the eight elements, the estimation
variance can be further reduced, and we also introduce two proper criteria to find the optimal measurement
matrices that robustly minimize the total estimation variance for these four Mueller elements. Compared
with the existing measurement matrices based on 16 intensity measurements, our proposed matrices can
effectively decrease the total estimation variance and, thus, improve the measurement precision of the
Mueller matrix and ellipsometric parameters with only eight measurements. Furthermore, the proposed
optimal measurement matrices do not depend on the Mueller elements of samples and thus not on the
ellipsometric measurements.

INDEX TERMS Optical polarization, polarimetry, ellipsometry, ellipsometric parameters, Mueller matrix,
isotropic sample, statistical analysis.

I. INTRODUCTION
Polarimeter/ellipsometer consists in measuring the changes
in the polarization state of reflected or transmitted light beam
by specified samples. For example, it can accurately charac-
terize the physical properties and characteristics of samples,
such as the complex refractive index and thickness of the
thin films [1]–[6]. Besides, polarimeter can be also used for
measuring several plasma parameters in fusion problem, such
as Faraday rotation angle and Cotton-Mouton angle [7]–[9] in
a magnetized plasma. Therefore, polarimeter, as a powerful
tool, has been applied widely in many fields [10]–[12].

The associate editor coordinating the review of this manuscript and
approving it for publication was Qingchao Jiang.

As an important application of the polarimeter, the charac-
terization of films and surfaces mostly focuses on the mea-
surement of smooth and isotropic samples, whose Mueller
matrix is block diagonal, and two ellipsometric parameters
are determined by the eight nonzero elements in this diag-
onal block of Mueller matrix [2], [13], [14]. In these cases,
the complete Mueller polarimeter, which requires 16 inten-
sity measurements, could no longer be the best choice for
measuring ellipsometric parameters [15], [16]. Moreover,
it seems that eight intensity measurements are enough for
measuring these eight nonzero Mueller elements. Therefore,
it is interesting to develop an optimized strategy with only
eight intensity measurements to measure these eight Mueller
elements. In the previous works, Savenkov et al. [17] and
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Anna et al. [18] demonstrated that the times of intensity
measurement can be reduced to less than 16 with partial
polarimetry. However, to our knowledge, the optimization
for the measurement matrices of the polarization state gen-
erator (PSG) and the polarization state analyzer (PSA) has
not been considered yet in the presence of different types of
noise. Furthermore, the optimal measurement matrices that
minimize the total variance of these four of eight Mueller
elements with eight intensity measurements have not been
considered either, which can further reduce the estimation
variance and thus improve the measurement precision of
ellipsometric parameters.

In this paper, considering the measurement for ellipsomet-
ric parameters of isotropic samples in the presence of two
common types of noise (Gaussian additive noise and Poisson
shot noise) [13], [15], [19], we optimize the measurement
matrices of partial polarimeter based on only eight intensity
measurements. The proposed optimal measurement matrices
minimize the total variance of the elements related to the
ellipsometric measurements. Besides, we also introduce a
proper criterion to find the optimal measurement matrices
that robustly reduce the total variance for four of eight ele-
ments, which can further reduce the total variance. Compared
with the existing measurement matrices, the proposed ones
lead to the best performance, which considers both total
estimation variance and intensity measurement times, for the
ellipsometric measurements. In addition, the proposed opti-
mal measurement matrices do not dependent on the Mueller
matrix of samples and thus not on the ellipsometric parame-
ters under both Gaussian and Poisson noise.

II. POLARIMETER/ELLIPSOMETER
The Mueller matrix of the smooth and isotropic materials
is block-diagonal containing only eight nonzero elements
related to the ellipsometric parameters ψ and [1], and [2]:

M = r


1 a 0 0
a 1 0 0
0 0 b c
0 0 −c b

, (1)

where a = − cos 2ψ, b = sin 2ψ cos1, c = sin 2ψ sin1,
and r refers to the surface power reflectance. By measuring
Mueller matrix, the ellipsometric parameters ψ and 1 are
thus calculated by 1/2cos−1[-M12/M11] and tan−1[M34/M33],
respectively. Here,Mij denotes the element in the ith row and
jth column of matrixM . The typical measurement configura-
tion for Muller polarimeter is shown in Fig. 1.

In practice, the PSG and the PSA in Mueller polarimeter
are usually composed of a polarizer and a retarder as shown
in Fig. 1 [18]–[20]. The measurement matrices (A, W ) are
composed of four eigenstate vectors of PSG and the PSA,
and the intensity detection is given by:

VI = [W ⊗ A]T VM , (2)

where ⊗ is Kronecker product, VI and VM are 16 dimen-
sional vectors correspond to 16 intensities and 16 Mueller

FIGURE 1. Typical measurement configuration for Mueller polarimeter.

elements, respectively. However, there are only eight nonzero
elements in the Mueller matrix in Eq. (1), therefore, it needs
to find a strategy to measure the eight Mueller elements with
only eight intensity measurements.

A feasible strategy is that the matrices (A, W ) containing
two eigenstate vectors of the PSG while four of the PSA. Let
us denote the two measurement matrices as:

A =
[
1 cos(2α1)cos(2ε1) sin(2α1)cos(2ε1) sin(2ε1)
1 cos(2α2)cos(2ε2) sin(2α2)cos(2ε2) sin(2ε2)

]T

W =


1 cos(2α3)cos(2ε3) sin(2α3)cos(2ε3) sin(2ε3)
1 cos(2α4)cos(2ε4) sin(2α4)cos(2ε4) sin(2ε4)
1 cos(2α5)cos(2ε5) sin(2α5)cos(2ε5) sin(2ε5)
1 cos(2α6)cos(2ε6) sin(2α6)cos(2ε6) sin(2ε6)


T

(3)

with the azimuth αi ∈ [−π/2, π/2] , and the ellipticity εi ∈
[−π/4, π/4] , i ∈ [1, 6] [1]. The intensity measurement is
thus rewritten as:

V8
I =

[
Q8
A,W

]T
V8
M , (4)

where V8
I , V

8
M are eight dimensional vectors correspond to

the eight intensity measurements and eight nonzero Mueller
elements. Q8

A,W is an 8 × 8 matrix with its line is the vec-
tor of [W ⊗ A]T , from which these eight elements indexed
corresponding to the set of nonzero elements in matrix M
are kept. Therefore, the Mueller vector (matrix) V8

M can be
estimated by:

V̂8
M =

{[
Q8
A,W

]T}−1
V8
I . (5)

However, this estimator could deviate from the true value
because the intensities are always influenced by noise. There-
fore, V8

I is a random variable (vector), and its covariance
matrix 0V8

I
is diagonal with each diagonal element denoting

the estimation variance on each measured intensity. Subse-
quently, the covariance matrix 0V̂8

M
of the estimated Mueller

vector V̂8
M is calculated by [21]:

0V̂8
M
=

{[
Q8
A,W

]−1}T
0V8

I

[
Q8
A,W

]−1
. (6)
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The diagonal element
[
0V̂8

M

]
ii
refers to the estimation vari-

ance σ 2
i , i ∈ [1, 8] on each Mueller element:

Var[M ] =


σ 2
1 σ 2

3

σ 2
2 σ 2

4

• •

• •

• •

• •

σ 2
5 σ 2

7

σ 2
6 σ 2

8

 . (7)

The optimal measurement matrices need to minimize the
summation of variances for these eight elements:

(
A8−opt ,W8−opt

)
= argmin

A,W

8∑
i=1

σ 2
i . (8)

In particular, when the dominant noise of measurement
system is Gaussian additive noise, and the covariance matrix
0V8

I
is diagonal with all its diagonal elements equal to σ 2

(denotes the variance of Gaussian additive noise) [13], [21].
Therefore, the variances σ 2

i on each element of V̂8
M are

calculated by:

σ 2
i = σ

2

[{[
Q8
A,W

]−1}T [
Q8
A,W

]−1]
ii

, ∀i ∈ [1, 8] . (9)

While in the case that the dominant noise is Poisson shot
noise, the variance of intensity vector V8

I is equal to its true
value [13], [15], [21], and thus the variance on V̂8

M depends
on the true value of V8

M as:

σ 2
i =

8∑
k=1

[
V8
M

]
k

[
8∑

n=1

([
Q8
A,W

]−1
nn

)2 [
Q8
A,W

]T
nk

]
. (10)

Considering the elements in the first row of both measure-
ment matrices (A,W ) are equal to 1/2, all the elements in the

first column of matrix
[
Q8
A,W

]T
are thus equal to 1/4. Then,

the variances in Eq. (10) are rewritten as:

σ 2
i =

[
V8
M

]
1

4

8∑
n=1

([
Q8
A,W

]−1
nn

)2

+f
(
V8
M

)
, (11)

where

f
(
V8
M

)
=

∑8

k=2

[
V8
M

]
k

[∑8

n=1

([
Q8
A,W

]−1
nn

)2 [
Q8
A,W

]T
nk

]

for the convenience of discussion. From the second term
f
(
V8
M

)
in Eq. (11), we can see that the variances σ 2

i do
not only depend on the measurement matrices (A, W ), but
also on the Mueller matrix under the Poisson shot noise,
which is different from the case of Gaussian additive noise.
Therefore, an optimal set of measurement matrices being
independent of the Mueller matrix should satisfy f

(
V8
M

)
= 0

[in Eq. (11)] [13], [15].

III. NUMERICAL OPTIMIZATION WITH
GLOBAL ALGORITHM
In order to find the optimal set of measurement matri-
ces (A, W ) that minimizes the total variance based on eight
intensity measurements, one can perform global optimization
algorithm to search the optimal solutions numerically. It can
be seen from Eq. (3) that, both eigenstate vectors for PSG and
PSA include two parameters (azimuth α and ellipticity ε),
the numerical search thus involves optimizing 12 parame-
ters of PSG (four parameters) and PSA (eight parameters).
A feasible algorithm is interior-point method [22], which is a
common algorithm to solve both linear and nonlinear convex
optimization problems. We have verified that the interior-
point method can converge rapidly to the minimal variance
of our optimization problem.

A. OPTIMAL MEASUREMENT MATRICES (A, W)
FOR EIGHT-ELEMENTS
By employing interior-point method for the problem in
Eq. (8), one can directly obtain the optimal set of 12 param-
eters of the PSG and the PSA under the Gaussian addi-
tive noise, and then the optimal measurement matrices(
AGau8−opt ,W

Gau
8−opt

)
are thus calculated by these 12 parame-

ters as:

AGau8−opt =
1
2

[
1 0.55 0.59 0.59
1 −0.55 0.59 −0.59

]T
,

WGau
8−opt =

1
2


1 0.55 0.59 0.59
1 0.55 −0.59 −0.59
1 −0.55 0.59 −0.59
1 −0.55 −0.59 0.59


T

. (12)

The variances on these eight nonzero Mueller elements
in Eq. (7) are also calculated by substituting Eq. (12) into
Eq. (9), which are given by:

Var[M ] = σ 2


2.0 6.6 • •

6.6 21.9 • •

• • 16.4 16.4
• • 16.4 16.4

 , (13)

and the total variance is calculated to be 102.8σ 2. Since σ 2

denotes the variance of Gaussian noise, which can be consid-
ered as a parameter value unrelated to theMueller elements to
be measured, the estimation variance does not depend on the
Mueller matrix and thus not on the ellipsometric parameters.
However, in the presence of Poisson noise, the variance

could depend on both the measurement matrices and the
Mueller matrix to be measured. The goal is to find an optimal
set of measurement matrices (A, W ) that minimizes the total
variance and be independent of the Mueller matrix. It means
that (A, W ) should make f

(
V8
M

)
= 0 [in Eq. (11)].

Interestingly, the global optimization result shows that the
optimal measurement matrices (A, W ) in the presence of
Poisson noise are equal to these of Gaussian noise:(

APoi8−opt ,W
Poi
8−opt

)
=

(
AGau8−opt ,W

Gau
8−opt

)
. (14)
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The total estimation variance can be calculated according to
Eq. (11) and is equal to 102.8[V8

M ]1/4. Here, [V8
M ]1 is the

first element in Mueller vector, and thus can be considered
as the intensity of reflected light by the samples. The optimal
azimuths αi and ellipticities εi corresponding to the optimal
measurement matrices in Eq. (12) for both Gaussian and
Poisson noise are shown in Table 1.

TABLE 1. Optimal azimuths and ellipticities for the measurement of
8-elements in presence of both Gaussian and Poisson noise.

B. OPTIMAL MEASUREMENT MATRICES (A, W)
FOR FOUR-ELEMENTS
Indeed, the two ellipsometric parameters can be even
calculated by only four Mueller elements (M11, M12,
M33, M34) [13], [23]. Is there any optimal set of measure-
ment matrices leads to minimal total variance of these four
elements? Therefore, the other goal is to find the optimal
measurement matrices that satisfy:(
A4−opt ,W4−opt

)
= argmin

A,W

∑
i∈�

σ 2
i , � = {1,3,5,7} . (15)

Under the Gaussian noise, we also obtain the optimal
measurement matrices by employing interior-point method:

AGau4−opt =
1
2

[
1 0.5773 0.6703 −0.4663
1 −0.5773 −0.4663 0.6703

]T
,

WGau
4−opt =

1
2


1 −0.0003 −1.0000 0.0001
1 0.0003 −1.0000 −0.0001
1 −0.0001 1.0000 0.0003
1 −0.0001 1.0000 −0.0003


T

,

(16)

and the minimal total variance is calculated to be 20σ 2.
However, the measurement matrix WGau

4−opt is singular and
has a poor robustness, furthermore, the related matrix Q8

A,W
(= [W ⊗ A]T ) is thus singular. Indeed, it is unavailable in
practice. As a compromise, it needs to find such a set of mea-
surement matrices that may lead to a little higher estimation
variance than the minimal one but be robust to the presence
of variation. In general, the robustness of matrix Q can be
described by its condition number [18]:

C (Q) = ‖Q‖
∥∥∥Q−1∥∥∥ , (17)

where ‖·‖ refers to the 2-norm of matrix. The condition
number C(Q) equals to the ratio of the largest singular
value of matrix Q to the smallest one. A ‘‘well-conditioned’’
matrix is associated with a value close to 1, while a ‘‘badly-
conditioned’’ matrix with a high value [18]. The condition
number of the matrixWGau

4 in Eq. (16) equals to 6.42× 103,
and that of the matrixQ8

A,W equals to 1.11×104. It means that

a minor disturbance would lead to a huge error in the practical
measurement [24]. In other words, the optimal solution in
Eq. (16) cannot be used in practice.
Therefore, a proper criterion is needed to find an optimal

set of measurement matrices
(
AGau4−opt ,W

Gau
4−opt

)
that robustly

minimizes the total variance of these four elements. We thus
introduce a new cost function, which is a linear combination
of the total estimation variance and the condition number
of Q8

A,W :

ε1 =
∑
i∈�

σ 2
i , � = {1,3,5,7} , ε2 = C

(
Q8
A,W

)
, (18)

and (
AGau4−opt ,W

Gau
4−opt

)
= argmin

A,W
{ω1ε1 + ω2ε2} , (19)

where ω1 = ε1
/
(ε1 + ε2) and ω2 = ε2

/
(ε1 + ε2) are

two adaptive weight factors. It should be noted that the first
term ω1ε1 in Eq. (19) minimizes the total variance of these
four elements, while the second term ω2ε2 minimizes the
condition number of Q8

A,W and leads to a robust solution.
By employing interior-point method, one obtains the optimal
solution of Eq. (19) as:

AGau4−opt =
1
2

[
1 0.5748 0.6150 −0.5398
1 −0.5748 0.5398 0.6150

]T
,

WGau
4−opt =

1
2


1 −0.2059 0.9716 −0.1166
1 0.2059 0.9716 0.1166
1 −0.1174 −0.9718 0.2046
1 0.1174 −0.9718 −0.2045


T

.

(20)

The total estimation variance of those four elements is
equal to 20.71σ 2. Indeed, it is slightly higher (∼3.6%) than
the minimal one of 20 σ 2. The condition number of Q8

A,W

corresponding to the optimal matrices
(
AGau4−opt ,W

Gau
4−opt

)
[in Eq. (20)] is calculated to be 3.31. It means that by using
the measurement matrices shown in Eq. (20), one can get
an optimal set of measurement matrices robustly minimizes
the total variance. The optimal azimuths and ellipticities cor-
responding to the optimal measurement matrices are shown
in Table 2.

TABLE 2. Optimal azimuths and ellipticities for the measurement of
4-elements in presence of Gaussian noise.

In order to compare with the existing measurement matri-
ces, the total estimation variance of the four elements
obtained by using different existing measurement matrices
are shown in Table 3. In addition, the measurement times
(refers to the number of intensity measurements) are also
presented for comparison.
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In addition, our method is based on eight intensity mea-
surements, while others are based on 16 measurements.
Indeed, with 16 measurements, we can perform our method
(with eight measurements) two times, and the total estimation
variance can be further decreased by half. Considering this
fact, we introduce a proper optimization ratio [24]:

R =
Vref − 0.5 · Vpro

Vref
. (21)

where Vref refers to the total estimation variance with the
referenced measurement matrices, while Vpro refers to the
total estimation variance with our proposed optimal measure-
ment matrices in Eq. (20). The optimization ratios related
to different referenced measurement matrices are presented
in Table 3 for comparison.

TABLE 3. The total variance of the four elements obtained by different
measurement matrices. (Gaussian noise).

It can be seen from Table 3 that, considering both total
estimation variance and measurement times, the proposed
optimal set of measurement matrices (A, W) in Eq. (20)
leads to the best performance. Specifically, comparing with
the regular tetrahedron measurement matrix in [15], which
minimizes the total variance of full 16 Mueller elements,
the optimization ratio of ourmethod is 52.89%,while with the
measurement matrix in [13], which minimizes the total vari-
ance of the four Mueller elements based on 16 intensity mea-
surements, the optimization ratio of our method is 37.33%.

In the presence of Poisson noise, we calculate f
(
V8
M

)
in

Eq. (11) by substituting the optimal measurement matrices(
AGau4−opt ,W

Gau
4−opt

)
in Eq. (20). Unfortunately, it is equal to

1.91 × 105, which means that the proposed measurement
matrices depend on the Mueller matrix significantly. Fur-
thermore, these measurement matrices make the estimation
variance depend on the ellipsometric parameters.

Therefore, it needs to introduce another proper cost func-
tion to find optimal measurement matrices that minimize
the total variance as well as to make the total variance be
independent of the Mueller matrix of sample [f

(
V8
M

)
= 0

in Eq. (11)] as:

ε1 =
∑
i∈�

σ 2
i , � = {1,3,5,7} , ε2 = 10m · f

(
V8
M

)
, (22)

and (
Apoi4−opt ,W

poi
4−opt

)
= arg min

A,W
{ω1ε1 + ω2ε2} , (23)

where ω1 = ε1/(ε1 + ε2) and ω2 = ε2/(ε1 + ε2) are
two adaptive weight factors, and m is a penalty coefficient.
We can obtain the optimal numerical solution that satis-
fies f

(
V8
M

)
=0 by increasing the penalty coefficient m [24].

Therefore, in these cases, the total estimation variance can be
considered to be unrelated to the measured Mueller matrix.
In other words, in Eq. (23), the first term minimizes the
total variance of the four elements in Mueller matrix, while
the second term ensure the optimal solution is unrelated
to the measured Mueller elements for Poisson shot noise.
By employing interior-point method with different values of
penalty coefficientm, which ranges from 0.1 to 30, the trends
of total estimation variance, the value of second term f

(
V8
M

)
in Eq. (11) and the condition number for Q8

A,W are presented
in Fig. 2.

FIGURE 2. The total estimation variance, the value of second term f
(

V 8
M

)
in Eq. (11) and the condition number for Q8

A,W in functions of penalty
coefficient.

According to Fig. 2, when m > 16, the condition number
and the total variance tended towards stable when f

(
V8
M

)
≈

0, and the corresponding optimal measurement matrices are
what we want, which are given by:

Apoi4−opt =
1
2

[
1 −0.5419 0.6036 −0.5848
1 0.5419 −0.6036 −0.5848

]T
,

W poi
4−opt =

1
2


1 0.4748 −0.7315 −0.4894
1 −0.4748 0.7315 −0.4894
1 0.4748 0.7315 0.4894
1 −0.4748 −0.7315 0.4894


T

.

(24)

The total variance of these four elements ε1 is equal to
30[V8

M ]1/4, and f
(
V8
M

)
is equal to ∼ 1022, which can be

considered as zero in practice. Besides, the condition number
ofQ8

A,W is equal to 3.89. All these results show that, by using

the proposed measurement matrices
(
Apoi4−opt ,W

poi
4−opt

)
in

Eq. (24), one can get a robust lower-variance estimation be
independent of Mueller matrix to be measured. The optimal
azimuths and ellipticities corresponding to the optimal mea-
surement matrices in Eq. (24) are shown in Table 4.

It should be noted that, the total variance related to themea-
surement matrices in Eq. (24) are unrelated to the measured
Mueller elements and thus the ellipsometric measurements,
while those related to the measurement matrices in Eq. (20)
are not. Besides, the total variance and themeasurement times

31498 VOLUME 7, 2019



X. Li et al.: Optimal Measurement Matrix of Partial Polarimeter

TABLE 4. Optimal azimuths and ellipticities for the measurement
of 4-elements in Mueller matrix in presence of Poisson shot noise.

by using different existing referenced measurement matrices
are presented in Table 5 for comparison.

TABLE 5. The total variance of the four Mueller elements obtained by
different measurement matrices. (Poisson noise.)

Table 5 shows that, considering both total estimation vari-
ance and measurement times [and thus the optimization
ratio], the proposed measurement matrices in Eq. (24) lead
to the best performance. In particular, compared with the
existing measurement matrices in [13] and [15], the optimiza-
tion ratios of the proposed measurement matrices are 31.82%
and 9.31%, respectively. In short, by using the proposed
measurement matrices in Eq. (24), one can obtain the best
performance of the estimation for these four Mueller ele-
ments with eight intensity measurements, and consequently,
the ellipsometric measurement precision is thus improved.

IV. CONCLUSION
In conclusion, we demonstrate that the ellipsometric param-
eters can be measured by a partial polarimetry with only
eight intensity measurements. In the presence of Gaussian
additive and Poisson shot noise, we propose the optimal
set of measurement matrices for the PSG and the PSA that
minimizes the noise propagation, and thus reduces the esti-
mation variance. Furthermore, since the estimation variance
can be further reduced if we only consider four Mueller
elements related to the ellipsometric measurements, in this
case, we also propose two robust optimal sets of measure-
ment matrices that minimize the total variance of these
four Mueller elements by introducing proper criterion under
Gaussian and Poisson noise, respectively. Besides, by using
our proposedmeasurementmatrices, the total estimation vari-
ance is independent of the Mueller matrix to be measured,
and thus of the ellipsometric measurements. In addition, com-
pared with the existing referenced measurement matrices,
the proposed measurement matrices effectively reduce the
total estimation variance and require less measurement times.

Of course, there are other sources of noise in the ellip-
sometric system, such as the instrumental noise due to the
imperfection of optical device [25], [26], the proposed opti-
mization approach can be also applied for the error reduction

in these cases. In addition, for the further work, the idea of the
minimizes the noise propagation in polarimeter/ellipsometer
with less intensity measurements can be also extended to
other common types of Mueller matrix, such as the one
exhibiting symmetries [27].
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